BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Birsoy K, Wang T, Chen WW, Freinkman E, Abu-Remaileh M, Sabatini DM. An Essential Role of the Mitochondrial Electron Transport Chain in Cell Proliferation Is to Enable Aspartate Synthesis. Cell 2015;162:540-51. [PMID: 26232224 DOI: 10.1016/j.cell.2015.07.016] [Cited by in Crossref: 598] [Cited by in F6Publishing: 554] [Article Influence: 85.4] [Reference Citation Analysis]
Number Citing Articles
1 Wang Y, Yen FS, Zhu XG, Timson RC, Weber R, Xing C, Liu Y, Allwein B, Luo H, Yeh HW, Heissel S, Unlu G, Gamazon ER, Kharas MG, Hite R, Birsoy K. SLC25A39 is necessary for mitochondrial glutathione import in mammalian cells. Nature 2021;599:136-40. [PMID: 34707288 DOI: 10.1038/s41586-021-04025-w] [Reference Citation Analysis]
2 Shi X, Wang Z, Liu L, Feng L, Li N, Liu S, Gao H. Low concentrations of bisphenol A promote human ovarian cancer cell proliferation and glycolysis-based metabolism through the estrogen receptor-α pathway. Chemosphere 2017;185:361-7. [DOI: 10.1016/j.chemosphere.2017.07.027] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 4.8] [Reference Citation Analysis]
3 Mick E, Titov DV, Skinner OS, Sharma R, Jourdain AA, Mootha VK. Distinct mitochondrial defects trigger the integrated stress response depending on the metabolic state of the cell. Elife 2020;9:e49178. [PMID: 32463360 DOI: 10.7554/eLife.49178] [Cited by in Crossref: 28] [Cited by in F6Publishing: 14] [Article Influence: 14.0] [Reference Citation Analysis]
4 Gebert N, Rahman S, Lewis CA, Ori A, Cheng CW. Identifying Cell-Type-Specific Metabolic Signatures Using Transcriptome and Proteome Analyses. Curr Protoc 2021;1:e245. [PMID: 34516047 DOI: 10.1002/cpz1.245] [Reference Citation Analysis]
5 Cal M, Matyjaszczyk I, Filik K, Ogórek R, Ko Y, Ułaszewski S. Mitochondrial Function Are Disturbed in the Presence of the Anticancer Drug, 3-Bromopyruvate. Int J Mol Sci 2021;22:6640. [PMID: 34205737 DOI: 10.3390/ijms22126640] [Reference Citation Analysis]
6 Lien EC, Westermark AM, Zhang Y, Yuan C, Li Z, Lau AN, Sapp KM, Wolpin BM, Vander Heiden MG. Low glycaemic diets alter lipid metabolism to influence tumour growth. Nature 2021;599:302-7. [PMID: 34671163 DOI: 10.1038/s41586-021-04049-2] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Mayers JR, Torrence ME, Danai LV, Papagiannakopoulos T, Davidson SM, Bauer MR, Lau AN, Ji BW, Dixit PD, Hosios AM, Muir A, Chin CR, Freinkman E, Jacks T, Wolpin BM, Vitkup D, Vander Heiden MG. Tissue of origin dictates branched-chain amino acid metabolism in mutant Kras-driven cancers. Science 2016;353:1161-5. [PMID: 27609895 DOI: 10.1126/science.aaf5171] [Cited by in Crossref: 275] [Cited by in F6Publishing: 239] [Article Influence: 55.0] [Reference Citation Analysis]
8 Alkan HF, Vesely PW, Hackl H, Foßelteder J, Schmidt DR, Vander Heiden MG, Pichler M, Hoefler G, Bogner-Strauss JG. Deficiency of malate-aspartate shuttle component SLC25A12 induces pulmonary metastasis. Cancer Metab 2020;8:26. [PMID: 33292758 DOI: 10.1186/s40170-020-00232-7] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
9 Wu B, Zhao TV, Jin K, Hu Z, Abdel MP, Warrington KJ, Goronzy JJ, Weyand CM. Mitochondrial aspartate regulates TNF biogenesis and autoimmune tissue inflammation. Nat Immunol 2021;22:1551-62. [PMID: 34811544 DOI: 10.1038/s41590-021-01065-2] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Dalton WB, Helmenstine E, Walsh N, Gondek LP, Kelkar DS, Read A, Natrajan R, Christenson ES, Roman B, Das S, Zhao L, Leone RD, Shinn D, Groginski T, Madugundu AK, Patil A, Zabransky DJ, Medford A, Lee J, Cole AJ, Rosen M, Thakar M, Ambinder A, Donaldson J, DeZern AE, Cravero K, Chu D, Madero-Marroquin R, Pandey A, Hurley PJ, Lauring J, Park BH. Hotspot SF3B1 mutations induce metabolic reprogramming and vulnerability to serine deprivation. J Clin Invest 2019;129:4708-23. [PMID: 31393856 DOI: 10.1172/JCI125022] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
11 Martínez-Reyes I, Cardona LR, Kong H, Vasan K, McElroy GS, Werner M, Kihshen H, Reczek CR, Weinberg SE, Gao P, Steinert EM, Piseaux R, Budinger GRS, Chandel NS. Mitochondrial ubiquinol oxidation is necessary for tumour growth. Nature 2020;585:288-92. [PMID: 32641834 DOI: 10.1038/s41586-020-2475-6] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 14.0] [Reference Citation Analysis]
12 Gammon ST, Pisaneschi F, Bandi ML, Smith MG, Sun Y, Rao Y, Muller F, Wong F, De Groot J, Ackroyd J, Mawlawi O, Davies MA, Gopal YNV, Di Francesco ME, Marszalek JR, Dewhirst M, Piwnica-Worms D. Mechanism-Specific Pharmacodynamics of a Novel Complex-I Inhibitor Quantified by Imaging Reversal of Consumptive Hypoxia with [18F]FAZA PET In Vivo. Cells 2019;8:E1487. [PMID: 31766580 DOI: 10.3390/cells8121487] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
13 Fu A, Danial NN. Grasping for aspartate in tumour metabolism. Nat Cell Biol 2018;20:738-9. [PMID: 29941932 DOI: 10.1038/s41556-018-0137-9] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
14 Vardhana SA, Hwee MA, Berisa M, Wells DK, Yost KE, King B, Smith M, Herrera PS, Chang HY, Satpathy AT, van den Brink MRM, Cross JR, Thompson CB. Impaired mitochondrial oxidative phosphorylation limits the self-renewal of T cells exposed to persistent antigen. Nat Immunol 2020;21:1022-33. [PMID: 32661364 DOI: 10.1038/s41590-020-0725-2] [Cited by in Crossref: 36] [Cited by in F6Publishing: 36] [Article Influence: 18.0] [Reference Citation Analysis]
15 Vyas S, Zaganjor E, Haigis MC. Mitochondria and Cancer. Cell 2016;166:555-66. [PMID: 27471965 DOI: 10.1016/j.cell.2016.07.002] [Cited by in Crossref: 673] [Cited by in F6Publishing: 632] [Article Influence: 112.2] [Reference Citation Analysis]
16 Cader MZ, de Almeida Rodrigues RP, West JA, Sewell GW, Md-Ibrahim MN, Reikine S, Sirago G, Unger LW, Iglesias-Romero AB, Ramshorn K, Haag LM, Saveljeva S, Ebel JF, Rosenstiel P, Kaneider NC, Lee JC, Lawley TD, Bradley A, Dougan G, Modis Y, Griffin JL, Kaser A. FAMIN Is a Multifunctional Purine Enzyme Enabling the Purine Nucleotide Cycle. Cell 2020;180:278-295.e23. [PMID: 31978345 DOI: 10.1016/j.cell.2019.12.017] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
17 Kremer DM, Nelson BS, Lin L, Yarosz EL, Halbrook CJ, Kerk SA, Sajjakulnukit P, Myers A, Thurston G, Hou SW, Carpenter ES, Andren AC, Nwosu ZC, Cusmano N, Wisner S, Mbah NE, Shan M, Das NK, Magnuson B, Little AC, Savani MR, Ramos J, Gao T, Sastra SA, Palermo CF, Badgley MA, Zhang L, Asara JM, McBrayer SK, di Magliano MP, Crawford HC, Shah YM, Olive KP, Lyssiotis CA. GOT1 inhibition promotes pancreatic cancer cell death by ferroptosis. Nat Commun 2021;12:4860. [PMID: 34381026 DOI: 10.1038/s41467-021-24859-2] [Reference Citation Analysis]
18 Rodrigues-Silva E, Siqueira-Santos ES, Ruas JS, Ignarro RS, Figueira TR, Rogério F, Castilho RF. Evaluation of mitochondrial respiratory function in highly glycolytic glioma cells reveals low ADP phosphorylation in relation to oxidative capacity. J Neurooncol 2017;133:519-29. [PMID: 28540666 DOI: 10.1007/s11060-017-2482-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
19 Gorelick AN, Kim M, Chatila WK, La K, Hakimi AA, Berger MF, Taylor BS, Gammage PA, Reznik E. Respiratory complex and tissue lineage drive recurrent mutations in tumour mtDNA. Nat Metab 2021;3:558-70. [PMID: 33833465 DOI: 10.1038/s42255-021-00378-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
20 Fischer I, Barak B. Molecular and Therapeutic Aspects of Hyperbaric Oxygen Therapy in Neurological Conditions. Biomolecules 2020;10:E1247. [PMID: 32867291 DOI: 10.3390/biom10091247] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
21 Liu S, Ma Y, Jiang H. Protocols for analyzing metabolic derangements caused by increased NADH/NAD+ ratio in cell lines and in mice. STAR Protoc 2022;3:101120. [PMID: 35106502 DOI: 10.1016/j.xpro.2021.101120] [Reference Citation Analysis]
22 Natarajan SK, Venneti S. Glutamine Metabolism in Brain Tumors. Cancers (Basel) 2019;11:E1628. [PMID: 31652923 DOI: 10.3390/cancers11111628] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 5.3] [Reference Citation Analysis]
23 Kaneko K. Metabolism of Preimplantation Embryo Development. Mammalian Preimplantation Development. Elsevier; 2016. pp. 259-310. [DOI: 10.1016/bs.ctdb.2016.04.010] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
24 Khambu B, Hong H, Liu S, Liu G, Chen X, Dong Z, Wan J, Yin XM. The HMGB1-RAGE axis modulates the growth of autophagy-deficient hepatic tumors. Cell Death Dis 2020;11:333. [PMID: 32382012 DOI: 10.1038/s41419-020-2536-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
25 Mahendralingam MJ, Kim H, McCloskey CW, Aliar K, Casey AE, Tharmapalan P, Pellacani D, Ignatchenko V, Garcia-Valero M, Palomero L, Sinha A, Cruickshank J, Shetty R, Vellanki RN, Koritzinsky M, Stambolic V, Alam M, Schimmer AD, Berman HK, Eaves CJ, Pujana MA, Kislinger T, Khokha R. Mammary epithelial cells have lineage-rooted metabolic identities. Nat Metab 2021;3:665-81. [PMID: 34031589 DOI: 10.1038/s42255-021-00388-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
26 Miallot R, Galland F, Millet V, Blay JY, Naquet P. Metabolic landscapes in sarcomas. J Hematol Oncol 2021;14:114. [PMID: 34294128 DOI: 10.1186/s13045-021-01125-y] [Reference Citation Analysis]
27 Wang F, Qi LS. Applications of CRISPR Genome Engineering in Cell Biology. Trends Cell Biol 2016;26:875-88. [PMID: 27599850 DOI: 10.1016/j.tcb.2016.08.004] [Cited by in Crossref: 51] [Cited by in F6Publishing: 42] [Article Influence: 8.5] [Reference Citation Analysis]
28 Zhang Z, Xu HN, Li S, Jr AD, Chellappa K, Davis JG, Guan Y, Frederick DW, Chu W, Zhao H, Li LZ, Baur JA. Rapamycin maintains NAD+/NADH redox homeostasis in muscle cells. Aging (Albany NY) 2020;12:17786-99. [PMID: 32960787 DOI: 10.18632/aging.103954] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
29 Bonnay F, Veloso A, Steinmann V, Köcher T, Abdusselamoglu MD, Bajaj S, Rivelles E, Landskron L, Esterbauer H, Zinzen RP, Knoblich JA. Oxidative Metabolism Drives Immortalization of Neural Stem Cells during Tumorigenesis. Cell 2020;182:1490-1507.e19. [PMID: 32916131 DOI: 10.1016/j.cell.2020.07.039] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 8.0] [Reference Citation Analysis]
30 Cheng CW, Yilmaz OH, Mihaylova MM. Strategies for Measuring Induction of Fatty Acid Oxidation in Intestinal Stem and Progenitor Cells. Methods Mol Biol 2020;2171:53-64. [PMID: 32705635 DOI: 10.1007/978-1-0716-0747-3_4] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
31 Halbrook CJ, Nwosu ZC, Lyssiotis CA. Fine-Tuning Mitochondrial Dysfunction and Reductive Carboxylation. Trends Endocrinol Metab 2018;29:599-602. [PMID: 29692332 DOI: 10.1016/j.tem.2018.04.002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
32 Zheng CX, Sui BD, Qiu XY, Hu CH, Jin Y. Mitochondrial Regulation of Stem Cells in Bone Homeostasis. Trends Mol Med. 2020;26:89-104. [PMID: 31126872 DOI: 10.1016/j.molmed.2019.04.008] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 4.7] [Reference Citation Analysis]
33 Otero-Albiol D, Carnero A. Cellular senescence or stemness: hypoxia flips the coin. J Exp Clin Cancer Res 2021;40:243. [PMID: 34325734 DOI: 10.1186/s13046-021-02035-0] [Reference Citation Analysis]
34 Van Vranken JG, Rutter J. The Whole (Cell) Is Less Than the Sum of Its Parts. Cell 2016;166:1078-9. [PMID: 27565337 DOI: 10.1016/j.cell.2016.08.011] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
35 Bénit P, Schiff M, Cwerman-thibault H, Corral-debrinski M, Rustin P. Drug development for mitochondrial disease: recent progress, current challenges, and future prospects. Expert Opinion on Orphan Drugs 2015;4:83-92. [DOI: 10.1517/21678707.2016.1117972] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
36 McKean WB, Toshniwal AG, Rutter J. A time to build and a time to burn: glucose metabolism for every season. Mol Cell 2021;81:642-4. [PMID: 33606971 DOI: 10.1016/j.molcel.2021.02.003] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Bertero T, Perk D, Chan SY. The molecular rationale for therapeutic targeting of glutamine metabolism in pulmonary hypertension. Expert Opin Ther Targets 2019;23:511-24. [PMID: 31055988 DOI: 10.1080/14728222.2019.1615438] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
38 Yu Y, Newman H, Shen L, Sharma D, Hu G, Mirando AJ, Zhang H, Knudsen E, Zhang GF, Hilton MJ, Karner CM. Glutamine Metabolism Regulates Proliferation and Lineage Allocation in Skeletal Stem Cells. Cell Metab 2019;29:966-978.e4. [PMID: 30773468 DOI: 10.1016/j.cmet.2019.01.016] [Cited by in Crossref: 51] [Cited by in F6Publishing: 56] [Article Influence: 17.0] [Reference Citation Analysis]
39 Di Magno L, Manni S, Di Pastena F, Coni S, Macone A, Cairoli S, Sambucci M, Infante P, Moretti M, Petroni M, Nicoletti C, Capalbo C, De Smaele E, Di Marcotullio L, Giannini G, Battistini L, Goffredo BM, Iorio E, Agostinelli E, Maroder M, Canettieri G. Phenformin Inhibits Hedgehog-Dependent Tumor Growth through a Complex I-Independent Redox/Corepressor Module. Cell Rep 2020;30:1735-1752.e7. [PMID: 32049007 DOI: 10.1016/j.celrep.2020.01.024] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 15.0] [Reference Citation Analysis]
40 Xia Q, Chen Z, Xiao P, Wang M, Chen X, Zhang JR, Chen HY, Zhu JJ. Fermi level-tuned optics of graphene for attocoulomb-scale quantification of electron transfer at single gold nanoparticles. Nat Commun 2019;10:3849. [PMID: 31451698 DOI: 10.1038/s41467-019-11816-3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
41 Rok J, Rzepka Z, Maszczyk M, Beberok A, Wrześniok D. Minocycline Impact on Redox Homeostasis of Normal Human Melanocytes HEMn-LP Exposed to UVA Radiation and Hydrogen Peroxide. Int J Mol Sci 2021;22:1642. [PMID: 33561995 DOI: 10.3390/ijms22041642] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
