BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sharifianjazi F, Moradi M, Parvin N, Nemati A, Jafari Rad A, Sheysi N, Abouchenari A, Mohammadi A, Karbasi S, Ahmadi Z, Esmaeilkhanian A, Irani M, Pakseresht A, Sahmani S, Shahedi Asl M. Magnetic CoFe2O4 nanoparticles doped with metal ions: A review. Ceramics International 2020;46:18391-412. [DOI: 10.1016/j.ceramint.2020.04.202] [Cited by in Crossref: 92] [Cited by in F6Publishing: 95] [Article Influence: 30.7] [Reference Citation Analysis]
Number Citing Articles
1 Badiger H, Matteppanavar S, Hegde BG. Structural, Electrical and Magnetic Properties of Low Dimensional Pr-Doped Co-Zn Ferrite Nanoparticles. J Supercond Nov Magn 2023. [DOI: 10.1007/s10948-023-06503-w] [Reference Citation Analysis]
2 Kiani MN, Butt MS, Gul IH, Saleem M, Irfan M, Baluch AH, Akram MA, Raza MA. Synthesis and Characterization of Cobalt-Doped Ferrites for Biomedical Applications. ACS Omega 2023. [DOI: 10.1021/acsomega.2c05226] [Reference Citation Analysis]
3 Ghamari kargar P, Bakhshi F, Bagherzade G. Value-Added Synthesized Acidic Polymer Nanocomposite with Waste Chicken Eggshell: A novel metal-free and heterogeneous catalyst for Mannich and Hantzsch Cascade Reactions from Alcohols. Arabian Journal of Chemistry 2023. [DOI: 10.1016/j.arabjc.2023.104564] [Reference Citation Analysis]
4 Ali A, Ahmed A, Usman M, Raza T, Ali MS, Al-nahari A, Liu C, Li D, Li C. Synthesis of visible light responsive Ce0.2Co0.8Fe2O4/g-C3N4 composites for efficient photocatalytic degradation of rhodamine B. Diamond and Related Materials 2023. [DOI: 10.1016/j.diamond.2023.109721] [Reference Citation Analysis]
5 Al-senani GM, Al-fawzan FF, Almufarij RS, Abd-elkader OH, Deraz NM. Magnetic Behavior of Virgin and Lithiated NiFe2O4 Nanoparticles. Crystals 2022;13:69. [DOI: 10.3390/cryst13010069] [Reference Citation Analysis]
6 Pan B, Zhou L, Qin J, Liao M, Wang C. Modulating CoFeO(X) Nanosheets Towards Enhanced CO(2) Photoreduction to Syngas: Effect of Calcination Temperature and Mixed-Valence Multi-Metals. Chemistry 2022;28:e202201992. [PMID: 36169660 DOI: 10.1002/chem.202201992] [Reference Citation Analysis]
7 Hadouch Y, Mezzane D, Amjoud M, Hajji L, Gagou Y, Kutnjak Z, Laguta V, Kopelevich Y, El Marssi M. Enhanced Relative cooling Power and large inverse magnetocaloric effect of cobalt ferrite nanoparticles synthesized by auto-combustion method. Journal of Magnetism and Magnetic Materials 2022;563:169925. [DOI: 10.1016/j.jmmm.2022.169925] [Reference Citation Analysis]
8 Li J, Yousaf M, Hayat Q, Akbar M, Noor A, Shah MY, Qi F, Lu Y. Effect of rare earth Nd3+ doping contents on physical, structural, and magnetic properties of Co–Ni spinel ferrite nanoparticles. Journal of Rare Earths 2022. [DOI: 10.1016/j.jre.2022.12.007] [Reference Citation Analysis]
9 Nguyen LM, Nguyen NTT, Nguyen TTT, Nguyen DH, Nguyen DTC, Tran TV. Facile synthesis of CoFe(2)O(4)@MIL-53(Al) nanocomposite for fast dye removal: Adsorption models, optimization and recyclability. Environ Res 2022;215:114269. [PMID: 36103925 DOI: 10.1016/j.envres.2022.114269] [Reference Citation Analysis]
10 Wang X, Musicó BL, Kons C, Metz PC, Keppens V, Gilbert DA, Zhang Y, Page K. Local cation order and ferrimagnetism in compositionally complex spinel ferrites. APL Materials 2022;10:121102. [DOI: 10.1063/5.0123728] [Reference Citation Analysis]
11 Ji J, Zhang S, Cao C, Su S, Jiang R, Xia A, Zhang H, Li H, Liu Z, Jin C. Structural and magnetic properties of SrFe12O19/CoFe2O4 composites with exchange coupling interaction. Journal of Magnetism and Magnetic Materials 2022;564:170073. [DOI: 10.1016/j.jmmm.2022.170073] [Reference Citation Analysis]
