BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lei H, Xie M, Zhao Y, Zhang F, Xu Y, Xie J. Chitosan/sodium alginate modificated graphene oxide-based nanocomposite as a carrier for drug delivery. Ceramics International 2016;42:17798-805. [DOI: 10.1016/j.ceramint.2016.08.108] [Cited by in Crossref: 36] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
Number Citing Articles
1 Itoo AM, Vemula SL, Gupta MT, Giram MV, Kumar SA, Ghosh B, Biswas S. Multifunctional graphene oxide nanoparticles for drug delivery in cancer. J Control Release 2022;350:26-59. [PMID: 35964787 DOI: 10.1016/j.jconrel.2022.08.011] [Reference Citation Analysis]
2 Khushbu, Jindal R. Thermal stability and optimization of graphene oxide incorporated chitosan and sodium alginate based nanocomposite containing inclusion complexes of paracetamol and β-cyclodextrin for prolonged drug delivery systems. Polym Bull . [DOI: 10.1007/s00289-022-04157-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Ashrafizadeh M, Saebfar H, Gholami MH, Hushmandi K, Zabolian A, Bikarannejad P, Hashemi M, Daneshi S, Mirzaei S, Sharifi E, Kumar AP, Khan H, Heydari Sheikh Hossein H, Vosough M, Rabiee N, Thakur Kumar V, Makvandi P, Mishra YK, Tay FR, Wang Y, Zarrabi A, Orive G, Mostafavi E. Doxorubicin-loaded graphene oxide nanocomposites in cancer medicine: Stimuli-responsive carriers, co-delivery and suppressing resistance. Expert Opin Drug Deliv 2022. [PMID: 35152815 DOI: 10.1080/17425247.2022.2041598] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 8.0] [Reference Citation Analysis]
4 Mohammadi A, Hosseinipour M, Abdolvand H, Najafabadi SAA, Sahraneshin Samani F. Improvement in bioavailability of curcumin within the castor‐oil based polyurethane nanocomposite through its conjugation on the surface of graphene oxide nanosheets. Polymers for Advanced Techs. [DOI: 10.1002/pat.5586] [Reference Citation Analysis]
5 Kendre PN, Gite M, Jain SP, Pote A. Nanocomposite polymeric materials: state of the art in the development of biomedical drug delivery systems and devices. Polym Bull . [DOI: 10.1007/s00289-021-03985-3] [Reference Citation Analysis]
6 Khorsandi Z, Borjian-boroujeni M, Yekani R, Varma RS. Carbon nanomaterials with chitosan: A winning combination for drug delivery systems. Journal of Drug Delivery Science and Technology 2021;66:102847. [DOI: 10.1016/j.jddst.2021.102847] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
7 Boddu A, Obireddy SR, Subbarao SMC, Rao KM, Venkata KRKS. Encapsulation of 5‐Fluorouracil Treated Reduced Graphene Oxide in Sodium Alginate Matrix for Controlled and pH‐Responsive Drug Delivery. ChemistrySelect 2021;6:6533-40. [DOI: 10.1002/slct.202101395] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
8 Yuan L, Yao Q, Liang Y, Dan Y, Wang Y, Wen H, Yang Y, Dan W. Chitosan based antibacterial composite materials for leather industry: a review. J Leather Sci Eng 2021;3. [DOI: 10.1186/s42825-020-00045-w] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
9 Li S, Cao C, Gao J, Li K, Kang J, Wu D, Kong Y. Dual stimuli-responsive nanoplatform based on core-shell structured graphene oxide/mesoporous silica@alginate. Int J Biol Macromol 2021;175:209-16. [PMID: 33549662 DOI: 10.1016/j.ijbiomac.2021.02.021] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
10 Lakkakula JR, Gujarathi P, Pansare P, Tripathi S. A comprehensive review on alginate-based delivery systems for the delivery of chemotherapeutic agent: Doxorubicin. Carbohydr Polym 2021;259:117696. [PMID: 33673985 DOI: 10.1016/j.carbpol.2021.117696] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
11 Tang Y, Liu H, Wang X, Cheng S, Jin Z, Zhuang T, Guan S, Li L. Achieving enhanced dielectric performance of reduced graphene oxide/polymer composite by a green method with pH as a stimulus. Journal of Molecular Structure 2021;1224:129196. [DOI: 10.1016/j.molstruc.2020.129196] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
12 Alemi F, Zarezadeh R, Sadigh AR, Hamishehkar H, Rahimi M, Majidinia M, Asemi Z, Ebrahimi-kalan A, Yousefi B, Rashtchizadeh N. Graphene oxide and reduced graphene oxide: Efficient cargo platforms for cancer theranostics. Journal of Drug Delivery Science and Technology 2020;60:101974. [DOI: 10.1016/j.jddst.2020.101974] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
13 Vyas M, Simbo DA, Mursalin M, Mishra V, Bashary R, Khatik GL. Drug Delivery Approaches for Doxorubicin in the Management of Cancers. CCTR 2020;16:320-31. [DOI: 10.2174/1573394716666191216114950] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
14 Patel TN, R P, Vashi Y, Bhattacharya P. Toxic impacts and industrial potential of graphene. J Environ Sci Health C Toxicol Carcinog 2020;38:269-97. [PMID: 32897810 DOI: 10.1080/26896583.2020.1812335] [Reference Citation Analysis]