42 Sang L, Ju HQ, Yang Z, Ge Q, Zhang Z, Liu F, Yang L, Gong H, Shi C, Qu L, Chen H, Wu M, Chen H, Li R, Zhuang Q, Piao H, Yan Q, Yu W, Wang L, Shao J, Liu J, Wang W, Zhou T, Lin A. Mitochondrial long non-coding RNA GAS5 tunes TCA metabolism in response to nutrient stress. Nat Metab 2021;3:90-106. [PMID: 33398195 DOI: 10.1038/s42255-020-00325-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
43 Nwosu ZC, Battello N, Rothley M, Piorońska W, Sitek B, Ebert MP, Hofmann U, Sleeman J, Wölfl S, Meyer C, Megger DA, Dooley S. Liver cancer cell lines distinctly mimic the metabolic gene expression pattern of the corresponding human tumours. J Exp Clin Cancer Res 2018;37:211. [PMID: 30176945 DOI: 10.1186/s13046-018-0872-6] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 9.5] [Reference Citation Analysis]
44 Bogner-Strauss JG. N-Acetylaspartate Metabolism Outside the Brain: Lipogenesis, Histone Acetylation, and Cancer. Front Endocrinol (Lausanne) 2017;8:240. [PMID: 28979238 DOI: 10.3389/fendo.2017.00240] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 3.2] [Reference Citation Analysis]
45 Boyle K. Power in nursing: a collaborative approach. Nurs Outlook. 1984;32:164-167. [PMID: 6562467 DOI: 10.3390/cells8050401] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 0.6] [Reference Citation Analysis]
46 Zaytouni T, Tsai PY, Hitchcock DS, DuBois CD, Freinkman E, Lin L, Morales-Oyarvide V, Lenehan PJ, Wolpin BM, Mino-Kenudson M, Torres EM, Stylopoulos N, Clish CB, Kalaany NY. Critical role for arginase 2 in obesity-associated pancreatic cancer. Nat Commun. 2017;8:242. [PMID: 28808255 DOI: 10.1038/s41467-017-00331-y] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 6.6] [Reference Citation Analysis]
47 Izreig S, Samborska B, Johnson R, Sergushichev A, Ma E, Lussier C, Loginicheva E, Donayo A, Poffenberger M, Sagan S, Vincent E, Artyomov M, Duchaine T, Jones R. The miR-17 ∼ 92 microRNA Cluster Is a Global Regulator of Tumor Metabolism. Cell Reports 2016;16:1915-28. [DOI: 10.1016/j.celrep.2016.07.036] [Cited by in Crossref: 37] [Cited by in F6Publishing: 36] [Article Influence: 6.2] [Reference Citation Analysis]
48 Spinelli JB, Yoon H, Ringel AE, Jeanfavre S, Clish CB, Haigis MC. Metabolic recycling of ammonia via glutamate dehydrogenase supports breast cancer biomass. Science 2017;358:941-6. [PMID: 29025995 DOI: 10.1126/science.aam9305] [Cited by in Crossref: 151] [Cited by in F6Publishing: 132] [Article Influence: 30.2] [Reference Citation Analysis]
49 Joly JH, Chew BTL, Graham NA. The landscape of metabolic pathway dependencies in cancer cell lines. PLoS Comput Biol 2021;17:e1008942. [PMID: 33872312 DOI: 10.1371/journal.pcbi.1008942] [Reference Citation Analysis]
50 Park SH, Lee AR, Choi K, Joung S, Yoon JB, Kim S. TOMM20 as a potential therapeutic target of colorectal cancer. BMB Rep 2019;52:712-7. [PMID: 31818360 [PMID: 31818360 DOI: 10.5483/bmbrep.2019.52.12.249] [Cited by in Crossref: 12] [Article Influence: 6.0] [Reference Citation Analysis]
51 Cao LL, Riascos-Bernal DF, Chinnasamy P, Dunaway CM, Hou R, Pujato MA, O'Rourke BP, Miskolci V, Guo L, Hodgson L, Fiser A, Sibinga NE. Control of mitochondrial function and cell growth by the atypical cadherin Fat1. Nature 2016;539:575-8. [PMID: 27828948 DOI: 10.1038/nature20170] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 4.2] [Reference Citation Analysis]
52 Bauer C, Quante M, Breunis WB, Regina C, Schneider M, Andrieux G, Gorka O, Groß O, Boerries M, Kammerer B, Hettmer S. Lack of Electron Acceptors Contributes to Redox Stress and Growth Arrest in Asparagine-Starved Sarcoma Cells. Cancers (Basel) 2021;13:412. [PMID: 33499165 DOI: 10.3390/cancers13030412] [Reference Citation Analysis]
53 Fernandez HR, Gadre SM, Tan M, Graham GT, Mosaoa R, Ongkeko MS, Kim KA, Riggins RB, Parasido E, Petrini I, Pacini S, Cheema A, Varghese R, Ressom HW, Zhang Y, Albanese C, Üren A, Paige M, Giaccone G, Avantaggiati ML. The mitochondrial citrate carrier, SLC25A1, drives stemness and therapy resistance in non-small cell lung cancer. Cell Death Differ 2018;25:1239-58. [PMID: 29651165 DOI: 10.1038/s41418-018-0101-z] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 8.5] [Reference Citation Analysis]
54 Xu J, Zhou C, Foo KS, Yang R, Xiao Y, Bylund K, Sahara M, Chien KR. Genome-wide CRISPR screen identifies ZIC2 as an essential gene that controls the cell fate of early mesodermal precursors to human heart progenitors. Stem Cells 2020;38:741-55. [PMID: 32129551 DOI: 10.1002/stem.3168] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
55 Yang L, Teslaa T, Ng S, Nofal M, Wang L, Lan T, Zeng X, Cowan A, Mcbride M, Lu W, Davidson S, Liang G, Oh TG, Downes M, Evans R, Von Hoff D, Guo JY, Han H, Rabinowitz JD. Ketogenic diet and chemotherapy combine to disrupt pancreatic cancer metabolism and growth. Med 2022;3:119-136.e8. [DOI: 10.1016/j.medj.2021.12.008] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
56 Schell JC, Rutter J. Mitochondria link metabolism and epigenetics in haematopoiesis. Nat Cell Biol 2017;19:589-91. [PMID: 28561053 DOI: 10.1038/ncb3540] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
57 Straub IR, Weraarpachai W, Shoubridge EA. Multi-OMICS study of a CHCHD10 variant causing ALS demonstrates metabolic rewiring and activation of endoplasmic reticulum and mitochondrial unfolded protein responses. Hum Mol Genet 2021;30:687-705. [PMID: 33749723 DOI: 10.1093/hmg/ddab078] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 10.0] [Reference Citation Analysis]
58 Cotul EK, Zuo Q, Santaliz-Casiano A, Imir OB, Mogol AN, Tunc E, Duong K, Lee JK, Ramesh R, Odukoya E, Kesavadas MP, Ziogaite M, Smith BP, Mao C, Shapiro DJ, Park BH, Katzenellenbogen BS, Daly D, Aranda E, O'Neill JD, Walker C, Landesman Y, Madak-Erdogan Z. Combined Targeting of Estrogen Receptor Alpha and Exportin 1 in Metastatic Breast Cancers. Cancers (Basel) 2020;12:E2397. [PMID: 32847042 DOI: 10.3390/cancers12092397] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
59 Liu S, Liu S, Jiang H. Multifaceted roles of mitochondrial stress responses under ETC dysfunction - repair, destruction and pathogenesis. FEBS J 2021. [PMID: 34918460 DOI: 10.1111/febs.16323] [Reference Citation Analysis]
60 Lo CJ, Ko YS, Chang SW, Tang HY, Huang CY, Huang YC, Ho HY, Lin CM, Cheng ML. Metabolic signatures of muscle mass loss in an elderly Taiwanese population. Aging (Albany NY) 2020;13:944-56. [PMID: 33410783 DOI: 10.18632/aging.202209] [Reference Citation Analysis]
61 Shang W, Wang F, Fan G, Wang H. Key elements for designing and performing a CRISPR/Cas9-based genetic screen. J Genet Genomics 2017;44:439-49. [PMID: 28967615 DOI: 10.1016/j.jgg.2017.09.005] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
62 Pan T, Han D, Xu Y, Peng W, Bai L, Zhou X, He H. LC-MS Based Metabolomics Study of the Effects of EGCG on A549 Cells. Front Pharmacol 2021;12:732716. [PMID: 34650434 DOI: 10.3389/fphar.2021.732716] [Reference Citation Analysis]
63 Zhu J, Thompson CB. Metabolic regulation of cell growth and proliferation. Nat Rev Mol Cell Biol 2019;20:436-50. [PMID: 30976106 DOI: 10.1038/s41580-019-0123-5] [Cited by in Crossref: 151] [Cited by in F6Publishing: 147] [Article Influence: 75.5] [Reference Citation Analysis]
64 Fu J, Zhu W, Liu X, Liang C, Zheng Y, Li Z, Liang Y, Zheng D, Zhu S, Cui Z, Wu S. Self-activating anti-infection implant. Nat Commun 2021;12:6907. [PMID: 34824260 DOI: 10.1038/s41467-021-27217-4] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
65 Kalyanaraman B. Teaching the basics of cancer metabolism: Developing antitumor strategies by exploiting the differences between normal and cancer cell metabolism. Redox Biol 2017;12:833-42. [PMID: 28448945 DOI: 10.1016/j.redox.2017.04.018] [Cited by in Crossref: 87] [Cited by in F6Publishing: 75] [Article Influence: 17.4] [Reference Citation Analysis]
66 Choudhury FK. Mitochondrial Redox Metabolism: The Epicenter of Metabolism during Cancer Progression. Antioxidants (Basel) 2021;10:1838. [PMID: 34829708 DOI: 10.3390/antiox10111838] [Reference Citation Analysis]
67 Liu M, Wang Y, Yang C, Ruan Y, Bai C, Chu Q, Cui Y, Chen C, Ying G, Li B. Inhibiting both proline biosynthesis and lipogenesis synergistically suppresses tumor growth. J Exp Med 2020;217:e20191226. [PMID: 31961917 DOI: 10.1084/jem.20191226] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 8.5] [Reference Citation Analysis]
68 Chen X, Sunkel B, Wang M, Kang S, Wang T, Gnanaprakasam JNR, Liu L, Cassel TA, Scott DA, Muñoz-Cabello AM, Lopez-Barneo J, Yang J, Lane AN, Xin G, Stanton BZ, Fan TW, Wang R. Succinate dehydrogenase/complex II is critical for metabolic and epigenetic regulation of T cell proliferation and inflammation. Sci Immunol 2022;7:eabm8161. [PMID: 35486677 DOI: 10.1126/sciimmunol.abm8161] [Reference Citation Analysis]
69 Du J, Rountree A, Cleghorn WM, Contreras L, Lindsay KJ, Sadilek M, Gu H, Djukovic D, Raftery D, Satrústegui J, Kanow M, Chan L, Tsang SH, Sweet IR, Hurley JB. Phototransduction Influences Metabolic Flux and Nucleotide Metabolism in Mouse Retina. J Biol Chem 2016;291:4698-710. [PMID: 26677218 DOI: 10.1074/jbc.M115.698985] [Cited by in Crossref: 54] [Cited by in F6Publishing: 40] [Article Influence: 7.7] [Reference Citation Analysis]
70 Still ER, Yuneva MO. Hopefully devoted to Q: targeting glutamine addiction in cancer. Br J Cancer 2017;116:1375-81. [PMID: 28441384 DOI: 10.1038/bjc.2017.113] [Cited by in Crossref: 47] [Cited by in F6Publishing: 46] [Article Influence: 9.4] [Reference Citation Analysis]
71 Dharmalingam P, Venkatakrishnan K, Tan B. Predicting Metastasis from Cues of Metastatic Cancer Stem-like Cells-3D-Ultrasensitive Metasensor at a Single-Cell Level. ACS Nano 2021;15:9967-86. [PMID: 34081852 DOI: 10.1021/acsnano.1c01436] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
72 Bi J, Wu S, Zhang W, Mischel PS. Targeting cancer's metabolic co-dependencies: A landscape shaped by genotype and tissue context. Biochim Biophys Acta Rev Cancer 2018;1870:76-87. [PMID: 29775654 DOI: 10.1016/j.bbcan.2018.05.002] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
73 Mao Q, Liu J, Wiertzema JR, Chen D, Chen P, Baumler DJ, Ruan R, Chen C. Identification of Quinone Degradation as a Triggering Event for Intense Pulsed Light-Elicited Metabolic Changes in Escherichia coli by Metabolomic Fingerprinting. Metabolites 2021;11:102. [PMID: 33578995 DOI: 10.3390/metabo11020102] [Reference Citation Analysis]
74 Luengo A, Li Z, Gui DY, Sullivan LB, Zagorulya M, Do BT, Ferreira R, Naamati A, Ali A, Lewis CA, Thomas CJ, Spranger S, Matheson NJ, Vander Heiden MG. Increased demand for NAD+ relative to ATP drives aerobic glycolysis. Mol Cell 2021;81:691-707.e6. [PMID: 33382985 DOI: 10.1016/j.molcel.2020.12.012] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 10.5] [Reference Citation Analysis]
75 Schell JC, Wisidagama DR, Bensard C, Zhao H, Wei P, Tanner J, Flores A, Mohlman J, Sorensen LK, Earl CS, Olson KA, Miao R, Waller TC, Delker D, Kanth P, Jiang L, DeBerardinis RJ, Bronner MP, Li DY, Cox JE, Christofk HR, Lowry WE, Thummel CS, Rutter J. Control of intestinal stem cell function and proliferation by mitochondrial pyruvate metabolism. Nat Cell Biol 2017;19:1027-36. [PMID: 28812582 DOI: 10.1038/ncb3593] [Cited by in Crossref: 133] [Cited by in F6Publishing: 120] [Article Influence: 26.6] [Reference Citation Analysis]
76 Chang SM, Vander Heiden MG. Inhibiting GLUTtony in cancer. Cell Chem Biol 2022;29:353-5. [PMID: 35303439 DOI: 10.1016/j.chembiol.2022.03.004] [Reference Citation Analysis]
77 Broeks MH, van Karnebeek CDM, Wanders RJA, Jans JJM, Verhoeven-Duif NM. Inborn disorders of the malate aspartate shuttle. J Inherit Metab Dis 2021;44:792-808. [PMID: 33990986 DOI: 10.1002/jimd.12402] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
78 Panarsky R, Crooks DR, Lane AN, Yang Y, Cassel TA, Fan TW, Linehan WM, Moscow JA. Fumarate hydratase-deficient renal cell carcinoma cells respond to asparagine by activation of the unfolded protein response and stimulation of the hexosamine biosynthetic pathway. Cancer Metab 2020;8:7. [PMID: 32774853 DOI: 10.1186/s40170-020-00214-9] [Reference Citation Analysis]
79 Zhang W, Li J, Duan Y, Li Y, Sun Y, Sun H, Yu X, Gao X, Zhang C, Zhang H, Shi Y, He X. Metabolic Regulation: A Potential Strategy for Rescuing Stem Cell Senescence. Stem Cell Rev Rep 2022. [PMID: 35258787 DOI: 10.1007/s12015-022-10348-6] [Reference Citation Analysis]
80 Ghayee HK, Vinik AI, Pacak K; AACE Adrenal Scientific Committee. PRECISION MEDICINE IN ADRENAL DISORDERS: THE NEXT GENERATION. Endocr Pract 2017;23:672-9. [PMID: 28332880 DOI: 10.4158/EP161716.RA] [Cited by in Crossref: 3] [Article Influence: 0.6] [Reference Citation Analysis]
81 Liu Y, Shi Y. Mitochondria as a target in cancer treatment. MedComm 2020;1:129-39. [DOI: 10.1002/mco2.16] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
82 Kodama M, Nakayama KI. A second Warburg-like effect in cancer metabolism: The metabolic shift of glutamine-derived nitrogen: A shift in glutamine-derived nitrogen metabolism from glutaminolysis to de novo nucleotide biosynthesis contributes to malignant evolution of cancer. Bioessays 2020;42:e2000169. [PMID: 33165972 DOI: 10.1002/bies.202000169] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
83 Garcia-Bermudez J, Williams RT, Guarecuco R, Birsoy K. Targeting extracellular nutrient dependencies of cancer cells. Mol Metab 2020;33:67-82. [PMID: 31926876 DOI: 10.1016/j.molmet.2019.11.011] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
84 Zhu XG, Nicholson Puthenveedu S, Shen Y, La K, Ozlu C, Wang T, Klompstra D, Gultekin Y, Chi J, Fidelin J, Peng T, Molina H, Hang HC, Min W, Birsoy K. CHP1 Regulates Compartmentalized Glycerolipid Synthesis by Activating GPAT4. Mol Cell 2019;74:45-58.e7. [PMID: 30846317 DOI: 10.1016/j.molcel.2019.01.037] [Cited by in Crossref: 40] [Cited by in F6Publishing: 31] [Article Influence: 13.3] [Reference Citation Analysis]