12 Kalia S, Prasad N. Overview of properties, applications, and synthesis of 4d-series doped/substituted cobalt ferrite. Inorganic Chemistry Communications 2022. [DOI: 10.1016/j.inoche.2022.110201] [Reference Citation Analysis]
13 Ahmad SI. Nano cobalt ferrites: Doping, Structural, Low-temperature, and room temperature magnetic and dielectric properties – A comprehensive review. Journal of Magnetism and Magnetic Materials 2022;562:169840. [DOI: 10.1016/j.jmmm.2022.169840] [Reference Citation Analysis]
14 Gao Z, Zhu J, Zhu Q, Wang C, Cao Y. Spinel ferrites materials for sulfate radical-based advanced oxidation process: A review. Science of The Total Environment 2022;847:157405. [DOI: 10.1016/j.scitotenv.2022.157405] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
15 Arumugham N, Mariappan A, Eswaran J, Daniel S, Kanthapazham R, Kathirvel P. Nickel ferrite-based composites and its photocatalytic application – A review. Journal of Hazardous Materials Advances 2022;8:100156. [DOI: 10.1016/j.hazadv.2022.100156] [Reference Citation Analysis]
16 Chen K, Li Y, Du Z, Hu S, Huang J, Shi Z, Su B, Yang G. CoFe2O4 embedded bacterial cellulose for flexible, biodegradable, and self-powered electromagnetic sensor. Nano Energy 2022;102:107740. [DOI: 10.1016/j.nanoen.2022.107740] [Reference Citation Analysis]
17 Hou Z, Liu C, Gong J, Wu J, Sun S, Zhang M, Sun X. Micro-Structural Design of CoFe2O4/SWCNTs Composites for Enhanced Electromagnetic Properties. Coatings 2022;12:1532. [DOI: 10.3390/coatings12101532] [Reference Citation Analysis]
18 Li R, Wen Y, Liu M, Su L, Wang Y, Li S, Zhong M, Zhou Z, Zhou N. Simultaneous removal of organic inorganic composite contaminants by in situ double modified biochar: Performance and mechanisms. Journal of the Taiwan Institute of Chemical Engineers 2022;139:104523. [DOI: 10.1016/j.jtice.2022.104523] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
19 Gambhir RP, Rohiwal SS, Tiwari AP. Multifunctional surface functionalized magnetic iron oxide nanoparticles for biomedical applications: A review. Applied Surface Science Advances 2022;11:100303. [DOI: 10.1016/j.apsadv.2022.100303] [Reference Citation Analysis]
20 Elansary M, Belaiche M, Mouhib Y, Lemine O, Bentarhlia N, Bsoul I. Novel biocompatible nanomaterial for biomedical application: Structural, morphological, magnetic, and in vivo toxicity investigations. Ceramics International 2022. [DOI: 10.1016/j.ceramint.2022.09.341] [Reference Citation Analysis]
21 Siva K, Kumar A, Chelvane JA, Arockiarajan A. Structural, magnetic, magnetostrictive and optical properties of Mn and Cu codoped cobalt ferrite. Materials Science and Engineering: B 2022;284:115885. [DOI: 10.1016/j.mseb.2022.115885] [Reference Citation Analysis]
22 Hoang V, Le Nhat Trang N, Thi Nguyet Nga D, Ngo X, Pham TN, Tran VT, Mai M, Thi Tam L, Tri DQ, Le A. Facile synthesis and characterisations of cobalt ferrite-silver-graphene oxide nanocomposite in enhancing electrochemical response capacity. Adv Nat Sci: Nanosci Nanotechnol 2022;13:035002. [DOI: 10.1088/2043-6262/13/3/035002] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
23 Pukhram S, Soibam I. Effect of sintering on the various properties of cobalt ferrite nanoparticles. Materials Today: Proceedings 2022. [DOI: 10.1016/j.matpr.2022.07.451] [Reference Citation Analysis]
24 Brahimi B, Mekatel E, Baaloudj O, Trari M. High Photocatalytic Activity of the Heterojunction Photocatalyst CoFe2O4/AgCl for Efficient Photodegradation of Solophenyl Red 3BL Dye in Water. Water Air Soil Pollut 2022;233. [DOI: 10.1007/s11270-022-05812-5] [Reference Citation Analysis]