15 Xie M, Yang N, Cheng J, Yang M, Deng T, Li Y, Feng C. Layered MoS2 nanosheets modified by biomimetic phospholipids: Enhanced stability and its synergistic treatment of cancer with chemo-photothermal therapy. Colloids and Surfaces B: Biointerfaces 2020;187:110631. [DOI: 10.1016/j.colsurfb.2019.110631] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
16 Liu B, Che C, Liu J, Si M, Gong Z, Li Y, Zhang J, Yang G. Fabrication and Antitumor Mechanism of a Nanoparticle Drug Delivery System: Graphene Oxide/Chitosan Oligosaccharide/ γ ‐Polyglutamic Acid Composites for Anticancer Drug Delivery. ChemistrySelect 2019;4:12491-502. [DOI: 10.1002/slct.201903145] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
17 Palai PK, Mondal A, Chakraborti CK, Banerjee I, Pal K, Rathnam VSS. Doxorubicin Loaded Green Synthesized Nanoceria Decorated Functionalized Graphene Nanocomposite for Cancer-Specific Drug Release. J Clust Sci 2019;30:1565-82. [DOI: 10.1007/s10876-019-01599-4] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
18 Zhang F, Xie M, Zhao Y, Zhang Y, Yang M, Yang N, Deng T, Zhang M, Xie J. Chitosan and dextran stabilized GO-iron oxide nanosheets with high dispersibility for chemotherapy and photothermal ablation. Ceramics International 2019;45:5996-6003. [DOI: 10.1016/j.ceramint.2018.12.070] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 3.7] [Reference Citation Analysis]
19 Xie M, Zhang F, Peng H, Zhang Y, Li Y, Xu Y, Xie J. Layer-by-layer modification of magnetic graphene oxide by chitosan and sodium alginate with enhanced dispersibility for targeted drug delivery and photothermal therapy. Colloids and Surfaces B: Biointerfaces 2019;176:462-70. [DOI: 10.1016/j.colsurfb.2019.01.028] [Cited by in Crossref: 44] [Cited by in F6Publishing: 28] [Article Influence: 14.7] [Reference Citation Analysis]
20 Ghawanmeh AA, Ali GAM, Algarni H, Sarkar SM, Chong KF. Graphene oxide-based hydrogels as a nanocarrier for anticancer drug delivery. Nano Res 2019;12:973-90. [DOI: 10.1007/s12274-019-2300-4] [Cited by in Crossref: 41] [Cited by in F6Publishing: 17] [Article Influence: 13.7] [Reference Citation Analysis]
21 Palai PK, Mondal A, Chakraborti CK, Banerjee I, Pal K. Green synthesized amino-PEGylated silver decorated graphene nanoplatform as a tumor-targeted controlled drug delivery system. SN Appl Sci 2019;1. [DOI: 10.1007/s42452-019-0287-9] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.7] [Reference Citation Analysis]
22 Cui X, Xu S, Wang X, Chen C. The nano-bio interaction and biomedical applications of carbon nanomaterials. Carbon 2018;138:436-50. [DOI: 10.1016/j.carbon.2018.07.069] [Cited by in Crossref: 35] [Cited by in F6Publishing: 19] [Article Influence: 8.8] [Reference Citation Analysis]
23 Liu J, Dong J, Zhang T, Peng Q. Graphene-based nanomaterials and their potentials in advanced drug delivery and cancer therapy. Journal of Controlled Release 2018;286:64-73. [DOI: 10.1016/j.jconrel.2018.07.034] [Cited by in Crossref: 99] [Cited by in F6Publishing: 73] [Article Influence: 24.8] [Reference Citation Analysis]
24 Zhang J, Chen L, Chen J, Zhang Q, Feng J. Stability, Cellular Uptake, and in Vivo Tracking of Zwitterion Modified Graphene Oxide as a Drug Carrier. Langmuir 2019;35:1495-502. [PMID: 30089359 DOI: 10.1021/acs.langmuir.8b01995] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
25 Xie M, Zhang F, Liu L, Zhang Y, Li Y, Li H, Xie J. Surface modification of graphene oxide nanosheets by protamine sulfate/sodium alginate for anti-cancer drug delivery application. Applied Surface Science 2018;440:853-60. [DOI: 10.1016/j.apsusc.2018.01.175] [Cited by in Crossref: 64] [Cited by in F6Publishing: 34] [Article Influence: 16.0] [Reference Citation Analysis]
26 Hussien NA, Işıklan N, Türk M. Pectin-conjugated magnetic graphene oxide nanohybrid as a novel drug carrier for paclitaxel delivery. Artificial Cells, Nanomedicine, and Biotechnology 2018;46:264-73. [DOI: 10.1080/21691401.2017.1421211] [Cited by in Crossref: 24] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
27 Xue W, Liu X, Ma H, Xie W, Huang S, Wen H, Jing G, Zhao L, Liang X, Fan HM. AMF responsive DOX-loaded magnetic microspheres: transmembrane drug release mechanism and multimodality postsurgical treatment of breast cancer. J Mater Chem B 2018;6:2289-303. [DOI: 10.1039/c7tb03206d] [Cited by in Crossref: 35] [Cited by in F6Publishing: 1] [Article Influence: 8.8] [Reference Citation Analysis]
28 Prusty K, Swain SK. Nanostructured chitosan composites for cancer therapy: A review. International Journal of Polymeric Materials and Polymeric Biomaterials 2018;67:879-88. [DOI: 10.1080/00914037.2017.1393678] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
29 Farshbaf M, Davaran S, Zarebkohan A, Annabi N, Akbarzadeh A, Salehi R. Significant role of cationic polymers in drug delivery systems. Artif Cells Nanomed Biotechnol 2018;46:1872-91. [PMID: 29103306 DOI: 10.1080/21691401.2017.1395344] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]