85 Sharma D, Yu Y, Shen L, Zhang GF, Karner CM. SLC1A5 provides glutamine and asparagine necessary for bone development in mice. Elife 2021;10:e71595. [PMID: 34647520 DOI: 10.7554/eLife.71595] [Reference Citation Analysis]
86 Holt MC, Assar Z, Beheshti Zavareh R, Lin L, Anglin J, Mashadova O, Haldar D, Mullarky E, Kremer DM, Cantley LC, Kimmelman AC, Stein AJ, Lairson LL, Lyssiotis CA. Biochemical Characterization and Structure-Based Mutational Analysis Provide Insight into the Binding and Mechanism of Action of Novel Aspartate Aminotransferase Inhibitors. Biochemistry 2018;57:6604-14. [PMID: 30365304 DOI: 10.1021/acs.biochem.8b00914] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 3.8] [Reference Citation Analysis]
87 Addie RD, de Jong Y, Alberti G, Kruisselbrink AB, Que I, Baelde H, Bovée JVMG. Exploration of the chondrosarcoma metabolome; the mTOR pathway as an important pro-survival pathway. J Bone Oncol 2019;15:100222. [PMID: 30766792 DOI: 10.1016/j.jbo.2019.100222] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
88 Keshet R, Szlosarek P, Carracedo A, Erez A. Rewiring urea cycle metabolism in cancer to support anabolism. Nat Rev Cancer 2018;18:634-45. [PMID: 30194362 DOI: 10.1038/s41568-018-0054-z] [Cited by in Crossref: 82] [Cited by in F6Publishing: 76] [Article Influence: 27.3] [Reference Citation Analysis]
89 Shang M, Yang H, Yang R, Chen T, Fu Y, Li Y, Fang X, Zhang K, Zhang J, Li H, Cao X, Gu J, Xiao J, Zhang Q, Liu X, Yu Q, Wang T. The folate cycle enzyme MTHFD2 induces cancer immune evasion through PD-L1 up-regulation. Nat Commun 2021;12:1940. [PMID: 33782411 DOI: 10.1038/s41467-021-22173-5] [Reference Citation Analysis]
90 Guo L. Mitochondria and the permeability transition pore in cancer metabolic reprogramming. Biochem Pharmacol 2021;188:114537. [PMID: 33811907 DOI: 10.1016/j.bcp.2021.114537] [Reference Citation Analysis]
91 Grumbach IM, Nguyen EK. Metabolic Stress. Arterioscler Thromb Vasc Biol 2019;39:991-7. [PMID: 31070466 DOI: 10.1161/ATVBAHA.118.312196] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
92 Bindra S, McGill MA, Triplett MK, Tyagi A, Thaker PH, Dahmoush L, Goodheart MJ, Ogden RT, Owusu-Ansah E, R Karan K, Cole S, Sood AK, Lutgendorf SK, Picard M. Mitochondria in epithelial ovarian carcinoma exhibit abnormal phenotypes and blunted associations with biobehavioral factors. Sci Rep 2021;11:11595. [PMID: 34078919 DOI: 10.1038/s41598-021-89934-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
93 Arias-Mayenco I, González-Rodríguez P, Torres-Torrelo H, Gao L, Fernández-Agüera MC, Bonilla-Henao V, Ortega-Sáenz P, López-Barneo J. Acute O2 Sensing: Role of Coenzyme QH2/Q Ratio and Mitochondrial ROS Compartmentalization. Cell Metab 2018;28:145-158.e4. [PMID: 29887397 DOI: 10.1016/j.cmet.2018.05.009] [Cited by in Crossref: 36] [Cited by in F6Publishing: 32] [Article Influence: 9.0] [Reference Citation Analysis]
94 Hardeman KN, Peng C, Paudel BB, Meyer CT, Luong T, Tyson DR, Young JD, Quaranta V, Fessel JP. Dependence On Glycolysis Sensitizes BRAF-mutated Melanomas For Increased Response To Targeted BRAF Inhibition. Sci Rep 2017;7:42604. [PMID: 28205616 DOI: 10.1038/srep42604] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 6.0] [Reference Citation Analysis]
95 Prochownik EV, Wang H. The Metabolic Fates of Pyruvate in Normal and Neoplastic Cells. Cells 2021;10:762. [PMID: 33808495 DOI: 10.3390/cells10040762] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
96 Muir A, Danai LV, Vander Heiden MG. Microenvironmental regulation of cancer cell metabolism: implications for experimental design and translational studies. Dis Model Mech 2018;11:dmm035758. [PMID: 30104199 DOI: 10.1242/dmm.035758] [Cited by in Crossref: 64] [Cited by in F6Publishing: 51] [Article Influence: 16.0] [Reference Citation Analysis]
97 Meléndez-Rodríguez F, Urrutia AA, Lorendeau D, Rinaldi G, Roche O, Böğürcü-Seidel N, Ortega Muelas M, Mesa-Ciller C, Turiel G, Bouthelier A, Hernansanz-Agustín P, Elorza A, Escasany E, Li QOY, Torres-Capelli M, Tello D, Fuertes E, Fraga E, Martínez-Ruiz A, Pérez B, Giménez-Bachs JM, Salinas-Sánchez AS, Acker T, Sánchez Prieto R, Fendt SM, De Bock K, Aragonés J. HIF1α Suppresses Tumor Cell Proliferation through Inhibition of Aspartate Biosynthesis. Cell Rep 2019;26:2257-2265.e4. [PMID: 30811976 DOI: 10.1016/j.celrep.2019.01.106] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 15.0] [Reference Citation Analysis]
98 Andrade J, Potente M. Endothelial metabolism—more complex (III) than previously thought. Nat Metab 2019;1:14-5. [DOI: 10.1038/s42255-018-0019-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
99 Yin F, Sancheti H, Patil I, Cadenas E. Energy metabolism and inflammation in brain aging and Alzheimer's disease. Free Radic Biol Med 2016;100:108-22. [PMID: 27154981 DOI: 10.1016/j.freeradbiomed.2016.04.200] [Cited by in Crossref: 178] [Cited by in F6Publishing: 171] [Article Influence: 29.7] [Reference Citation Analysis]
100 O'Malley J, Kumar R, Inigo J, Yadava N, Chandra D. Mitochondrial Stress Response and Cancer. Trends Cancer 2020;6:688-701. [PMID: 32451306 DOI: 10.1016/j.trecan.2020.04.009] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
101 Nuevo-Tapioles C, Santacatterina F, Stamatakis K, Núñez de Arenas C, Gómez de Cedrón M, Formentini L, Cuezva JM. Coordinate β-adrenergic inhibition of mitochondrial activity and angiogenesis arrest tumor growth. Nat Commun 2020;11:3606. [PMID: 32681016 DOI: 10.1038/s41467-020-17384-1] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
102 Altman BJ, Stine ZE, Dang CV. From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer. 2016;16:619-634. [PMID: 27492215 DOI: 10.1038/nrc.2016.71] [Cited by in Crossref: 656] [Cited by in F6Publishing: 604] [Article Influence: 109.3] [Reference Citation Analysis]
103 Vandekeere S, Dubois C, Kalucka J, Sullivan MR, García-caballero M, Goveia J, Chen R, Diehl FF, Bar-lev L, Souffreau J, Pircher A, Kumar S, Vinckier S, Hirabayashi Y, Furuya S, Schoonjans L, Eelen G, Ghesquière B, Keshet E, Li X, Vander Heiden MG, Dewerchin M, Carmeliet P. Serine Synthesis via PHGDH Is Essential for Heme Production in Endothelial Cells. Cell Metabolism 2018;28:573-587.e13. [DOI: 10.1016/j.cmet.2018.06.009] [Cited by in Crossref: 66] [Cited by in F6Publishing: 55] [Article Influence: 16.5] [Reference Citation Analysis]
104 van der Walt G, Louw R. Novel mitochondrial and cytosolic purification pipeline for compartment-specific metabolomics in mammalian disease model tissues. Metabolomics 2020;16:78. [PMID: 32577914 DOI: 10.1007/s11306-020-01697-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
105 Sullivan LB, Luengo A, Danai LV, Bush LN, Diehl FF, Hosios AM, Lau AN, Elmiligy S, Malstrom S, Lewis CA, Vander Heiden MG. Aspartate is an endogenous metabolic limitation for tumour growth. Nat Cell Biol 2018;20:782-8. [PMID: 29941931 DOI: 10.1038/s41556-018-0125-0] [Cited by in Crossref: 128] [Cited by in F6Publishing: 109] [Article Influence: 32.0] [Reference Citation Analysis]
106 Høgh RI, Droujinine A, Møller SH, Jepsen SD, Mellergaard M, Andresen L, Skov S. Fumarate Upregulates Surface Expression of ULBP2/ULBP5 by Scavenging Glutathione Antioxidant Capacity. J Immunol 2020;204:1746-59. [PMID: 32144161 DOI: 10.4049/jimmunol.1900740] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
107 Ding H, Chen Z, Wu K, Huang SM, Wu WL, LeBoeuf SE, Pillai RG, Rabinowitz JD, Papagiannakopoulos T. Activation of the NRF2 antioxidant program sensitizes tumors to G6PD inhibition. Sci Adv 2021;7:eabk1023. [PMID: 34788087 DOI: 10.1126/sciadv.abk1023] [Reference Citation Analysis]
108 Bryan JG, Hoff PD. Smaller p-values in genomics studies using distilled auxiliary information. Biostatistics 2021:kxaa053. [PMID: 34269373 DOI: 10.1093/biostatistics/kxaa053] [Reference Citation Analysis]
109 Kang YP, Torrente L, Falzone A, Elkins CM, Liu M, Asara JM, Dibble CC, DeNicola GM. Cysteine dioxygenase 1 is a metabolic liability for non-small cell lung cancer. Elife 2019;8:e45572. [PMID: 31107239 DOI: 10.7554/eLife.45572] [Cited by in Crossref: 29] [Cited by in F6Publishing: 21] [Article Influence: 9.7] [Reference Citation Analysis]
110 Westbrook RL, Bridges E, Roberts J, Escribano-Gonzalez C, Eales KL, Vettore LA, Walker PD, Vera-Siguenza E, Rana H, Cuozzo F, Eskla KL, Vellama H, Shaaban A, Nixon C, Luuk H, Lavery GG, Hodson DJ, Harris AL, Tennant DA. Proline synthesis through PYCR1 is required to support cancer cell proliferation and survival in oxygen-limiting conditions. Cell Rep 2022;38:110320. [PMID: 35108535 DOI: 10.1016/j.celrep.2022.110320] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
111 Hajaj E, Sciacovelli M, Frezza C, Erez A. The context-specific roles of urea cycle enzymes in tumorigenesis. Mol Cell 2021;81:3749-59. [PMID: 34469752 DOI: 10.1016/j.molcel.2021.08.005] [Reference Citation Analysis]
112 Iorio M, Umesh Ganesh N, De Luise M, Porcelli AM, Gasparre G, Kurelac I. The Neglected Liaison: Targeting Cancer Cell Metabolic Reprogramming Modifies the Composition of Non-Malignant Populations of the Tumor Microenvironment. Cancers (Basel) 2021;13:5447. [PMID: 34771610 DOI: 10.3390/cancers13215447] [Reference Citation Analysis]
113 Elia I, Haigis MC. Metabolites and the tumour microenvironment: from cellular mechanisms to systemic metabolism. Nat Metab 2021;3:21-32. [PMID: 33398194 DOI: 10.1038/s42255-020-00317-z] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
114 Chinopoulos C. Acute sources of mitochondrial NAD+ during respiratory chain dysfunction. Exp Neurol 2020;327:113218. [PMID: 32035071 DOI: 10.1016/j.expneurol.2020.113218] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 6.5] [Reference Citation Analysis]
115 Olszewski K, Barsotti A, Feng XJ, Momcilovic M, Liu KG, Kim JI, Morris K, Lamarque C, Gaffney J, Yu X, Patel JP, Rabinowitz JD, Shackelford DB, Poyurovsky MV. Inhibition of glucose transport synergizes with chemical or genetic disruption of mitochondrial metabolism and suppresses TCA cycle-deficient tumors. Cell Chem Biol 2021:S2451-9456(21)00441-4. [PMID: 34715056 DOI: 10.1016/j.chembiol.2021.10.007] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
116 Duan R, Xu Y, Zeng X, Xu J, Liang L, Zhang Z, Wang Z, Jiang X, Xing B, Liu B, All A, Li X, Lee LP, Liu X. Uncovering the Metabolic Origin of Aspartate for Tumor Growth Using an Integrated Molecular Deactivator. Nano Lett 2021;21:778-84. [PMID: 33301328 DOI: 10.1021/acs.nanolett.0c04520] [Reference Citation Analysis]
117 Jiang J, Batra S, Zhang J. Asparagine: A Metabolite to Be Targeted in Cancers. Metabolites 2021;11:402. [PMID: 34205460 DOI: 10.3390/metabo11060402] [Reference Citation Analysis]
118 Wang LW, Wang Z, Ersing I, Nobre L, Guo R, Jiang S, Trudeau S, Zhao B, Weekes MP, Gewurz BE. Epstein-Barr virus subverts mevalonate and fatty acid pathways to promote infected B-cell proliferation and survival. PLoS Pathog 2019;15:e1008030. [PMID: 31518366 DOI: 10.1371/journal.ppat.1008030] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 6.7] [Reference Citation Analysis]
119 Akimova D, Wlodarczyk BJ, Lin Y, Ross ME, Finnell RH, Chen Q, Gross SS. Metabolite profiling of whole murine embryos reveals metabolic perturbations associated with maternal valproate-induced neural tube closure defects. Birth Defects Res 2017;109:106-19. [PMID: 27860192 DOI: 10.1002/bdra.23583] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
120 Suliman HB, Nozik-Grayck E. Mitochondrial Dysfunction: Metabolic Drivers of Pulmonary Hypertension. Antioxid Redox Signal 2019;31:843-57. [PMID: 30604624 DOI: 10.1089/ars.2018.7705] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
121 Iraci N, Gaude E, Leonardi T, Costa ASH, Cossetti C, Peruzzotti-Jametti L, Bernstock JD, Saini HK, Gelati M, Vescovi AL, Bastos C, Faria N, Occhipinti LG, Enright AJ, Frezza C, Pluchino S. Extracellular vesicles are independent metabolic units with asparaginase activity. Nat Chem Biol 2017;13:951-5. [PMID: 28671681 DOI: 10.1038/nchembio.2422] [Cited by in Crossref: 64] [Cited by in F6Publishing: 61] [Article Influence: 12.8] [Reference Citation Analysis]
122 Purohit V, Simeone DM, Lyssiotis CA. Metabolic Regulation of Redox Balance in Cancer. Cancers (Basel) 2019;11:E955. [PMID: 31288436 DOI: 10.3390/cancers11070955] [Cited by in Crossref: 37] [Cited by in F6Publishing: 31] [Article Influence: 12.3] [Reference Citation Analysis]
123 Martinez-Carreres L, Nasrallah A, Fajas L. Cancer: Linking Powerhouses to Suicidal Bags. Front Oncol 2017;7:204. [PMID: 28932704 DOI: 10.3389/fonc.2017.00204] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
124 Gammage PA, Viscomi C, Simard ML, Costa ASH, Gaude E, Powell CA, Van Haute L, McCann BJ, Rebelo-Guiomar P, Cerutti R, Zhang L, Rebar EJ, Zeviani M, Frezza C, Stewart JB, Minczuk M. Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo. Nat Med 2018;24:1691-5. [PMID: 30250142 DOI: 10.1038/s41591-018-0165-9] [Cited by in Crossref: 110] [Cited by in F6Publishing: 98] [Article Influence: 27.5] [Reference Citation Analysis]
125 Gallipoli P, Giotopoulos G, Tzelepis K, Costa ASH, Vohra S, Medina-Perez P, Basheer F, Marando L, Di Lisio L, Dias JML, Yun H, Sasca D, Horton SJ, Vassiliou G, Frezza C, Huntly BJP. Glutaminolysis is a metabolic dependency in FLT3ITD acute myeloid leukemia unmasked by FLT3 tyrosine kinase inhibition. Blood. 2018;131:1639-1653. [PMID: 29463564 DOI: 10.1182/blood-2017-12-820035] [Cited by in Crossref: 56] [Cited by in F6Publishing: 50] [Article Influence: 14.0] [Reference Citation Analysis]
126 Morscher RJ, Ducker GS, Li SH, Mayer JA, Gitai Z, Sperl W, Rabinowitz JD. Mitochondrial translation requires folate-dependent tRNA methylation. Nature 2018;554:128-32. [PMID: 29364879 DOI: 10.1038/nature25460] [Cited by in Crossref: 102] [Cited by in F6Publishing: 92] [Article Influence: 25.5] [Reference Citation Analysis]