25 Tan S, Wang N, Yang C, Wang L, Hu Y, Li J, Xu S, Lu M, Li H. Exchange bias and exchange spring in CoFe2O4/FeO/CoFe nanocomposites. Journal of Magnetism and Magnetic Materials 2022;556:169428. [DOI: 10.1016/j.jmmm.2022.169428] [Reference Citation Analysis]
26 Kiani A, Davar F, Bazarganipour M. Influence of verjuice extract on the morphology, phase, and magnetic properties of green synthesized CoFe2O4 nanoparticle: its application as an anticancer drug delivery. Ceramics International 2022. [DOI: 10.1016/j.ceramint.2022.08.079] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
27 S D, Sivaprakash P, Raja S, Muthu SE, Kim I, Renuka N, Arumugam S, Oh TH. Impact of Zn doping on the dielectric and magnetic properties of CoFe2O4 nanoparticles. Ceramics International 2022. [DOI: 10.1016/j.ceramint.2022.07.263] [Reference Citation Analysis]
28 Belessiotis GV, Falara PP, Ibrahim I, Kontos AG. Magnetic Metal Oxide-Based Photocatalysts with Integrated Silver for Water Treatment. Materials 2022;15:4629. [DOI: 10.3390/ma15134629] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
29 Nairan A, Khan U, Wu D, Gao J. Structural and temperature-dependent magnetic characteristics of Ho doped CoFe2O4 nanostructures. Ceramics International 2022. [DOI: 10.1016/j.ceramint.2022.07.158] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Hssaini A, Belaiche M, Elansary M, Ferdi CA, Mouhib Y. Magnetic and Structural Properties of Novel-Coated Ni0.5Co0.5Fe1.6Gd0.2Mo0.1Sm0.1O4 Spinel Ferrite Nanomaterial: Experimental and Theoretical Investigations. J Supercond Nov Magn. [DOI: 10.1007/s10948-022-06307-4] [Reference Citation Analysis]
31 Dubey K, Dubey S, Sahu V, Parry RA, Modi A, Gaur NK. Structural, optical and magnetic properties of CoFe2O4 nanoparticle synthesized by ultrasonication-assisted sol–gel technique. Appl Phys A 2022;128. [DOI: 10.1007/s00339-022-05681-z] [Reference Citation Analysis]
32 Heydaryan K, Almasi Kashi M, Montazer AH. Tuning specific loss power of CoFe2O4 nanoparticles by changing surfactant concentration in a combined co-precipitation and thermal decomposition method. Ceramics International 2022;48:16967-76. [DOI: 10.1016/j.ceramint.2022.02.251] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Victoria Matos Oliveira R, Ferreira dos Santos A, Danielly Lima Santos M, da Costa Cunha G, Pimenta Cruz Romão L. Magnetic solid-phase extraction of bisphenol A from water samples using nanostructured material based on graphene with few layers and cobalt ferrite. Microchemical Journal 2022. [DOI: 10.1016/j.microc.2022.107741] [Reference Citation Analysis]
34 Kumar P, Pathak S, Jain K, Singh A, Kuldeep, Basheed G, Pant R. Low-temperature large-scale hydrothermal synthesis of optically active PEG-200 capped single domain MnFe2O4 nanoparticles. Journal of Alloys and Compounds 2022;904:163992. [DOI: 10.1016/j.jallcom.2022.163992] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
35 Soares APS, Maria F. V. Marques, Mothé MG. Sustainable applications in nanocellulose-based sorbent composite: a technological monitoring. Biomass Conv Bioref . [DOI: 10.1007/s13399-022-02660-5] [Reference Citation Analysis]
36 Li H, Zeng Z, Zhang J, Zhu S, Chen B, Zhu L, Bi K, Zhou X, Guan C, Peng Y. Atomic-Scale Imaging of Dopant Sites in a Ni-Doped Ideal Normal Spinel ZnFe 2 O 4 Nanofiber and Its Correlated Magnetism Origin. J Phys Chem C. [DOI: 10.1021/acs.jpcc.2c01398] [Reference Citation Analysis]
37 Macedo V, Pereira N, Tubio C, Martins P, Costa C, Lanceros-mendez S. Carrageenan based printable magnetic nanocomposites for actuator applications. Composites Science and Technology 2022. [DOI: 10.1016/j.compscitech.2022.109485] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Mohamed W, Hadia N, Al bakheet B, Alzaid M, Abu-dief AM. Impact of Cu2+ cations substitution on structural, morphological, optical and magnetic properties of Co1-xCuxFe2O4 nanoparticles synthesized by a facile hydrothermal approach. Solid State Sciences 2022;125:106841. [DOI: 10.1016/j.solidstatesciences.2022.106841] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
39 Bagade AV, Nagwade PA, Nagawade AV, Thopate SR, Pund SN. A Review on Synthesis, Characterization and Applications of Cadmium Ferrite and its Doped Variants. Orient J Chem 2022;38:01-15. [DOI: 10.13005/ojc/380101] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
40 Belaiche Y, Minaoui K, Ouadou M, Mouhib Y, Elansary M. Elaboration and Experimental Investigation of Zn-Ni-Co Spinel Ferrite Multi-doped Rare-Earth (Gd, Er, and Sm) Prepared by Coprecipitation Method. J Supercond Nov Magn. [DOI: 10.1007/s10948-022-06189-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Slimani Y, Almessiere MA, Guner S, Aktas B, Shirsath SE, Silibin MV, Trukhanov AV, Baykal A. Impact of Sm3+ and Er3+ Cations on the Structural, Optical, and Magnetic Traits of Spinel Cobalt Ferrite Nanoparticles: Comparison Investigation. ACS Omega 2022;7:6292-301. [PMID: 35224391 DOI: 10.1021/acsomega.1c06898] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
42 Wang Y, Yang X, Pang L, Geng P, Mi F, Hu C, Peng F, Guan M. Application progress of magnetic molecularly imprinted polymers chemical sensors in the detection of biomarkers. Analyst 2022;147:571-86. [PMID: 35050266 DOI: 10.1039/d1an01112j] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
43 Nikmanesh H, Jaberolansar E, Kameli P, Ghotbi Varzaneh A, Mehrabi M, Shamsodini M, Rostami M, Orue I, Chernenko V. Structural features and temperature-dependent magnetic response of cobalt ferrite nanoparticle substituted with rare earth sm3+. Journal of Magnetism and Magnetic Materials 2022;543:168664. [DOI: 10.1016/j.jmmm.2021.168664] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
44 Hareendran A, Dais E, Shinoy D, Srikripa S, Shibu GM, Kurian M. Nitrogen- and sulfur-doped zinc ferrite nanoparticles as efficient heterogeneous catalysts in advanced oxidation processes. Journal of Physics and Chemistry of Solids 2022;161:110398. [DOI: 10.1016/j.jpcs.2021.110398] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
45 Mouhib Y, Belaiche M, Elansary M, Ahmani Ferdi C. Effect of heating temperature on structural and magnetic properties of zinc ferrite nanoparticles synthesized for the first time in presence of Moroccan reagents. Journal of Alloys and Compounds 2022;895:162634. [DOI: 10.1016/j.jallcom.2021.162634] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
46 Sichumsaeng T, Phromviyo N, Pinitsoontorn S, Kidkhunthod P, Chanlek N, Maensiri S. Synthesis, characterization and magnetic properties of KFeO2 nanoparticles prepared by a simple egg white solution route. Int J Miner Metall Mater 2022;29:128-35. [DOI: 10.1007/s12613-020-2194-x] [Reference Citation Analysis]
47 Abdel Maksoud MIA, Ghobashy MM, Kodous AS, Fahim RA, Osman AI, Al-muhtaseb AH, Rooney DW, Mamdouh MA, Nady N, Ashour AH. Insights on magnetic spinel ferrites for targeted drug delivery and hyperthermia applications. Nanotechnology Reviews 2022;11:372-413. [DOI: 10.1515/ntrev-2022-0027] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
48 Büyüktiryaki S, Keçili R, Özkütük EB, Ersöz A, Say R. Synthesis of Core-Shell Magnetic Nanoparticles. Handbook of Magnetic Hybrid Nanoalloys and their Nanocomposites 2022. [DOI: 10.1007/978-3-030-90948-2_9] [Reference Citation Analysis]