127 Tasdogan A, Ubellacker JM, Morrison SJ. Redox Regulation in Cancer Cells during Metastasis. Cancer Discov 2021;11:2682-92. [PMID: 34649956 DOI: 10.1158/2159-8290.CD-21-0558] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
128 Libiad M, Vitvitsky V, Bostelaar T, Bak DW, Lee HJ, Sakamoto N, Fearon E, Lyssiotis CA, Weerapana E, Banerjee R. Hydrogen sulfide perturbs mitochondrial bioenergetics and triggers metabolic reprogramming in colon cells. J Biol Chem 2019;294:12077-90. [PMID: 31213529 DOI: 10.1074/jbc.RA119.009442] [Cited by in Crossref: 33] [Cited by in F6Publishing: 23] [Article Influence: 11.0] [Reference Citation Analysis]
129 Li X, Wong CC, Tang Z, Wu J, Li S, Qian Y, Xu J, Yang Z, Shen Y, Yu J, Cai Z. Determination of amino acids in colon cancer cells by using UHPLC-MS/MS and [U-13C5]-glutamine as the isotope tracer. Talanta 2017;162:285-92. [DOI: 10.1016/j.talanta.2016.10.013] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
130 Hescot S, Amazit L, Lhomme M, Travers S, DuBow A, Battini S, Boulate G, Namer IJ, Lombes A, Kontush A, Imperiale A, Baudin E, Lombes M. Identifying mitotane-induced mitochondria-associated membranes dysfunctions: metabolomic and lipidomic approaches. Oncotarget 2017;8:109924-40. [PMID: 29299119 DOI: 10.18632/oncotarget.18968] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
131 Magalhaes-Novais S, Blecha J, Naraine R, Mikesova J, Abaffy P, Pecinova A, Milosevic M, Bohuslavova R, Prochazka J, Khan S, Novotna E, Sindelka R, Machan R, Dewerchin M, Vlcak E, Kalucka J, Stemberkova Hubackova S, Benda A, Goveia J, Mracek T, Barinka C, Carmeliet P, Neuzil J, Rohlenova K, Rohlena J. Mitochondrial respiration supports autophagy to provide stress resistance during quiescence. Autophagy 2022;:1-18. [PMID: 35258392 DOI: 10.1080/15548627.2022.2038898] [Reference Citation Analysis]
132 Lim EW, Handzlik MK, Trefts E, Gengatharan JM, Pondevida CM, Shaw RJ, Metallo CM. Progressive alterations in amino acid and lipid metabolism correlate with peripheral neuropathy in PolgD257A mice. Sci Adv 2021;7:eabj4077. [PMID: 34652935 DOI: 10.1126/sciadv.abj4077] [Reference Citation Analysis]
133 Bhattacharya D, Shah V, Oresajo O, Scimè A. p107 mediated mitochondrial function controls muscle stem cell proliferative fates. Nat Commun 2021;12:5977. [PMID: 34645816 DOI: 10.1038/s41467-021-26176-0] [Reference Citation Analysis]
134 Baksh SC, Todorova PK, Gur-Cohen S, Hurwitz B, Ge Y, Novak JSS, Tierney MT, Dela Cruz-Racelis J, Fuchs E, Finley LWS. Extracellular serine controls epidermal stem cell fate and tumour initiation. Nat Cell Biol 2020;22:779-90. [PMID: 32451440 DOI: 10.1038/s41556-020-0525-9] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 15.0] [Reference Citation Analysis]
135 Kang H, Kim H, Lee S, Youn H, Youn B. Role of Metabolic Reprogramming in Epithelial⁻Mesenchymal Transition (EMT). Int J Mol Sci 2019;20:E2042. [PMID: 31027222 DOI: 10.3390/ijms20082042] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 10.3] [Reference Citation Analysis]
136 Labuschagne CF, Cheung EC, Blagih J, Domart MC, Vousden KH. Cell Clustering Promotes a Metabolic Switch that Supports Metastatic Colonization. Cell Metab 2019;30:720-734.e5. [PMID: 31447323 DOI: 10.1016/j.cmet.2019.07.014] [Cited by in Crossref: 50] [Cited by in F6Publishing: 47] [Article Influence: 16.7] [Reference Citation Analysis]
137 Nakhle J, Rodriguez AM, Vignais ML. Multifaceted Roles of Mitochondrial Components and Metabolites in Metabolic Diseases and Cancer. Int J Mol Sci 2020;21:E4405. [PMID: 32575796 DOI: 10.3390/ijms21124405] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
138 Beckervordersandforth R. Mitochondrial Metabolism-Mediated Regulation of Adult Neurogenesis. Brain Plast 2017;3:73-87. [PMID: 29765861 DOI: 10.3233/BPL-170044] [Cited by in Crossref: 35] [Cited by in F6Publishing: 19] [Article Influence: 7.0] [Reference Citation Analysis]
139 Rauckhorst AJ, Taylor EB. Mitochondrial pyruvate carrier function and cancer metabolism. Curr Opin Genet Dev 2016;38:102-9. [PMID: 27269731 DOI: 10.1016/j.gde.2016.05.003] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 4.0] [Reference Citation Analysis]
140 Przybyla L, Gilbert LA. A new era in functional genomics screens. Nat Rev Genet 2021. [PMID: 34545248 DOI: 10.1038/s41576-021-00409-w] [Reference Citation Analysis]
141 Maralingannavar V, Parmar D, Pant T, Gadgil C, Panchagnula V, Gadgil M. CHO Cells adapted to inorganic phosphate limitation show higher growth and higher pyruvate carboxylase flux in phosphate replete conditions. Biotechnol Prog 2017;33:749-58. [PMID: 28220676 DOI: 10.1002/btpr.2450] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
142 Malecki M, Kamrad S, Ralser M, Bähler J. Mitochondrial respiration is required to provide amino acids during fermentative proliferation of fission yeast. EMBO Rep 2020;21:e50845. [PMID: 32896087 DOI: 10.15252/embr.202050845] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
143 Pusapati RV, Daemen A, Wilson C, Sandoval W, Gao M, Haley B, Baudy AR, Hatzivassiliou G, Evangelista M, Settleman J. mTORC1-Dependent Metabolic Reprogramming Underlies Escape from Glycolysis Addiction in Cancer Cells. Cancer Cell 2016;29:548-62. [PMID: 27052953 DOI: 10.1016/j.ccell.2016.02.018] [Cited by in Crossref: 113] [Cited by in F6Publishing: 107] [Article Influence: 18.8] [Reference Citation Analysis]
144 Luna-Yolba R, Marmoiton J, Gigo V, Marechal X, Boet E, Sahal A, Alet N, Abramovich I, Gottlieb E, Visentin V, Paillasse MR, Sarry JE. Disrupting Mitochondrial Electron Transfer Chain Complex I Decreases Immune Checkpoints in Murine and Human Acute Myeloid Leukemic Cells. Cancers (Basel) 2021;13:3499. [PMID: 34298712 DOI: 10.3390/cancers13143499] [Reference Citation Analysis]
145 van den Ameele J, Brand AH. Neural stem cell temporal patterning and brain tumour growth rely on oxidative phosphorylation. Elife 2019;8:e47887. [PMID: 31513013 DOI: 10.7554/eLife.47887] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
146 Ansó E, Weinberg SE, Diebold LP, Thompson BJ, Malinge S, Schumacker PT, Liu X, Zhang Y, Shao Z, Steadman M, Marsh KM, Xu J, Crispino JD, Chandel NS. The mitochondrial respiratory chain is essential for haematopoietic stem cell function. Nat Cell Biol 2017;19:614-25. [PMID: 28504706 DOI: 10.1038/ncb3529] [Cited by in Crossref: 132] [Cited by in F6Publishing: 123] [Article Influence: 26.4] [Reference Citation Analysis]
147 Madala HR, Helenius IT, Zhou W, Mills E, Zhang Y, Liu Y, Metelo AM, Kelley ML, Punganuru S, Kim KB, Olenchock B, Rhee E, Intlekofer AM, Iliopoulos O, Chouchani E, Yeh JJ. Nitrogen Trapping as a Therapeutic Strategy in Tumors with Mitochondrial Dysfunction. Cancer Res 2020;80:3492-506. [PMID: 32651261 DOI: 10.1158/0008-5472.CAN-20-0246] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
148 Zeng B, Huang Y, Jin S, Zhang X, Zhang H, Shi G, Cao D, Chang K, Dai B, Ye D. Development and validation of a mitochondrial metabolism-associated nomogram for prediction of prognosis in clear cell renal cell carcinoma. Clin Transl Med 2020;10:e120. [PMID: 32621320 DOI: 10.1002/ctm2.120] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
149 Alkan HF, Walter KE, Luengo A, Madreiter-Sokolowski CT, Stryeck S, Lau AN, Al-Zoughbi W, Lewis CA, Thomas CJ, Hoefler G, Graier WF, Madl T, Vander Heiden MG, Bogner-Strauss JG. Cytosolic Aspartate Availability Determines Cell Survival When Glutamine Is Limiting. Cell Metab 2018;28:706-720.e6. [PMID: 30122555 DOI: 10.1016/j.cmet.2018.07.021] [Cited by in Crossref: 69] [Cited by in F6Publishing: 60] [Article Influence: 17.3] [Reference Citation Analysis]
150 Bajzikova M, Kovarova J, Coelho AR, Boukalova S, Oh S, Rohlenova K, Svec D, Hubackova S, Endaya B, Judasova K, Bezawork-Geleta A, Kluckova K, Chatre L, Zobalova R, Novakova A, Vanova K, Ezrova Z, Maghzal GJ, Magalhaes Novais S, Olsinova M, Krobova L, An YJ, Davidova E, Nahacka Z, Sobol M, Cunha-Oliveira T, Sandoval-Acuña C, Strnad H, Zhang T, Huynh T, Serafim TL, Hozak P, Sardao VA, Koopman WJH, Ricchetti M, Oliveira PJ, Kolar F, Kubista M, Truksa J, Dvorakova-Hortova K, Pacak K, Gurlich R, Stocker R, Zhou Y, Berridge MV, Park S, Dong L, Rohlena J, Neuzil J. Reactivation of Dihydroorotate Dehydrogenase-Driven Pyrimidine Biosynthesis Restores Tumor Growth of Respiration-Deficient Cancer Cells. Cell Metab 2019;29:399-416.e10. [PMID: 30449682 DOI: 10.1016/j.cmet.2018.10.014] [Cited by in Crossref: 84] [Cited by in F6Publishing: 67] [Article Influence: 21.0] [Reference Citation Analysis]
151 Weber RA, Yen FS, Nicholson SPV, Alwaseem H, Bayraktar EC, Alam M, Timson RC, La K, Abu-Remaileh M, Molina H, Birsoy K. Maintaining Iron Homeostasis Is the Key Role of Lysosomal Acidity for Cell Proliferation. Mol Cell 2020;77:645-655.e7. [PMID: 31983508 DOI: 10.1016/j.molcel.2020.01.003] [Cited by in Crossref: 50] [Cited by in F6Publishing: 42] [Article Influence: 25.0] [Reference Citation Analysis]
152 Hu X, Go YM, Jones DP. Omics Integration for Mitochondria Systems Biology. Antioxid Redox Signal 2020;32:853-72. [PMID: 31891667 DOI: 10.1089/ars.2019.8006] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
153 Wang H, Zheng X, Liu B, Xia Y, Xin Z, Deng B, He L, Deng J, Ren W. Aspartate Metabolism Facilitates IL-1β Production in Inflammatory Macrophages. Front Immunol 2021;12:753092. [PMID: 34745126 DOI: 10.3389/fimmu.2021.753092] [Reference Citation Analysis]
154 Tajan M, Hock AK, Blagih J, Robertson NA, Labuschagne CF, Kruiswijk F, Humpton TJ, Adams PD, Vousden KH. A Role for p53 in the Adaptation to Glutamine Starvation through the Expression of SLC1A3. Cell Metab 2018;28:721-736.e6. [PMID: 30122553 DOI: 10.1016/j.cmet.2018.07.005] [Cited by in Crossref: 74] [Cited by in F6Publishing: 71] [Article Influence: 18.5] [Reference Citation Analysis]
155 Kaplan J, Ward DM. Muscle specific iron deficiency has systemic consequences. EBioMedicine 2015;2:1582-3. [PMID: 26870775 DOI: 10.1016/j.ebiom.2015.10.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
156 Saveljeva S, Sewell GW, Ramshorn K, Cader MZ, West JA, Clare S, Haag LM, de Almeida Rodrigues RP, Unger LW, Iglesias-Romero AB, Holland LM, Bourges C, Md-Ibrahim MN, Jones JO, Blumberg RS, Lee JC, Kaneider NC, Lawley TD, Bradley A, Dougan G, Kaser A. A purine metabolic checkpoint that prevents autoimmunity and autoinflammation. Cell Metab 2022;34:106-124.e10. [PMID: 34986329 DOI: 10.1016/j.cmet.2021.12.009] [Reference Citation Analysis]
157 Ruas JS, Siqueira-Santos ES, Rodrigues-Silva E, Castilho RF. High glycolytic activity of tumor cells leads to underestimation of electron transport system capacity when mitochondrial ATP synthase is inhibited. Sci Rep 2018;8:17383. [PMID: 30478338 DOI: 10.1038/s41598-018-35679-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
158 Tonarova P, Lochovska K, Pytlik R, Hubalek Kalbacova M. The Impact of Various Culture Conditions on Human Mesenchymal Stromal Cells Metabolism. Stem Cells Int 2021;2021:6659244. [PMID: 33727935 DOI: 10.1155/2021/6659244] [Reference Citation Analysis]
159 Hipólito A, Nunes SC, Vicente JB, Serpa J. Cysteine Aminotransferase (CAT): A Pivotal Sponsor in Metabolic Remodeling and an Ally of 3-Mercaptopyruvate Sulfurtransferase (MST) in Cancer. Molecules 2020;25:E3984. [PMID: 32882966 DOI: 10.3390/molecules25173984] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
160 Liu K, Sutter BM, Tu BP. Autophagy sustains glutamate and aspartate synthesis in Saccharomyces cerevisiae during nitrogen starvation. Nat Commun 2021;12:57. [PMID: 33397945 DOI: 10.1038/s41467-020-20253-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
161 Zhong H, Wang P, Song Y, Zhang X, Che L, Feng B, Lin Y, Xu S, Li J, Wu, Wu Q, Fang Z. Mammary cell proliferation and catabolism of adipose tissues in nutrition-restricted lactating sows were associated with extracellular high glutamate levels. J Anim Sci Biotechnol 2018;9:78. [PMID: 30410753 DOI: 10.1186/s40104-018-0293-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
162 Pavlova NN, Thompson CB. The Emerging Hallmarks of Cancer Metabolism. Cell Metab. 2016;23:27-47. [PMID: 26771115 DOI: 10.1016/j.cmet.2015.12.006] [Cited by in Crossref: 2049] [Cited by in F6Publishing: 1919] [Article Influence: 341.5] [Reference Citation Analysis]
163 Hope HC, Salmond RJ. The Role of Non-essential Amino Acids in T Cell Function and Anti-tumour Immunity. Arch Immunol Ther Exp (Warsz) 2021;69:29. [PMID: 34637000 DOI: 10.1007/s00005-021-00633-6] [Reference Citation Analysis]
164 Porporato PE, Filigheddu N, Pedro JMB, Kroemer G, Galluzzi L. Mitochondrial metabolism and cancer. Cell Res 2018;28:265-80. [PMID: 29219147 DOI: 10.1038/cr.2017.155] [Cited by in Crossref: 333] [Cited by in F6Publishing: 330] [Article Influence: 66.6] [Reference Citation Analysis]
165 Yao CH, Wang R, Wang Y, Kung CP, Weber JD, Patti GJ. Mitochondrial fusion supports increased oxidative phosphorylation during cell proliferation. Elife 2019;8:e41351. [PMID: 30694178 DOI: 10.7554/eLife.41351] [Cited by in Crossref: 64] [Cited by in F6Publishing: 47] [Article Influence: 21.3] [Reference Citation Analysis]
166 Caicedo A, Aponte PM, Cabrera F, Hidalgo C, Khoury M. Artificial Mitochondria Transfer: Current Challenges, Advances, and Future Applications. Stem Cells Int 2017;2017:7610414. [PMID: 28751917 DOI: 10.1155/2017/7610414] [Cited by in Crossref: 43] [Cited by in F6Publishing: 41] [Article Influence: 8.6] [Reference Citation Analysis]
167 Rashkovan M, Ferrando A. Metabolic dependencies and vulnerabilities in leukemia. Genes Dev 2019;33:1460-74. [PMID: 31676734 DOI: 10.1101/gad.326470.119] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 7.0] [Reference Citation Analysis]