49 Ganjali F, Kashtiaray A, Zarei-shokat S, Taheri-ledari R, Maleki A. Functionalized hybrid magnetic catalytic systems on micro- and nanoscale utilized in organic synthesis and degradation of dyes. Nanoscale Adv . [DOI: 10.1039/d1na00818h] [Cited by in Crossref: 8] [Cited by in F6Publishing: 13] [Article Influence: 8.0] [Reference Citation Analysis]
50 Büyüktiryaki S, Keçili R, Özkütük EB, Ersöz A, Say R. Synthesis of Core-Shell Magnetic Nanoparticles. Handbook of Magnetic Hybrid Nanoalloys and their Nanocomposites 2022. [DOI: 10.1007/978-3-030-34007-0_9-1] [Reference Citation Analysis]
51 Sharifianjazi F, Jafari Rad A, Bakhtiari A, Niazvand F, Esmaeilkhanian A, Bazli L, Abniki M, Irani M, Moghanian A. Biosensors and nanotechnology for cancer diagnosis (lung and bronchus, breast, prostate, and colon): a systematic review. Biomed Mater 2021;17. [PMID: 34891145 DOI: 10.1088/1748-605X/ac41fd] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
52 Sharifianjazi F, Esmaeilkhanian A, Bazli L, Eskandarinezhad S, Khaksar S, Shafiee P, Yusuf M, Abdullah B, Salahshour P, Sadeghi F. A review on recent advances in dry reforming of methane over Ni- and Co-based nanocatalysts. International Journal of Hydrogen Energy 2021. [DOI: 10.1016/j.ijhydene.2021.11.172] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 9.5] [Reference Citation Analysis]
53 Kumar P, Pathak S, Singh A, Khanduri H, Kuldeep, Jain K, Tawale J, Wang L, Basheed G, Pant R. Enhanced static and dynamic magnetic properties of PEG-400 coated CoFe2−xErxO4 (0.7 x 0 ) nanoferrites. Journal of Alloys and Compounds 2021;887:161418. [DOI: 10.1016/j.jallcom.2021.161418] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
54 Khosroshahi N, Karimi M, Taghvaei T, Safarifard V. Ultrasound-assisted synthesis of CoFe2O4/Ce-UiO-66 nanocomposite for photocatalytic aerobic oxidation of aliphatic alcohols. Materials Today Chemistry 2021;22:100582. [DOI: 10.1016/j.mtchem.2021.100582] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
55 Nikmanesh H, Jaberolansar E, Kameli P, Varzaneh AG, Mehrabi M, Rostami M. Structural and magnetic properties of CoFe2O4ferrite nanoparticles doped by gadolinium. Nanotechnology 2021;33. [PMID: 34673546 DOI: 10.1088/1361-6528/ac31e8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
56 Brahimi B, Mekatel E, Mellal M, Baaloudj O, Brahimi R, Hemmi A, Trari M, Belmedani M. Enhanced photodegradation of acid orange 61 by the novel hetero-junction CoFe2O4/AgCl. Optical Materials 2021;121:111576. [DOI: 10.1016/j.optmat.2021.111576] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
57 Gazzola G, Ambrosetti M, Mozzati MC, Albini B, Galinetto P, Bini M. Tuning the superparamagnetic effect in ZnFe2O4 nanoparticles with Mg, Ga doping. Materials Chemistry and Physics 2021;273:125069. [DOI: 10.1016/j.matchemphys.2021.125069] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
58 Cherif A, Saidani M, Dakhlaoui I, Greneche JM, Mliki NT. Co-ferrite nanostructures prepared by solvothermal route; new ultra-low k dielectrics. Materials Chemistry and Physics 2021;273:125102. [DOI: 10.1016/j.matchemphys.2021.125102] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
59 Oulhakem O, Guetni I, Elansary M, Mouhib Y, Belaiche M, Belrhiti Alaoui K. Characterization and magnetic study of new oleic acid-coated Gd–Sm–Er-doped Co-Nanoferrite CoFe1,6Er0,1Gd0,2Sm0,1O4. Appl Phys A 2021;127. [DOI: 10.1007/s00339-021-04941-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
60 Zhang X, An J, Ji C, Liu Y. Electromagnetic and microwave absorption properties of Ti3SiC2/NiFe2O4/epoxy resin coatings. J Mater Sci: Mater Electron 2021;32:25363-75. [DOI: 10.1007/s10854-021-06996-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
61 Bai Y. One‐dimensional bunched Ni‐V 2 O 3 @C@CNT for superior performance lithium‐ion batteries and hybrid capacitors. Nano Select 2021;2:1941-1953. [DOI: 10.1002/nano.202000208] [Reference Citation Analysis]
62 Sharifianjazi F, Irani M, Esmaeilkhanian A, Bazli L, Asl MS, Jang HW, Kim SY, Ramakrishna S, Shokouhimehr M, Varma RS. Polymer incorporated magnetic nanoparticles: Applications for magnetoresponsive targeted drug delivery. Materials Science and Engineering: B 2021;272:115358. [DOI: 10.1016/j.mseb.2021.115358] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 10.0] [Reference Citation Analysis]
63 Fatimah I, Fadillah G, Yudha SP. Synthesis of iron-based magnetic nanocomposites: A review. Arabian Journal of Chemistry 2021;14:103301. [DOI: 10.1016/j.arabjc.2021.103301] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
64 Hirosawa F, Iwasaki T. A comparative study of the magnetic induction heating properties of rare earth (RE = Y, La, Ce, Pr, Nd, Gd and Yb)-substituted magnesium–zinc ferrites. Solid State Sciences 2021;118:106655. [DOI: 10.1016/j.solidstatesciences.2021.106655] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
65 Sinuhaji P, Simbolon TR, Hamid M, Hutajulu DA, Sembiring T, Rianna M, Ginting M. Influences of Co compositions in CoFe2O4 on microstructures, thermal, and magnetic properties. Case Studies in Thermal Engineering 2021;26:101040. [DOI: 10.1016/j.csite.2021.101040] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
66 Farazin A, Sahmani S, Soleimani M, Kolooshani A, Saber-samandari S, Khandan A. Effect of hexagonal structure nanoparticles on the morphological performance of the ceramic scaffold using analytical oscillation response. Ceramics International 2021;47:18339-50. [DOI: 10.1016/j.ceramint.2021.03.155] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
67 Narayanan J, Hernández JG, Padilla-martínez II, Thangarasu P, Santos Garay SE, Palacios Cabrera CB, Santiago Cuevas AJ. Geometry influenced adsorption of fluoxetine over the surface of RuFeO3 and CeFeO3 nanoparticles: Kinetics and thermodynamic studies. Ceramics International 2021;47:20544-61. [DOI: 10.1016/j.ceramint.2021.04.064] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
68 Yang D, Yun Y, Subedi A, Rogers NE, Cornelison DM, Dowben PA, Xu X. Colossal intrinsic exchange bias from interfacial reconstruction in epitaxial CoFe2O4/Al2O3 thin films. Phys Rev B 2021;103. [DOI: 10.1103/physrevb.103.224405] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
69 Investigation of the Process of Coprecipitation of Double Fe–Co Hydroxides. Nanosistemi, Nanomateriali, Nanotehnologii 2021;19. [DOI: 10.15407/nnn.19.02.263] [Reference Citation Analysis]
70 Vinnik D, Starikov A, Zhivulin V, Astapovich K, Turchenko V, Zubar T, Trukhanov S, Kohout J, Kmječ T, Yakovenko O, Matzui L, Sombra A, Zhou D, Jotania R, Singh C, Trukhanov A. Structure and magnetodielectric properties of titanium substituted barium hexaferrites. Ceramics International 2021;47:17293-306. [DOI: 10.1016/j.ceramint.2021.03.041] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
71 Sahmani S, Khandan A, Saber-samandari S, Esmaeili S, Aghdam MM. Fabrication and resonance simulation of 3D-printed biocomposite mesoporous implants with different periodic cellular topologies. Bioprinting 2021;22:e00138. [DOI: 10.1016/j.bprint.2021.e00138] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
72 Esmaeilkhanian A, Sharifianjazi F, Parvin N, Kooti MA. Cytotoxicity of thermoresponsive core/shell Ni x Co 1−x Fe 2 O 4 /PEG nanoparticles synthesized by the sol–gel method. J Phys D: Appl Phys 2021;54:295002. [DOI: 10.1088/1361-6463/abf78a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