168 McLellan CA, Vincent BM, Solis NV, Lancaster AK, Sullivan LB, Hartland CL, Youngsaye W, Filler SG, Whitesell L, Lindquist S. Inhibiting mitochondrial phosphate transport as an unexploited antifungal strategy. Nat Chem Biol 2018;14:135-41. [PMID: 29227471 DOI: 10.1038/nchembio.2534] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 3.6] [Reference Citation Analysis]
169 Cheng CT, Qi Y, Wang YC, Chi KK, Chung Y, Ouyang C, Chen YR, Oh ME, Sheng X, Tang Y, Liu YR, Lin HH, Kuo CY, Schones D, Vidal CM, Chu JC, Wang HJ, Chen YH, Miller KM, Chu P, Yen Y, Jiang L, Kung HJ, Ann DK. Arginine starvation kills tumor cells through aspartate exhaustion and mitochondrial dysfunction. Commun Biol 2018;1:178. [PMID: 30393775 DOI: 10.1038/s42003-018-0178-4] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 7.3] [Reference Citation Analysis]
170 TeSlaa T, Chaikovsky AC, Lipchina I, Escobar SL, Hochedlinger K, Huang J, Graeber TG, Braas D, Teitell MA. α-Ketoglutarate Accelerates the Initial Differentiation of Primed Human Pluripotent Stem Cells. Cell Metab 2016;24:485-93. [PMID: 27476976 DOI: 10.1016/j.cmet.2016.07.002] [Cited by in Crossref: 129] [Cited by in F6Publishing: 120] [Article Influence: 21.5] [Reference Citation Analysis]
171 Schwartz AJ, Goyert JW, Solanki S, Kerk SA, Chen B, Castillo C, Hsu PP, Do BT, Singhal R, Dame MK, Lee HJ, Spence JR, Lakhal-Littleton S, Heiden MGV, Lyssiotis CA, Xue X, Shah YM. Hepcidin sequesters iron to sustain nucleotide metabolism and mitochondrial function in colorectal cancer epithelial cells. Nat Metab 2021;3:969-82. [PMID: 34155415 DOI: 10.1038/s42255-021-00406-7] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
172 Bohovych I, Khalimonchuk O. Sending Out an SOS: Mitochondria as a Signaling Hub. Front Cell Dev Biol 2016;4:109. [PMID: 27790613 DOI: 10.3389/fcell.2016.00109] [Cited by in Crossref: 50] [Cited by in F6Publishing: 48] [Article Influence: 8.3] [Reference Citation Analysis]
173 Yoon H, Shaw JL, Haigis MC, Greka A. Lipid metabolism in sickness and in health: Emerging regulators of lipotoxicity. Mol Cell 2021;81:3708-30. [PMID: 34547235 DOI: 10.1016/j.molcel.2021.08.027] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
174 Aregger M, Lawson KA, Billmann M, Costanzo M, Tong AHY, Chan K, Rahman M, Brown KR, Ross C, Usaj M, Nedyalkova L, Sizova O, Habsid A, Pawling J, Lin ZY, Abdouni H, Wong CJ, Weiss A, Mero P, Dennis JW, Gingras AC, Myers CL, Andrews BJ, Boone C, Moffat J. Systematic mapping of genetic interactions for de novo fatty acid synthesis identifies C12orf49 as a regulator of lipid metabolism. Nat Metab 2020;2:499-513. [PMID: 32694731 DOI: 10.1038/s42255-020-0211-z] [Cited by in Crossref: 19] [Cited by in F6Publishing: 12] [Article Influence: 9.5] [Reference Citation Analysis]
175 Ruas JS, Siqueira-Santos ES, Amigo I, Rodrigues-Silva E, Kowaltowski AJ, Castilho RF. Underestimation of the Maximal Capacity of the Mitochondrial Electron Transport System in Oligomycin-Treated Cells. PLoS One 2016;11:e0150967. [PMID: 26950698 DOI: 10.1371/journal.pone.0150967] [Cited by in Crossref: 31] [Cited by in F6Publishing: 34] [Article Influence: 5.2] [Reference Citation Analysis]
176 Gentric G, Mieulet V, Mechta-Grigoriou F. Heterogeneity in Cancer Metabolism: New Concepts in an Old Field. Antioxid Redox Signal 2017;26:462-85. [PMID: 27228792 DOI: 10.1089/ars.2016.6750] [Cited by in Crossref: 86] [Cited by in F6Publishing: 84] [Article Influence: 14.3] [Reference Citation Analysis]
177 Diehl FF, Lewis CA, Fiske BP, Vander Heiden MG. Cellular redox state constrains serine synthesis and nucleotide production to impact cell proliferation. Nat Metab 2019;1:861-7. [PMID: 31598584 DOI: 10.1038/s42255-019-0108-x] [Cited by in Crossref: 51] [Cited by in F6Publishing: 40] [Article Influence: 17.0] [Reference Citation Analysis]
178 Okamatsu-Ogura Y, Kuroda M, Tsutsumi R, Tsubota A, Saito M, Kimura K, Sakaue H. UCP1-dependent and UCP1-independent metabolic changes induced by acute cold exposure in brown adipose tissue of mice. Metabolism 2020;113:154396. [PMID: 33065161 DOI: 10.1016/j.metabol.2020.154396] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
179 Kelly B, Pearce EL. Amino Assets: How Amino Acids Support Immunity. Cell Metab 2020;32:154-75. [PMID: 32649859 DOI: 10.1016/j.cmet.2020.06.010] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 16.5] [Reference Citation Analysis]
180 Liberti MV, Locasale JW. The Warburg Effect: How Does it Benefit Cancer Cells? Trends Biochem Sci 2016;41:211-8. [PMID: 26778478 DOI: 10.1016/j.tibs.2015.12.001] [Cited by in Crossref: 1324] [Cited by in F6Publishing: 1274] [Article Influence: 220.7] [Reference Citation Analysis]
181 Pillozzi S, Bernini A, Palchetti I, Crociani O, Antonuzzo L, Campanacci D, Scoccianti G. Soft Tissue Sarcoma: An Insight on Biomarkers at Molecular, Metabolic and Cellular Level. Cancers (Basel) 2021;13:3044. [PMID: 34207243 DOI: 10.3390/cancers13123044] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
182 Beckervordersandforth R, Ebert B, Schäffner I, Moss J, Fiebig C, Shin J, Moore DL, Ghosh L, Trinchero MF, Stockburger C, Friedland K, Steib K, von Wittgenstein J, Keiner S, Redecker C, Hölter SM, Xiang W, Wurst W, Jagasia R, Schinder AF, Ming GL, Toni N, Jessberger S, Song H, Lie DC. Role of Mitochondrial Metabolism in the Control of Early Lineage Progression and Aging Phenotypes in Adult Hippocampal Neurogenesis. Neuron 2017;93:560-573.e6. [PMID: 28111078 DOI: 10.1016/j.neuron.2016.12.017] [Cited by in Crossref: 104] [Cited by in F6Publishing: 106] [Article Influence: 20.8] [Reference Citation Analysis]
183 Hewton KG, Johal AS, Parker SJ. Transporters at the Interface between Cytosolic and Mitochondrial Amino Acid Metabolism. Metabolites 2021;11:112. [PMID: 33669382 DOI: 10.3390/metabo11020112] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
184 Titov DV, Cracan V, Goodman RP, Peng J, Grabarek Z, Mootha VK. Complementation of mitochondrial electron transport chain by manipulation of the NAD+/NADH ratio. Science 2016;352:231-5. [PMID: 27124460 DOI: 10.1126/science.aad4017] [Cited by in Crossref: 154] [Cited by in F6Publishing: 138] [Article Influence: 25.7] [Reference Citation Analysis]
185 Zhelev Z, Aoki I, Lazarova D, Vlaykova T, Higashi T, Bakalova R, Giudetti AM. A “Weird” Mitochondrial Fatty Acid Oxidation as a Metabolic “Secret” of Cancer. Oxidative Medicine and Cellular Longevity 2022;2022:1-38. [DOI: 10.1155/2022/2339584] [Reference Citation Analysis]
186 Lu J. The Warburg metabolism fuels tumor metastasis. Cancer Metastasis Rev 2019;38:157-64. [PMID: 30997670 DOI: 10.1007/s10555-019-09794-5] [Cited by in Crossref: 57] [Cited by in F6Publishing: 61] [Article Influence: 28.5] [Reference Citation Analysis]
187 Raffaele M, Pittalà V, Zingales V, Barbagallo I, Salerno L, Li Volti G, Romeo G, Carota G, Sorrenti V, Vanella L. Heme Oxygenase-1 Inhibition Sensitizes Human Prostate Cancer Cells towards Glucose Deprivation and Metformin-Mediated Cell Death. Int J Mol Sci 2019;20:E2593. [PMID: 31137785 DOI: 10.3390/ijms20102593] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 5.3] [Reference Citation Analysis]
188 Landry AP, Ballou DP, Banerjee R. Hydrogen Sulfide Oxidation by Sulfide Quinone Oxidoreductase. Chembiochem 2021;22:949-60. [PMID: 33080111 DOI: 10.1002/cbic.202000661] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
189 Wang Y, Bai C, Ruan Y, Liu M, Chu Q, Qiu L, Yang C, Li B. Coordinative metabolism of glutamine carbon and nitrogen in proliferating cancer cells under hypoxia. Nat Commun 2019;10:201. [PMID: 30643150 DOI: 10.1038/s41467-018-08033-9] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 13.3] [Reference Citation Analysis]
190 Rohlenova K, Sachaphibulkij K, Stursa J, Bezawork-Geleta A, Blecha J, Endaya B, Werner L, Cerny J, Zobalova R, Goodwin J, Spacek T, Alizadeh Pesdar E, Yan B, Nguyen MN, Vondrusova M, Sobol M, Jezek P, Hozak P, Truksa J, Rohlena J, Dong LF, Neuzil J. Selective Disruption of Respiratory Supercomplexes as a New Strategy to Suppress Her2high Breast Cancer. Antioxid Redox Signal 2017;26:84-103. [PMID: 27392540 DOI: 10.1089/ars.2016.6677] [Cited by in Crossref: 48] [Cited by in F6Publishing: 46] [Article Influence: 8.0] [Reference Citation Analysis]
191 Yang R, Ying G, Li B. Potential of electron transfer and its application in dictating routes of biochemical processes associated with metabolic reprogramming. Front Med 2021. [PMID: 34302614 DOI: 10.1007/s11684-021-0866-1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
192 Niu K, Luo X, Da Y, Liu S, Wang K, Wang W, Qin L, Jia J. Effect of estradiol and Remifemin on the dorsal lingual epithelium of ovariectomized rats. Exp Gerontol 2021;143:111142. [PMID: 33130112 DOI: 10.1016/j.exger.2020.111142] [Reference Citation Analysis]
193 Xu Y, Xue D, Bankhead A 3rd, Neamati N. Why All the Fuss about Oxidative Phosphorylation (OXPHOS)? J Med Chem 2020;63:14276-307. [PMID: 33103432 DOI: 10.1021/acs.jmedchem.0c01013] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
194 Urra FA, Muñoz F, Lovy A, Cárdenas C. The Mitochondrial Complex(I)ty of Cancer. Front Oncol 2017;7:118. [PMID: 28642839 DOI: 10.3389/fonc.2017.00118] [Cited by in Crossref: 58] [Cited by in F6Publishing: 59] [Article Influence: 11.6] [Reference Citation Analysis]
195 Torresano L, Nuevo-Tapioles C, Santacatterina F, Cuezva JM. Metabolic reprogramming and disease progression in cancer patients. Biochim Biophys Acta Mol Basis Dis 2020;1866:165721. [PMID: 32057942 DOI: 10.1016/j.bbadis.2020.165721] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 7.5] [Reference Citation Analysis]
196 Elliott IA, Dann AM, Xu S, Kim SS, Abt ER, Kim W, Poddar S, Moore A, Zhou L, Williams JL, Capri JR, Ghukasyan R, Matsumura C, Tucker DA, Armstrong WR, Cabebe AE, Wu N, Li L, Le TM, Radu CG, Donahue TR. Lysosome inhibition sensitizes pancreatic cancer to replication stress by aspartate depletion. Proc Natl Acad Sci U S A 2019;116:6842-7. [PMID: 30894490 DOI: 10.1073/pnas.1812410116] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 6.0] [Reference Citation Analysis]
197 Infantino V, Dituri F, Convertini P, Santarsiero A, Palmieri F, Todisco S, Mancarella S, Giannelli G, Iacobazzi V. Epigenetic upregulation and functional role of the mitochondrial aspartate/glutamate carrier isoform 1 in hepatocellular carcinoma. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2019;1865:38-47. [DOI: 10.1016/j.bbadis.2018.10.018] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
198 Nguyen TA, Nguyen TH, Kumar B. Study on Fabrication of Antibacterial Low Molecular Weight Nanochitosan Using Sodium Tripolyphosphate and Hydrogen Peroxide. Journal of Nanotechnology 2022;2022:1-10. [DOI: 10.1155/2022/8368431] [Reference Citation Analysis]
199 Belivermiş M, Swarzenski PW, Oberhänsli F, Melvin SD, Metian M. Effects of variable deoxygenation on trace element bioaccumulation and resulting metabolome profiles in the blue mussel (Mytilus edulis). Chemosphere 2020;250:126314. [DOI: 10.1016/j.chemosphere.2020.126314] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
200 Trousil S, Kaliszczak M, Schug Z, Nguyen Q, Tomasi G, Favicchio R, Brickute D, Fortt R, Twyman FJ, Carroll L. The novel choline kinase inhibitor ICL-CCIC-0019 reprograms cellular metabolism and inhibits cancer cell growth. Oncotarget. 2016;7:37103-37120. [PMID: 27206796 DOI: 10.18632/oncotarget.9466] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 5.8] [Reference Citation Analysis]
201 Xu J, Khoury N, Jackson CW, Escobar I, Stegelmann SD, Dave KR, Perez-Pinzon MA. Ischemic Neuroprotectant PKCε Restores Mitochondrial Glutamate Oxaloacetate Transaminase in the Neuronal NADH Shuttle after Ischemic Injury. Transl Stroke Res 2020;11:418-32. [PMID: 31473978 DOI: 10.1007/s12975-019-00729-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
202 Bertero T, Oldham WM, Grasset EM, Bourget I, Boulter E, Pisano S, Hofman P, Bellvert F, Meneguzzi G, Bulavin DV, Estrach S, Feral CC, Chan SY, Bozec A, Gaggioli C. Tumor-Stroma Mechanics Coordinate Amino Acid Availability to Sustain Tumor Growth and Malignancy. Cell Metab 2019;29:124-140.e10. [PMID: 30293773 DOI: 10.1016/j.cmet.2018.09.012] [Cited by in Crossref: 95] [Cited by in F6Publishing: 92] [Article Influence: 23.8] [Reference Citation Analysis]
203 Zhang J, Pavlova NN, Thompson CB. Cancer cell metabolism: the essential role of the nonessential amino acid, glutamine. EMBO J 2017;36:1302-15. [PMID: 28420743 DOI: 10.15252/embj.201696151] [Cited by in Crossref: 205] [Cited by in F6Publishing: 208] [Article Influence: 41.0] [Reference Citation Analysis]
204 Soula M, Weber RA, Zilka O, Alwaseem H, La K, Yen F, Molina H, Garcia-Bermudez J, Pratt DA, Birsoy K. Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers. Nat Chem Biol 2020;16:1351-60. [PMID: 32778843 DOI: 10.1038/s41589-020-0613-y] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 18.0] [Reference Citation Analysis]
205 Ahmed SS, Nussbaum M. Development of pulmonary edema related to heparin administration. J Clin Pharmacol. 1981;21:126-128. [PMID: 7229118 DOI: 10.1038/s41389-020-0231-2] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 0.3] [Reference Citation Analysis]
206 Maralingannavar V, Parmar D, Panchagnula V, Gadgil M. Superfluous glutamine synthetase activity in Chinese Hamster Ovary cells selected under glutamine limitation is growth limiting in glutamine-replete conditions and can be inhibited by serine. Biotechnol Prog 2019;35:e2856. [PMID: 31148368 DOI: 10.1002/btpr.2856] [Reference Citation Analysis]
207 Kanarek N, Petrova B, Sabatini DM. Dietary modifications for enhanced cancer therapy. Nature 2020;579:507-17. [DOI: 10.1038/s41586-020-2124-0] [Cited by in Crossref: 65] [Cited by in F6Publishing: 52] [Article Influence: 32.5] [Reference Citation Analysis]
208 Ilic N, Birsoy K, Aguirre AJ, Kory N, Pacold ME, Singh S, Moody SE, DeAngelo JD, Spardy NA, Freinkman E, Weir BA, Tsherniak A, Cowley GS, Root DE, Asara JM, Vazquez F, Widlund HR, Sabatini DM, Hahn WC. PIK3CA mutant tumors depend on oxoglutarate dehydrogenase. Proc Natl Acad Sci U S A 2017;114:E3434-43. [PMID: 28396387 DOI: 10.1073/pnas.1617922114] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 4.6] [Reference Citation Analysis]
209 Ron-Harel N, Ghergurovich JM, Notarangelo G, LaFleur MW, Tsubosaka Y, Sharpe AH, Rabinowitz JD, Haigis MC. T Cell Activation Depends on Extracellular Alanine. Cell Rep 2019;28:3011-3021.e4. [PMID: 31533027 DOI: 10.1016/j.celrep.2019.08.034] [Cited by in Crossref: 43] [Cited by in F6Publishing: 38] [Article Influence: 21.5] [Reference Citation Analysis]
210 Zong WX, Rabinowitz JD, White E. Mitochondria and Cancer. Mol Cell 2016;61:667-76. [PMID: 26942671 DOI: 10.1016/j.molcel.2016.02.011] [Cited by in Crossref: 393] [Cited by in F6Publishing: 372] [Article Influence: 65.5] [Reference Citation Analysis]
211 Bertero T, Oldham WM, Cottrill KA, Pisano S, Vanderpool RR, Yu Q, Zhao J, Tai Y, Tang Y, Zhang YY, Rehman S, Sugahara M, Qi Z, Gorcsan J 3rd, Vargas SO, Saggar R, Saggar R, Wallace WD, Ross DJ, Haley KJ, Waxman AB, Parikh VN, De Marco T, Hsue PY, Morris A, Simon MA, Norris KA, Gaggioli C, Loscalzo J, Fessel J, Chan SY. Vascular stiffness mechanoactivates YAP/TAZ-dependent glutaminolysis to drive pulmonary hypertension. J Clin Invest 2016;126:3313-35. [PMID: 27548520 DOI: 10.1172/JCI86387] [Cited by in Crossref: 175] [Cited by in F6Publishing: 131] [Article Influence: 29.2] [Reference Citation Analysis]
212 Rossiter NJ, Huggler KS, Adelmann CH, Keys HR, Soens RW, Sabatini DM, Cantor JR. CRISPR screens in physiologic medium reveal conditionally essential genes in human cells. Cell Metab 2021;33:1248-1263.e9. [PMID: 33651980 DOI: 10.1016/j.cmet.2021.02.005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
213 Madhusudhan N, Hu B, Mishra P, Calva-Moreno JF, Patel K, Boriack R, Ready JM, Nijhawan D. Target Discovery of Selective Non-Small-Cell Lung Cancer Toxins Reveals Inhibitors of Mitochondrial Complex I. ACS Chem Biol 2020;15:158-70. [PMID: 31874028 DOI: 10.1021/acschembio.9b00734] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
214 Thomas LW, Esposito C, Stephen JM, Costa ASH, Frezza C, Blacker TS, Szabadkai G, Ashcroft M. CHCHD4 regulates tumour proliferation and EMT-related phenotypes, through respiratory chain-mediated metabolism. Cancer Metab 2019;7:7. [PMID: 31346464 DOI: 10.1186/s40170-019-0200-4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
215 Li H, Ericsson M, Rabasha B, Budnik B, Chan SH, Freinkman E, Lewis CA, Doench JG, Wagner BK, Garraway LA, Schreiber SL. 6-Phosphogluconate Dehydrogenase Links Cytosolic Carbohydrate Metabolism to Protein Secretion via Modulation of Glutathione Levels. Cell Chem Biol 2019;26:1306-1314.e5. [PMID: 31204288 DOI: 10.1016/j.chembiol.2019.05.006] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
216 Burton NO, Furuta T, Webster AK, Kaplan RE, Baugh LR, Arur S, Horvitz HR. Insulin-like signalling to the maternal germline controls progeny response to osmotic stress. Nat Cell Biol 2017;19:252-7. [PMID: 28166192 DOI: 10.1038/ncb3470] [Cited by in Crossref: 43] [Cited by in F6Publishing: 26] [Article Influence: 8.6] [Reference Citation Analysis]
217 Wilde L, Roche M, Domingo-Vidal M, Tanson K, Philp N, Curry J, Martinez-Outschoorn U. Metabolic coupling and the Reverse Warburg Effect in cancer: Implications for novel biomarker and anticancer agent development. Semin Oncol 2017;44:198-203. [PMID: 29248131 DOI: 10.1053/j.seminoncol.2017.10.004] [Cited by in Crossref: 111] [Cited by in F6Publishing: 107] [Article Influence: 22.2] [Reference Citation Analysis]
218 Lavrov DV, Pett W. Animal Mitochondrial DNA as We Do Not Know It: mt-Genome Organization and Evolution in Nonbilaterian Lineages. Genome Biol Evol 2016;8:2896-913. [PMID: 27557826 DOI: 10.1093/gbe/evw195] [Cited by in Crossref: 88] [Cited by in F6Publishing: 76] [Article Influence: 14.7] [Reference Citation Analysis]
219 Alkan HF, Bogner-Strauss JG. Maintaining cytosolic aspartate levels is a major function of the TCA cycle in proliferating cells. Mol Cell Oncol 2019;6:e1536843. [PMID: 31528687 DOI: 10.1080/23723556.2018.1536843] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
220 Zhao J, Yao K, Yu H, Zhang L, Xu Y, Chen L, Sun Z, Zhu Y, Zhang C, Qian Y, Ji S, Pan H, Zhang M, Chen J, Correia C, Weiskittel T, Lin DW, Zhao Y, Chandrasekaran S, Fu X, Zhang D, Fan HY, Xie W, Li H, Hu Z, Zhang J. Metabolic remodelling during early mouse embryo development. Nat Metab 2021;3:1372-84. [PMID: 34650276 DOI: 10.1038/s42255-021-00464-x] [Reference Citation Analysis]
221 Almeida L, Lochner M, Berod L, Sparwasser T. Metabolic pathways in T cell activation and lineage differentiation. Semin Immunol. 2016;28:514-524. [PMID: 27825556 DOI: 10.1016/j.smim.2016.10.009] [Cited by in Crossref: 168] [Cited by in F6Publishing: 165] [Article Influence: 28.0] [Reference Citation Analysis]
222 Sorge S, Theelke J, Yildirim K, Hertenstein H, McMullen E, Müller S, Altbürger C, Schirmeier S, Lohmann I. ATF4-Induced Warburg Metabolism Drives Over-Proliferation in Drosophila. Cell Rep 2020;31:107659. [PMID: 32433968 DOI: 10.1016/j.celrep.2020.107659] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
223 Sun S, Xun G, Zhang J, Gao Y, Ge J, Liu F, Qian Q, Liu X, Tian Y, Sun Q, Wang Q, Wang X. An integrated approach for investigating pharmacodynamic material basis of Lingguizhugan Decoction in the treatment of heart failure. J Ethnopharmacol 2022;:115366. [PMID: 35551974 DOI: 10.1016/j.jep.2022.115366] [Reference Citation Analysis]
224 Zhang X, Lin Q, Chen J, Wei T, Li C, Zhao L, Gao H, Zheng H. High Glucose-Induced Cardiomyocyte Death May Be Linked to Unbalanced Branched-Chain Amino Acids and Energy Metabolism. Molecules 2018;23:E807. [PMID: 29614759 DOI: 10.3390/molecules23040807] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
225 Chapman NM, Boothby MR, Chi H. Metabolic coordination of T cell quiescence and activation. Nat Rev Immunol 2020;20:55-70. [DOI: 10.1038/s41577-019-0203-y] [Cited by in Crossref: 113] [Cited by in F6Publishing: 99] [Article Influence: 37.7] [Reference Citation Analysis]
226 Gao P, Cheng Z, Li M, Zhang N, Le B, Zhang W, Song P, Guo X, Li B, Cao G. Selection of candidate genes affecting meat quality and preliminary exploration of related molecular mechanisms in the Mashen pig. Asian-Australas J Anim Sci 2019;32:1084-94. [PMID: 31010998 DOI: 10.5713/ajas.18.0718] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
227 Kurmi K, Haigis MC. Nitrogen Metabolism in Cancer and Immunity. Trends Cell Biol. 2020;30:408-424. [PMID: 32302552 DOI: 10.1016/j.tcb.2020.02.005] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 7.5] [Reference Citation Analysis]
228 Salazar-Roa M, Malumbres M. Fueling the Cell Division Cycle. Trends Cell Biol 2017;27:69-81. [PMID: 27746095 DOI: 10.1016/j.tcb.2016.08.009] [Cited by in Crossref: 135] [Cited by in F6Publishing: 123] [Article Influence: 22.5] [Reference Citation Analysis]
229 Cheng CC, Wooten J, Gibbs ZA, McGlynn K, Mishra P, Whitehurst AW. Sperm-specific COX6B2 enhances oxidative phosphorylation, proliferation, and survival in human lung adenocarcinoma. Elife 2020;9:e58108. [PMID: 32990599 DOI: 10.7554/eLife.58108] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
230 Dong W, Keibler MA, Stephanopoulos G. Review of metabolic pathways activated in cancer cells as determined through isotopic labeling and network analysis. Metab Eng 2017;43:113-24. [PMID: 28192215 DOI: 10.1016/j.ymben.2017.02.002] [Cited by in Crossref: 37] [Cited by in F6Publishing: 32] [Article Influence: 7.4] [Reference Citation Analysis]
231 Wilson BC, Boehme L, Annibali A, Hodgkinson A, Carroll TS, Oakey RJ, Seitan VC. Intellectual disability-associated factor Zbtb11 cooperates with NRF-2/GABP to control mitochondrial function. Nat Commun 2020;11:5469. [PMID: 33122634 DOI: 10.1038/s41467-020-19205-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
232 Guan N, Kobayashi H, Ishii K, Davidoff O, Sha F, Ikizler TA, Hao CM, Chandel NS, Haase VH. Disruption of mitochondrial complex III in cap mesenchyme but not in ureteric progenitors results in defective nephrogenesis associated with amino acid deficiency. Kidney Int 2022:S0085-2538(22)00212-5. [PMID: 35341793 DOI: 10.1016/j.kint.2022.02.030] [Reference Citation Analysis]
233 Diebold LP, Gil HJ, Gao P, Martinez CA, Weinberg SE, Chandel NS. Mitochondrial complex III is necessary for endothelial cell proliferation during angiogenesis. Nat Metab 2019;1:158-71. [PMID: 31106291 DOI: 10.1038/s42255-018-0011-x] [Cited by in Crossref: 55] [Cited by in F6Publishing: 56] [Article Influence: 18.3] [Reference Citation Analysis]
234 Kim J, You YJ. Regulation of organelle function by metformin. IUBMB Life 2017;69:459-69. [PMID: 28444922 DOI: 10.1002/iub.1633] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 4.6] [Reference Citation Analysis]
235 Kratochvilova M, Raudenska M, Heger Z, Richtera L, Cernei N, Adam V, Babula P, Novakova M, Masarik M, Gumulec J. Amino Acid Profiling of Zinc Resistant Prostate Cancer Cell Lines: Associations With Cancer Progression. Prostate 2017;77:604-16. [PMID: 28101932 DOI: 10.1002/pros.23304] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
236 Burton NO, Dwivedi VK, Burkhart KB, Kaplan REW, Baugh LR, Horvitz HR. Neurohormonal signaling via a sulfotransferase antagonizes insulin-like signaling to regulate a Caenorhabditis elegans stress response. Nat Commun 2018;9:5152. [PMID: 30514845 DOI: 10.1038/s41467-018-07640-w] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
237 Panic V, Pearson S, Banks J, Tippetts TS, Velasco-Silva JN, Lee S, Simcox J, Geoghegan G, Bensard CL, van Ry T, Holland WL, Summers SA, Cox J, Ducker GS, Rutter J, Villanueva CJ. Mitochondrial pyruvate carrier is required for optimal brown fat thermogenesis. Elife 2020;9:e52558. [PMID: 32795388 DOI: 10.7554/eLife.52558] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
238 Schmidt CA, Fisher-Wellman KH, Neufer PD. From OCR and ECAR to energy: Perspectives on the design and interpretation of bioenergetics studies. J Biol Chem 2021;297:101140. [PMID: 34461088 DOI: 10.1016/j.jbc.2021.101140] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
239 Wong KE, Mora MC, Sultana N, Moriarty KP, Arenas RB, Yadava N, Schneider SS, Tirabassi MV. Evaluation of Rhodiola crenulata on growth and metabolism of NB-1691, an MYCN-amplified neuroblastoma cell line. Tumour Biol 2018;40:1010428318779515. [PMID: 29871587 DOI: 10.1177/1010428318779515] [Reference Citation Analysis]
240 Harder JM, Guymer C, Wood JPM, Daskalaki E, Chidlow G, Zhang C, Balasubramanian R, Cardozo BH, Foxworth NE, Deering KE, Ouellette TB, Montgomery C, Wheelock CE, Casson RJ, Williams PA, John SWM. Disturbed glucose and pyruvate metabolism in glaucoma with neuroprotection by pyruvate or rapamycin. Proc Natl Acad Sci U S A 2020;117:33619-27. [PMID: 33318177 DOI: 10.1073/pnas.2014213117] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 7.0] [Reference Citation Analysis]
241 Huangyang P, Li F, Lee P, Nissim I, Weljie AM, Mancuso A, Li B, Keith B, Yoon SS, Simon MC. Fructose-1,6-Bisphosphatase 2 Inhibits Sarcoma Progression by Restraining Mitochondrial Biogenesis. Cell Metab 2020;31:174-188.e7. [PMID: 31761563 DOI: 10.1016/j.cmet.2019.10.012] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 6.3] [Reference Citation Analysis]
242 Chao de la Barca JM, Arrázola MS, Bocca C, Arnauné-Pelloquin L, Iuliano O, Tcherkez G, Lenaers G, Simard G, Belenguer P, Reynier P. The Metabolomic Signature of Opa1 Deficiency in Rat Primary Cortical Neurons Shows Aspartate/Glutamate Depletion and Phospholipids Remodeling. Sci Rep 2019;9:6107. [PMID: 30988455 DOI: 10.1038/s41598-019-42554-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
243 Mazat JP. One-carbon metabolism in cancer cells: a critical review based on a core model of central metabolism. Biochem Soc Trans 2021;49:1-15. [PMID: 33616629 DOI: 10.1042/BST20190008] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
244 Mihaylova MM, Cheng CW, Cao AQ, Tripathi S, Mana MD, Bauer-Rowe KE, Abu-Remaileh M, Clavain L, Erdemir A, Lewis CA, Freinkman E, Dickey AS, La Spada AR, Huang Y, Bell GW, Deshpande V, Carmeliet P, Katajisto P, Sabatini DM, Yilmaz ÖH. Fasting Activates Fatty Acid Oxidation to Enhance Intestinal Stem Cell Function during Homeostasis and Aging. Cell Stem Cell 2018;22:769-778.e4. [PMID: 29727683 DOI: 10.1016/j.stem.2018.04.001] [Cited by in Crossref: 108] [Cited by in F6Publishing: 105] [Article Influence: 36.0] [Reference Citation Analysis]
245 García-Cañaveras JC, Lahoz A. Tumor Microenvironment-Derived Metabolites: A Guide to Find New Metabolic Therapeutic Targets and Biomarkers. Cancers (Basel) 2021;13:3230. [PMID: 34203535 DOI: 10.3390/cancers13133230] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
246 Malecki M, Bitton DA, Rodríguez-López M, Rallis C, Calavia NG, Smith GC, Bähler J. Functional and regulatory profiling of energy metabolism in fission yeast. Genome Biol 2016;17:240. [PMID: 27887640 DOI: 10.1186/s13059-016-1101-2] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 3.3] [Reference Citation Analysis]
247 McKenney AS, Lau AN, Somasundara AVH, Spitzer B, Intlekofer AM, Ahn J, Shank K, Rapaport FT, Patel MA, Papalexi E, Shih AH, Chiu A, Freinkman E, Akbay EA, Steadman M, Nagaraja R, Yen K, Teruya-Feldstein J, Wong KK, Rampal R, Vander Heiden MG, Thompson CB, Levine RL. JAK2/IDH-mutant-driven myeloproliferative neoplasm is sensitive to combined targeted inhibition. J Clin Invest 2018;128:789-804. [PMID: 29355841 DOI: 10.1172/JCI94516] [Cited by in Crossref: 37] [Cited by in F6Publishing: 22] [Article Influence: 9.3] [Reference Citation Analysis]