73 Hssaini A, Belaiche M, Elansary M. One-step synthesis of coated (Gd3+, Er3+) co-doped Co–Ni ferrite nanoparticles; structural and magnetic properties. J Mater Sci: Mater Electron 2021;32:11931-43. [DOI: 10.1007/s10854-021-05823-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
74 Liu L, Wang Z, Wang XZ. CoFe2O4 nanopowder synthesis by a solid-liquid cation-exchange process and their magnetic properties. Ceramics International 2021;47:14418-14426. [DOI: 10.1016/j.ceramint.2021.02.021] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
75 Cruz DR, Silva IA, Oliveira RV, Buzinaro MA, Costa BF, Cunha GC, Romão LP. Recycling of mining waste in the synthesis of magnetic nanomaterials for removal of nitrophenol and polycyclic aromatic hydrocarbons. Chemical Physics Letters 2021;771:138482. [DOI: 10.1016/j.cplett.2021.138482] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
76 Sorescu M, Jubeck J, Knauss M, Perrin A, Mchenry M. Effect of graphene on the mechanochemical activation of cobalt ferrite nanoparticles. Journal of Physics and Chemistry of Solids 2021;150:109866. [DOI: 10.1016/j.jpcs.2020.109866] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
77 Abuchenari A, Sharifianjazi F, Pakseresht A, Pudineh M, Esmaeilkhanian A. Effect of aluminum on microstructural and magnetic properties of nanostructured (Fe85Ni15)97Al3 alloy produced via mechanical alloying. Advanced Powder Technology 2021;32:337-45. [DOI: 10.1016/j.apt.2020.12.011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
78 Milani SS, Kakroudi MG, Vafa NP, Rahro S, Behboudi F. Synthesis and characterization of MgAl2O4 spinel precursor sol prepared by inorganic salts. Ceramics International 2021;47:4813-9. [DOI: 10.1016/j.ceramint.2020.10.051] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
79 Suresh R, Rajendran S, Kumar PS, Vo DN, Cornejo-Ponce L. Recent advancements of spinel ferrite based binary nanocomposite photocatalysts in wastewater treatment. Chemosphere 2021;274:129734. [PMID: 33548641 DOI: 10.1016/j.chemosphere.2021.129734] [Cited by in Crossref: 43] [Cited by in F6Publishing: 33] [Article Influence: 21.5] [Reference Citation Analysis]
80 Vaferi K, Vajdi M, Nekahi S, Nekahi S, Sadegh Moghanlou F, Shahedi Asl M, Mohammadi M. Thermo-mechanical simulation of ultrahigh temperature ceramic composites as alternative materials for gas turbine stator blades. Ceramics International 2021;47:567-80. [DOI: 10.1016/j.ceramint.2020.08.164] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
81 Ali TM, Ismail SM, Mansour SF, Abdo MA, Yehia M. Physical properties of Al-doped cobalt nanoferrite prepared by citrate–nitrate auto combustion method. J Mater Sci: Mater Electron 2021;32:3092-103. [DOI: 10.1007/s10854-020-05059-y] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
82 Nguyen V, Delbari SA, Shahedi Asl M, Le QV, Shokouhimehr M, Sabahi Namini A, Mohammadi M. Microstructure–property correlation in nano-diamond and TiN added TiC-based ceramics. Ceramics International 2021;47:449-60. [DOI: 10.1016/j.ceramint.2020.08.152] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
83 Nguyen V, Delbari SA, Sabahi Namini A, Ahmadi Z, Le QV, Shokouhimehr M, Shahedi Asl M, Mohammadi M. Microstructural evolution of TiB2–SiC composites empowered with Si3N4, BN or TiN: A comparative study. Ceramics International 2021;47:1002-11. [DOI: 10.1016/j.ceramint.2020.08.214] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