248 Reicher A, Koren A, Kubicek S. Pooled protein tagging, cellular imaging, and in situ sequencing for monitoring drug action in real time. Genome Res 2020;30:1846-55. [PMID: 33203764 DOI: 10.1101/gr.261503.120] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
249 Koklesova L, Mazurakova A, Samec M, Kudela E, Biringer K, Kubatka P, Golubnitschaja O. Mitochondrial health quality control: measurements and interpretation in the framework of predictive, preventive, and personalized medicine. EPMA Journal. [DOI: 10.1007/s13167-022-00281-6] [Reference Citation Analysis]
250 Meacham CE, DeVilbiss AW, Morrison SJ. Metabolic regulation of somatic stem cells in vivo. Nat Rev Mol Cell Biol 2022. [PMID: 35228719 DOI: 10.1038/s41580-022-00462-1] [Reference Citation Analysis]
251 Hong R, Zhang W, Xia X, Zhang K, Wang Y, Wu M, Fan J, Li J, Xia W, Xu F, Chen J, Wang S, Zhan Q. Preventing BRCA1/ZBRK1 repressor complex binding to the GOT2 promoter results in accelerated aspartate biosynthesis and promotion of cell proliferation. Mol Oncol 2019;13:959-77. [PMID: 30714292 DOI: 10.1002/1878-0261.12466] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
252 Liu S, Fu S, Wang G, Cao Y, Li L, Li X, Yang J, Li N, Shan Y, Cao Y, Ma Y, Dong M, Liu Q, Jiang H. Glycerol-3-phosphate biosynthesis regenerates cytosolic NAD+ to alleviate mitochondrial disease. Cell Metab 2021:S1550-4131(21)00283-7. [PMID: 34270929 DOI: 10.1016/j.cmet.2021.06.013] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
253 Kim A. Mitochondria in Cancer Energy Metabolism: Culprits or Bystanders? Toxicol Res 2015;31:323-30. [PMID: 26877834 DOI: 10.5487/TR.2015.31.4.323] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
254 Hollinshead KER, Parker SJ, Eapen VV, Encarnacion-Rosado J, Sohn A, Oncu T, Cammer M, Mancias JD, Kimmelman AC. Respiratory Supercomplexes Promote Mitochondrial Efficiency and Growth in Severely Hypoxic Pancreatic Cancer. Cell Rep 2020;33:108231. [PMID: 33027658 DOI: 10.1016/j.celrep.2020.108231] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 16.0] [Reference Citation Analysis]
255 Zhao D, Badur MG, Luebeck J, Magaña JH, Birmingham A, Sasik R, Ahn CS, Ideker T, Metallo CM, Mali P. Combinatorial CRISPR-Cas9 Metabolic Screens Reveal Critical Redox Control Points Dependent on the KEAP1-NRF2 Regulatory Axis. Mol Cell 2018;69:699-708.e7. [PMID: 29452643 DOI: 10.1016/j.molcel.2018.01.017] [Cited by in Crossref: 44] [Cited by in F6Publishing: 38] [Article Influence: 14.7] [Reference Citation Analysis]
256 Hanse EA, Ruan C, Kachman M, Wang D, Lowman XH, Kelekar A. Cytosolic malate dehydrogenase activity helps support glycolysis in actively proliferating cells and cancer. Oncogene 2017;36:3915-24. [PMID: 28263970 DOI: 10.1038/onc.2017.36] [Cited by in Crossref: 37] [Cited by in F6Publishing: 35] [Article Influence: 7.4] [Reference Citation Analysis]
257 Bailis W, Shyer JA, Zhao J, Canaveras JCG, Al Khazal FJ, Qu R, Steach HR, Bielecki P, Khan O, Jackson R, Kluger Y, Maher LJ 3rd, Rabinowitz J, Craft J, Flavell RA. Distinct modes of mitochondrial metabolism uncouple T cell differentiation and function. Nature 2019;571:403-7. [PMID: 31217581 DOI: 10.1038/s41586-019-1311-3] [Cited by in Crossref: 63] [Cited by in F6Publishing: 61] [Article Influence: 21.0] [Reference Citation Analysis]
258 Antoniou SX, Gaude E, Ruparel M, van der Schee MP, Janes SM, Rintoul RC; The LuCID Group. The potential of breath analysis to improve outcome for patients with lung cancer. J Breath Res 2019;13:034002. [PMID: 30822771 DOI: 10.1088/1752-7163/ab0bee] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
259 Holthaus L, Sharma V, Brandt D, Ziegler AG, Jastroch M, Bonifacio E. Functional and metabolic fitness of human CD4+ T lymphocytes during metabolic stress. Life Sci Alliance 2021;4:e202101013. [PMID: 34580176 DOI: 10.26508/lsa.202101013] [Reference Citation Analysis]
260 Wang Y, Parsons LR, Su X. AccuCor2: isotope natural abundance correction for dual-isotope tracer experiments. Lab Invest 2021. [PMID: 34193963 DOI: 10.1038/s41374-021-00631-4] [Reference Citation Analysis]
261 Lee B, Mahmud I, Marchica J, Dereziński P, Qi F, Wang F, Joshi P, Valerio F, Rivera I, Patel V, Pavlovich CP, Garrett TJ, Schroth GP, Sun Y, Perera RJ. Integrated RNA and metabolite profiling of urine liquid biopsies for prostate cancer biomarker discovery. Sci Rep 2020;10:3716. [PMID: 32111915 DOI: 10.1038/s41598-020-60616-z] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
262 Ainalidou A, Bouzoukla F, Menkissoglu-Spiroudi U, Vokou D, Karamanoli K. Impacts of Decaying Aromatic Plants on the Soil Microbial Community and on Tomato Seedling Growth and Metabolism: Suppression or Stimulation? Plants (Basel) 2021;10:1848. [PMID: 34579381 DOI: 10.3390/plants10091848] [Reference Citation Analysis]
263 Galber C, Acosta MJ, Minervini G, Giorgio V. The role of mitochondrial ATP synthase in cancer. Biol Chem 2020;401:1199-214. [PMID: 32769215 DOI: 10.1515/hsz-2020-0157] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
264 Nowinski SM, Solmonson A, Rusin SF, Maschek JA, Bensard CL, Fogarty S, Jeong MY, Lettlova S, Berg JA, Morgan JT, Ouyang Y, Naylor BC, Paulo JA, Funai K, Cox JE, Gygi SP, Winge DR, DeBerardinis RJ, Rutter J. Mitochondrial fatty acid synthesis coordinates oxidative metabolism in mammalian mitochondria. Elife 2020;9:e58041. [PMID: 32804083 DOI: 10.7554/eLife.58041] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
265 Du H, Yang J, Bai J, Ming K, Shi J, Yao F, Zhang W, Yu Y, Chen Y, Xiong W, Wu Y, Wang D, Hu Y, Liu J. A flavone-polysaccharide based prescription attenuates the mitochondrial dysfunction induced by duck hepatitis A virus type 1. PLoS One 2017;12:e0175495. [PMID: 28394931 DOI: 10.1371/journal.pone.0175495] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
266 Mellis AT, Misko AL, Arjune S, Liang Y, Erdélyi K, Ditrói T, Kaczmarek AT, Nagy P, Schwarz G. The role of glutamate oxaloacetate transaminases in sulfite biosynthesis and H2S metabolism. Redox Biol 2021;38:101800. [PMID: 33271457 DOI: 10.1016/j.redox.2020.101800] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
267 Bocca C, Kane MS, Veyrat-Durebex C, Chupin S, Alban J, Kouassi Nzoughet J, Le Mao M, Chao de la Barca JM, Amati-Bonneau P, Bonneau D, Procaccio V, Lenaers G, Simard G, Chevrollier A, Reynier P. The Metabolomic Bioenergetic Signature of Opa1-Disrupted Mouse Embryonic Fibroblasts Highlights Aspartate Deficiency. Sci Rep 2018;8:11528. [PMID: 30068998 DOI: 10.1038/s41598-018-29972-9] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
268 Ritterhoff J, Young S, Villet O, Shao D, Neto FC, Bettcher LF, Hsu YA, Kolwicz SC Jr, Raftery D, Tian R. Metabolic Remodeling Promotes Cardiac Hypertrophy by Directing Glucose to Aspartate Biosynthesis. Circ Res 2020;126:182-96. [PMID: 31709908 DOI: 10.1161/CIRCRESAHA.119.315483] [Cited by in Crossref: 40] [Cited by in F6Publishing: 26] [Article Influence: 13.3] [Reference Citation Analysis]
269 Eldad S, Hertz R, Vainer G, Saada A, Bar-Tana J. Treatment of ErbB2 breast cancer by mitochondrial targeting. Cancer Metab 2020;8:17. [PMID: 32695336 DOI: 10.1186/s40170-020-00223-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
270 Lees JG, Gardner DK, Harvey AJ. Nicotinamide adenine dinucleotide induces a bivalent metabolism and maintains pluripotency in human embryonic stem cells. Stem Cells 2020;38:624-38. [PMID: 32003519 DOI: 10.1002/stem.3152] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
271 Reigle J, Secic D, Biesiada J, Wetzel C, Shamsaei B, Chu J, Zang Y, Zhang X, Talbot NJ, Bischoff ME, Zhang Y, Thakar CV, Gaitonde K, Sidana A, Bui H, Cunningham JT, Zhang Q, Schmidt LS, Linehan WM, Medvedovic M, Plas DR, Figueroa JAL, Meller J, Czyzyk-Krzeska MF. Tobacco smoking induces metabolic reprogramming of renal cell carcinoma. J Clin Invest 2021;131:140522. [PMID: 32970633 DOI: 10.1172/JCI140522] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
272 Ortiz D, Forquer I, Boitz J, Soysa R, Elya C, Fulwiler A, Nilsen A, Polley T, Riscoe MK, Ullman B, Landfear SM. Targeting the Cytochrome bc1 Complex of Leishmania Parasites for Discovery of Novel Drugs. Antimicrob Agents Chemother 2016;60:4972-82. [PMID: 27297476 DOI: 10.1128/AAC.00850-16] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.7] [Reference Citation Analysis]
273 Brayboy LM, Oulhen N, Long S, Voigt N, Raker C, Wessel GM. Multidrug resistance transporter-1 and breast cancer resistance protein protect against ovarian toxicity, and are essential in ovarian physiology. Reprod Toxicol 2017;69:121-31. [PMID: 28216407 DOI: 10.1016/j.reprotox.2017.02.002] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
274 Vandoorne T, Veys K, Guo W, Sicart A, Vints K, Swijsen A, Moisse M, Eelen G, Gounko NV, Fumagalli L, Fazal R, Germeys C, Quaegebeur A, Fendt SM, Carmeliet P, Verfaillie C, Van Damme P, Ghesquière B, De Bock K, Van Den Bosch L. Differentiation but not ALS mutations in FUS rewires motor neuron metabolism. Nat Commun 2019;10:4147. [PMID: 31515480 DOI: 10.1038/s41467-019-12099-4] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
275 Zhang R, Engel AL, Wang Y, Li B, Shen W, Gillies MC, Chao JR, Du J. Inhibition of Mitochondrial Respiration Impairs Nutrient Consumption and Metabolite Transport in Human Retinal Pigment Epithelium. J Proteome Res 2021;20:909-22. [PMID: 32975122 DOI: 10.1021/acs.jproteome.0c00690] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
276 Lord SR, Cheng WC, Liu D, Gaude E, Haider S, Metcalf T, Patel N, Teoh EJ, Gleeson F, Bradley K, Wigfield S, Zois C, McGowan DR, Ah-See ML, Thompson AM, Sharma A, Bidaut L, Pollak M, Roy PG, Karpe F, James T, English R, Adams RF, Campo L, Ayers L, Snell C, Roxanis I, Frezza C, Fenwick JD, Buffa FM, Harris AL. Integrated Pharmacodynamic Analysis Identifies Two Metabolic Adaption Pathways to Metformin in Breast Cancer. Cell Metab 2018;28:679-688.e4. [PMID: 30244975 DOI: 10.1016/j.cmet.2018.08.021] [Cited by in Crossref: 48] [Cited by in F6Publishing: 44] [Article Influence: 12.0] [Reference Citation Analysis]
277 Bowman CE, Zhao L, Hartung T, Wolfgang MJ. Requirement for the Mitochondrial Pyruvate Carrier in Mammalian Development Revealed by a Hypomorphic Allelic Series. Mol Cell Biol 2016;36:2089-104. [PMID: 27215380 DOI: 10.1128/MCB.00166-16] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 4.5] [Reference Citation Analysis]
278 Su Y, Yang Y, Huang Y. Loss of ppr3, ppr4, ppr6, or ppr10 perturbs iron homeostasis and leads to apoptotic cell death in Schizosaccharomyces pombe. FEBS J 2017;284:324-37. [PMID: 27886462 DOI: 10.1111/febs.13978] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
279 [DOI: 10.1101/2020.11.25.398859] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
280 Han M, Zhang C, Suglo P, Sun S, Wang M, Su T. l-Aspartate: An Essential Metabolite for Plant Growth and Stress Acclimation. Molecules 2021;26:1887. [PMID: 33810495 DOI: 10.3390/molecules26071887] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
281 Goldman A, Khiste S, Freinkman E, Dhawan A, Majumder B, Mondal J, Pinkerton AB, Eton E, Medhi R, Chandrasekar V, Rahman MM, Ichimura T, Gopinath KS, Majumder P, Kohandel M, Sengupta S. Targeting tumor phenotypic plasticity and metabolic remodeling in adaptive cross-drug tolerance. Sci Signal. 2019;12:pii: eaas8779. [PMID: 31431543 DOI: 10.1126/scisignal.aas8779] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 8.3] [Reference Citation Analysis]
282 Meul T, Berschneider K, Schmitt S, Mayr CH, Mattner LF, Schiller HB, Yazgili AS, Wang X, Lukas C, Schlesser C, Prehn C, Adamski J, Graf E, Schwarzmayr T, Perocchi F, Kukat A, Trifunovic A, Kremer L, Prokisch H, Popper B, von Toerne C, Hauck SM, Zischka H, Meiners S. Mitochondrial Regulation of the 26S Proteasome. Cell Rep 2020;32:108059. [PMID: 32846138 DOI: 10.1016/j.celrep.2020.108059] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
283 Reynolds MS, Hancock CR, Ray JD, Kener KB, Draney C, Garland K, Hardman J, Bikman BT, Tessem JS. β-Cell deletion of Nr4a1 and Nr4a3 nuclear receptors impedes mitochondrial respiration and insulin secretion. Am J Physiol Endocrinol Metab 2016;311:E186-201. [PMID: 27221116 DOI: 10.1152/ajpendo.00022.2016] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 4.0] [Reference Citation Analysis]
284 Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, Rossen J, Joesch-Cohen L, Humeidi R, Spangler RD, Eaton JK, Frenkel E, Kocak M, Corsello SM, Lutsenko S, Kanarek N, Santagata S, Golub TR. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 2022;375:1254-61. [PMID: 35298263 DOI: 10.1126/science.abf0529] [Reference Citation Analysis]
285 Hollinshead KER, Munford H, Eales KL, Bardella C, Li C, Escribano-Gonzalez C, Thakker A, Nonnenmacher Y, Kluckova K, Jeeves M, Murren R, Cuozzo F, Ye D, Laurenti G, Zhu W, Hiller K, Hodson DJ, Hua W, Tomlinson IP, Ludwig C, Mao Y, Tennant DA. Oncogenic IDH1 Mutations Promote Enhanced Proline Synthesis through PYCR1 to Support the Maintenance of Mitochondrial Redox Homeostasis. Cell Rep 2018;22:3107-14. [PMID: 29562167 DOI: 10.1016/j.celrep.2018.02.084] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 10.3] [Reference Citation Analysis]
286 Minton DR, Nam M, McLaughlin DJ, Shin J, Bayraktar EC, Alvarez SW, Sviderskiy VO, Papagiannakopoulos T, Sabatini DM, Birsoy K, Possemato R. Serine Catabolism by SHMT2 Is Required for Proper Mitochondrial Translation Initiation and Maintenance of Formylmethionyl-tRNAs. Mol Cell 2018;69:610-621.e5. [PMID: 29452640 DOI: 10.1016/j.molcel.2018.01.024] [Cited by in Crossref: 70] [Cited by in F6Publishing: 67] [Article Influence: 23.3] [Reference Citation Analysis]
287 Gentric G, Mechta-Grigoriou F. Tumor Cells and Cancer-Associated Fibroblasts: An Updated Metabolic Perspective. Cancers (Basel) 2021;13:399. [PMID: 33499022 DOI: 10.3390/cancers13030399] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