84 Sarveena, Kumar G, Kondal N, Singh M, Sharma SK. Wet Chemical Synthesis and Processing of Nanoferrites in Terms of Their Shape, Size and Physiochemical Properties. Topics in Mining, Metallurgy and Materials Engineering 2021. [DOI: 10.1007/978-3-030-79960-1_3] [Reference Citation Analysis]
85 Roghani H, Tayebifard SA, Kasraee K, Shahedi Asl M. Volume combustion synthesis of B4C–SiC nanocomposites in tubular and spark plasma furnaces. Ceramics International 2020;46:28922-32. [DOI: 10.1016/j.ceramint.2020.08.060] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
86 Manohar A, Geleta DD, Krishnamoorthi C, Lee J. Synthesis, characterization and magnetic hyperthermia properties of nearly monodisperse CoFe2O4 nanoparticles. Ceramics International 2020;46:28035-41. [DOI: 10.1016/j.ceramint.2020.07.298] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 10.0] [Reference Citation Analysis]
87 Foong LK, Jume BH, Xu C. Densification behavior and mechanical properties of hot-pressed TiC–WC ceramics. Ceramics International 2020;46:28316-23. [DOI: 10.1016/j.ceramint.2020.07.335] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
88 Foong LK, Mu'azu MA, Lyu Z. Effect of SiC whisker on densification and mechanical properties of hot-pressed TiC-based composites. Ceramics International 2020;46:27734-41. [DOI: 10.1016/j.ceramint.2020.07.272] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
89 Henaish AMA, Hemeda OM, Alqarni A, El Refaay DE, Mohamed S, Hamad MA. The role of flash auto-combustion method and Mn doping in improving dielectric and magnetic properties of CoFe2O4. Appl Phys A 2020;126. [DOI: 10.1007/s00339-020-04030-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
90 Nayebi B, Parvin N, Aghazadeh Mohandesi J, Shahedi Asl M. Effect of Zr and C co-addition on the characteristics of ZrB2-based ceramics: Role of spark plasma sintering temperature. Ceramics International 2020;46:24975-85. [DOI: 10.1016/j.ceramint.2020.06.283] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 7.3] [Reference Citation Analysis]
91 Ghassemi Kakroudi M, Pourmohammadie Vafa N, Shahedi Asl M, Shokouhimehr M. Effects of SiC content on thermal shock behavior and elastic modulus of cordierite–mullite composites. Ceramics International 2020;46:23780-4. [DOI: 10.1016/j.ceramint.2020.06.153] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 8.7] [Reference Citation Analysis]
92 Nguyen V, Pazhouhanfar Y, Delbari SA, Shaddel S, Babapoor A, Mohammadpourderakhshi Y, Le QV, Shokouhimehr M, Shahedi Asl M, Sabahi Namini A. Beneficial role of carbon black on the properties of TiC ceramics. Ceramics International 2020;46:23544-55. [DOI: 10.1016/j.ceramint.2020.06.125] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 11.0] [Reference Citation Analysis]
93 Adibpur F, Tayebifard SA, Zakeri M, Shahedi Asl M. Co-reinforcing of ZrB2–SiC ceramics with optimized ZrC to Cf ratio. Ceramics International 2020;46:22661-73. [DOI: 10.1016/j.ceramint.2020.06.029] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 10.0] [Reference Citation Analysis]
94 Vajdi M, Sadegh Moghanlou F, Nekahi S, Ahmadi Z, Motallebzadeh A, Jafarzadeh H, Shahedi Asl M. Role of graphene nano-platelets on thermal conductivity and microstructure of TiB2–SiC ceramics. Ceramics International 2020;46:21775-83. [DOI: 10.1016/j.ceramint.2020.05.289] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 12.3] [Reference Citation Analysis]
95 Nguyen TP, Delbari SA, Azizian-kalandaragh Y, Babapoor A, Le QV, Sabahi Namini A, Shokouhimehr M, Shahedi Asl M. Characteristics of quadruplet Ti–Mo–TiB2–TiC composites prepared by spark plasma sintering. Ceramics International 2020;46:20885-95. [DOI: 10.1016/j.ceramint.2020.05.137] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 10.3] [Reference Citation Analysis]