288 Li N, Zhan X, Zhan X. Energy Metabolism Heterogeneity-Based Molecular Biomarkers for Ovarian Cancer. In: Nalbantoglu S, Amri H, editors. Molecular Medicine. IntechOpen; 2019. [DOI: 10.5772/intechopen.80622] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
289 Iommarini L, Porcelli AM, Gasparre G, Kurelac I. Non-Canonical Mechanisms Regulating Hypoxia-Inducible Factor 1 Alpha in Cancer. Front Oncol 2017;7:286. [PMID: 29230384 DOI: 10.3389/fonc.2017.00286] [Cited by in Crossref: 78] [Cited by in F6Publishing: 79] [Article Influence: 15.6] [Reference Citation Analysis]
290 Yin C, He D, Chen S, Tan X, Sang N. Exogenous pyruvate facilitates cancer cell adaptation to hypoxia by serving as an oxygen surrogate. Oncotarget 2016;7:47494-510. [PMID: 27374086 DOI: 10.18632/oncotarget.10202] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
291 Wang Y, Yan J, Zhang Q, Ma X, Zhang J, Su M, Wang X, Huang Y. The Schizosaccharomyces pombe PPR protein Ppr10 associates with a novel protein Mpa1 and acts as a mitochondrial translational activator. Nucleic Acids Res 2017;45:3323-40. [PMID: 28334955 DOI: 10.1093/nar/gkx127] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 2.6] [Reference Citation Analysis]
292 Holloway RW, Marignani PA. Targeting mTOR and Glycolysis in HER2-Positive Breast Cancer. Cancers (Basel) 2021;13:2922. [PMID: 34208071 DOI: 10.3390/cancers13122922] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
293 Kong H, Reczek CR, McElroy GS, Steinert EM, Wang T, Sabatini DM, Chandel NS. Metabolic determinants of cellular fitness dependent on mitochondrial reactive oxygen species. Sci Adv 2020;6:eabb7272. [PMID: 33148642 DOI: 10.1126/sciadv.abb7272] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
294 Kaur P, Nagar S, Bhagwat M, Uddin M, Zhu Y, Vancurova I, Vancura A. Activated heme synthesis regulates glycolysis and oxidative metabolism in breast and ovarian cancer cells. PLoS One 2021;16:e0260400. [PMID: 34807950 DOI: 10.1371/journal.pone.0260400] [Reference Citation Analysis]
295 Mahor D, Pandey R, Bulusu V. TCA cycle off, ATF4 on for metabolic homeostasis. Trends in Biochemical Sciences 2022. [DOI: 10.1016/j.tibs.2022.03.006] [Reference Citation Analysis]
296 Mukhopadhyay S, Saqcena M, Foster DA. Synthetic lethality in KRas-driven cancer cells created by glutamine deprivation. Oncoscience 2015;2:807-8. [PMID: 26682255 DOI: 10.18632/oncoscience.253] [Cited by in Crossref: 28] [Cited by in F6Publishing: 35] [Article Influence: 4.0] [Reference Citation Analysis]
297 Sullivan LB, Gui DY, Vander Heiden MG. Altered metabolite levels in cancer: implications for tumour biology and cancer therapy. Nat Rev Cancer. 2016;16:680-693. [PMID: 27658530 DOI: 10.1038/nrc.2016.85] [Cited by in Crossref: 191] [Cited by in F6Publishing: 181] [Article Influence: 31.8] [Reference Citation Analysis]
298 Li L, Meng Y, Li Z, Dai W, Xu X, Bi X, Bian J. Discovery and development of small molecule modulators targeting glutamine metabolism. European Journal of Medicinal Chemistry 2019;163:215-42. [DOI: 10.1016/j.ejmech.2018.11.066] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
299 Bhingarkar A, Vangapandu HV, Rathod S, Hoshitsuki K, Fernandez CA. Amino Acid Metabolic Vulnerabilities in Acute and Chronic Myeloid Leukemias. Front Oncol 2021;11:694526. [PMID: 34277440 DOI: 10.3389/fonc.2021.694526] [Reference Citation Analysis]
300 Kuntz EM, Baquero P, Michie AM, Dunn K, Tardito S, Holyoake TL, Helgason GV, Gottlieb E. Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells. Nat Med 2017;23:1234-40. [PMID: 28920959 DOI: 10.1038/nm.4399] [Cited by in Crossref: 183] [Cited by in F6Publishing: 177] [Article Influence: 36.6] [Reference Citation Analysis]
301 Pacold ME, Brimacombe KR, Chan SH, Rohde JM, Lewis CA, Swier LJ, Possemato R, Chen WW, Sullivan LB, Fiske BP, Cho S, Freinkman E, Birsoy K, Abu-Remaileh M, Shaul YD, Liu CM, Zhou M, Koh MJ, Chung H, Davidson SM, Luengo A, Wang AQ, Xu X, Yasgar A, Liu L, Rai G, Westover KD, Vander Heiden MG, Shen M, Gray NS, Boxer MB, Sabatini DM. A PHGDH inhibitor reveals coordination of serine synthesis and one-carbon unit fate. Nat Chem Biol 2016;12:452-8. [PMID: 27110680 DOI: 10.1038/nchembio.2070] [Cited by in Crossref: 219] [Cited by in F6Publishing: 203] [Article Influence: 36.5] [Reference Citation Analysis]
302 Kumar D, New J, Vishwakarma V, Joshi R, Enders J, Lin F, Dasari S, Gutierrez WR, Leef G, Ponnurangam S, Chavan H, Ganaden L, Thornton MM, Dai H, Tawfik O, Straub J, Shnayder Y, Kakarala K, Tsue TT, Girod DA, Van Houten B, Anant S, Krishnamurthy P, Thomas SM. Cancer-Associated Fibroblasts Drive Glycolysis in a Targetable Signaling Loop Implicated in Head and Neck Squamous Cell Carcinoma Progression. Cancer Res 2018;78:3769-82. [PMID: 29769197 DOI: 10.1158/0008-5472.CAN-17-1076] [Cited by in Crossref: 42] [Cited by in F6Publishing: 29] [Article Influence: 10.5] [Reference Citation Analysis]
303 Janowski M, Milewska M, Zare P, Pękowska A. Chromatin Alterations in Neurological Disorders and Strategies of (Epi)Genome Rescue. Pharmaceuticals (Basel) 2021;14:765. [PMID: 34451862 DOI: 10.3390/ph14080765] [Reference Citation Analysis]
304 Braga M, Kaliszczak M, Carroll L, Schug ZT, Heinzmann K, Baxan N, Benito A, Valbuena GN, Stribbling S, Beckley A, Mackay G, Mauri F, Latigo J, Barnes C, Keun H, Gottlieb E, Aboagye EO. Tracing Nutrient Flux Following Monocarboxylate Transporter-1 Inhibition with AZD3965. Cancers (Basel) 2020;12:E1703. [PMID: 32604836 DOI: 10.3390/cancers12061703] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
305 Xu X, Meng Y, Li L, Xu P, Wang J, Li Z, Bian J. Overview of the Development of Glutaminase Inhibitors: Achievements and Future Directions. J Med Chem 2019;62:1096-115. [PMID: 30148361 DOI: 10.1021/acs.jmedchem.8b00961] [Cited by in Crossref: 37] [Cited by in F6Publishing: 35] [Article Influence: 9.3] [Reference Citation Analysis]
306 Dayton TL, Gocheva V, Miller KM, Bhutkar A, Lewis CA, Bronson RT, Vander Heiden MG, Jacks T. Isoform-specific deletion of PKM2 constrains tumor initiation in a mouse model of soft tissue sarcoma. Cancer Metab 2018;6:6. [PMID: 29854399 DOI: 10.1186/s40170-018-0179-2] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
307 Deng M, Li D, Luo J, Xiao Y, Liu H, Pan Q, Zhang X, Jin M, Zhao M, Yan J. The genetic architecture of amino acids dissection by association and linkage analysis in maize. Plant Biotechnol J 2017;15:1250-63. [PMID: 28218981 DOI: 10.1111/pbi.12712] [Cited by in Crossref: 36] [Cited by in F6Publishing: 32] [Article Influence: 7.2] [Reference Citation Analysis]
308 Stuani L, Sabatier M, Saland E, Cognet G, Poupin N, Bosc C, Castelli FA, Gales L, Turtoi E, Montersino C, Farge T, Boet E, Broin N, Larrue C, Baran N, Cissé MY, Conti M, Loric S, Kaoma T, Hucteau A, Zavoriti A, Sahal A, Mouchel PL, Gotanègre M, Cassan C, Fernando L, Wang F, Hosseini M, Chu-Van E, Le Cam L, Carroll M, Selak MA, Vey N, Castellano R, Fenaille F, Turtoi A, Cazals G, Bories P, Gibon Y, Nicolay B, Ronseaux S, Marszalek JR, Takahashi K, DiNardo CD, Konopleva M, Pancaldi V, Collette Y, Bellvert F, Jourdan F, Linares LK, Récher C, Portais JC, Sarry JE. Mitochondrial metabolism supports resistance to IDH mutant inhibitors in acute myeloid leukemia. J Exp Med 2021;218:e20200924. [PMID: 33760042 DOI: 10.1084/jem.20200924] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
309 Dong LF, Kovarova J, Bajzikova M, Bezawork-Geleta A, Svec D, Endaya B, Sachaphibulkij K, Coelho AR, Sebkova N, Ruzickova A, Tan AS, Kluckova K, Judasova K, Zamecnikova K, Rychtarcikova Z, Gopalan V, Andera L, Sobol M, Yan B, Pattnaik B, Bhatraju N, Truksa J, Stopka P, Hozak P, Lam AK, Sedlacek R, Oliveira PJ, Kubista M, Agrawal A, Dvorakova-Hortova K, Rohlena J, Berridge MV, Neuzil J. Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells. Elife 2017;6:e22187. [PMID: 28195532 DOI: 10.7554/eLife.22187] [Cited by in Crossref: 109] [Cited by in F6Publishing: 83] [Article Influence: 21.8] [Reference Citation Analysis]
310 Urra FA, Muñoz F, Córdova-Delgado M, Ramírez MP, Peña-Ahumada B, Rios M, Cruz P, Ahumada-Castro U, Bustos G, Silva-Pavez E, Pulgar R, Morales D, Varela D, Millas-Vargas JP, Retamal E, Ramírez-Rodríguez O, Pessoa-Mahana H, Pavani M, Ferreira J, Cárdenas C, Araya-Maturana R. FR58P1a; a new uncoupler of OXPHOS that inhibits migration in triple-negative breast cancer cells via Sirt1/AMPK/β1-integrin pathway. Sci Rep 2018;8:13190. [PMID: 30181620 DOI: 10.1038/s41598-018-31367-9] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 5.0] [Reference Citation Analysis]
311 Labbé SM, Mouchiroud M, Caron A, Secco B, Freinkman E, Lamoureux G, Gélinas Y, Lecomte R, Bossé Y, Chimin P, Festuccia WT, Richard D, Laplante M. mTORC1 is Required for Brown Adipose Tissue Recruitment and Metabolic Adaptation to Cold. Sci Rep 2016;6:37223. [PMID: 27876792 DOI: 10.1038/srep37223] [Cited by in Crossref: 30] [Cited by in F6Publishing: 35] [Article Influence: 5.0] [Reference Citation Analysis]
312 Shah M, Su D, Scheliga JS, Pluskal T, Boronat S, Motamedchaboki K, Campos AR, Qi F, Hidalgo E, Yanagida M, Wolf DA. A Transcript-Specific eIF3 Complex Mediates Global Translational Control of Energy Metabolism. Cell Rep 2016;16:1891-902. [PMID: 27477275 DOI: 10.1016/j.celrep.2016.07.006] [Cited by in Crossref: 36] [Cited by in F6Publishing: 30] [Article Influence: 6.0] [Reference Citation Analysis]
313 Marrone KA, Zhou X, Forde PM, Purtell M, Brahmer JR, Hann CL, Kelly RJ, Coleman B, Gabrielson E, Rosner GL, Ettinger DS. A Randomized Phase II Study of Metformin plus Paclitaxel/Carboplatin/Bevacizumab in Patients with Chemotherapy‐Naïve Advanced or Metastatic Nonsquamous Non‐Small Cell Lung Cancer. The Oncol 2018;23:859-65. [DOI: 10.1634/theoncologist.2017-0465] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 8.8] [Reference Citation Analysis]
314 Harris IS, DeNicola GM. The Complex Interplay between Antioxidants and ROS in Cancer. Trends Cell Biol 2020;30:440-51. [PMID: 32303435 DOI: 10.1016/j.tcb.2020.03.002] [Cited by in Crossref: 60] [Cited by in F6Publishing: 63] [Article Influence: 30.0] [Reference Citation Analysis]
315 Boudreau A, Purkey HE, Hitz A, Robarge K, Peterson D, Labadie S, Kwong M, Hong R, Gao M, Del Nagro C, Pusapati R, Ma S, Salphati L, Pang J, Zhou A, Lai T, Li Y, Chen Z, Wei B, Yen I, Sideris S, McCleland M, Firestein R, Corson L, Vanderbilt A, Williams S, Daemen A, Belvin M, Eigenbrot C, Jackson PK, Malek S, Hatzivassiliou G, Sampath D, Evangelista M, O'Brien T. Metabolic plasticity underpins innate and acquired resistance to LDHA inhibition. Nat Chem Biol 2016;12:779-86. [PMID: 27479743 DOI: 10.1038/nchembio.2143] [Cited by in Crossref: 95] [Cited by in F6Publishing: 89] [Article Influence: 15.8] [Reference Citation Analysis]
316 Rong G, Weng W, Huang J, Chen Y, Yu X, Yuan R, Gu X, Wu X, Cai Y, Han P, Shao M, Sun H, Ge N, Tsai F. Artemether Alleviates Diabetic Kidney Disease by Modulating Amino Acid Metabolism. BioMed Research International 2022;2022:1-18. [DOI: 10.1155/2022/7339611] [Reference Citation Analysis]
317 Peng L, Sun Q, Xue H, Wang X. iTRAQ-based quantitative proteomic analysis reveals pathways associated with re-establishing desiccation tolerance in germinating seeds of Caragana korshinskii Kom. Journal of Proteomics 2018;179:1-16. [DOI: 10.1016/j.jprot.2018.01.009] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
318 Sayin VI, Papagiannakopoulos T. Application of CRISPR-mediated genome engineering in cancer research. Cancer Letters 2017;387:10-7. [DOI: 10.1016/j.canlet.2016.03.029] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
319 Leto DE, Kopito RR. Methods for genetic analysis of mammalian ER-associated degradation. Methods Enzymol 2019;619:97-120. [PMID: 30910031 DOI: 10.1016/bs.mie.2019.01.006] [Reference Citation Analysis]
320 DeBerardinis RJ, Chandel NS. Fundamentals of cancer metabolism. Sci Adv 2016;2:e1600200. [PMID: 27386546 DOI: 10.1126/sciadv.1600200] [Cited by in Crossref: 1030] [Cited by in F6Publishing: 979] [Article Influence: 171.7] [Reference Citation Analysis]
321 Arnold PK, Jackson BT, Paras KI, Brunner JS, Hart ML, Newsom OJ, Alibeckoff SP, Endress J, Drill E, Sullivan LB, Finley LWS. A non-canonical tricarboxylic acid cycle underlies cellular identity. Nature 2022;603:477-81. [PMID: 35264789 DOI: 10.1038/s41586-022-04475-w] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
322 Fu G, Guy CS, Chapman NM, Palacios G, Wei J, Zhou P, Long L, Wang YD, Qian C, Dhungana Y, Huang H, Kc A, Shi H, Rankin S, Brown SA, Johnson A, Wakefield R, Robinson CG, Liu X, Sheyn A, Yu J, Jackowski S, Chi H. Metabolic control of TFH cells and humoral immunity by phosphatidylethanolamine. Nature 2021;595:724-9. [PMID: 34234346 DOI: 10.1038/s41586-021-03692-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
323 Karabulutoglu M, Finnon R, Imaoka T, Friedl AA, Badie C. Influence of diet and metabolism on hematopoietic stem cells and leukemia development following ionizing radiation exposure. Int J Radiat Biol 2019;95:452-79. [PMID: 29932783 DOI: 10.1080/09553002.2018.1490042] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
324 Li D, Du X, Guo X, Zhan L, Li X, Yin C, Chen C, Li M, Li B, Yang H, Xing J. Site-specific selection reveals selective constraints and functionality of tumor somatic mtDNA mutations. J Exp Clin Cancer Res 2017;36:168. [PMID: 29179728 DOI: 10.1186/s13046-017-0638-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
325 Ariav Y, Ch'ng JH, Christofk HR, Ron-Harel N, Erez A. Targeting nucleotide metabolism as the nexus of viral infections, cancer, and the immune response. Sci Adv 2021;7:eabg6165. [PMID: 34138729 DOI: 10.1126/sciadv.abg6165] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
326 Datta R, Sivanand S, Lau AN, Florek LV, Barbeau AM, Wyckoff J, Skala MC, Vander Heiden MG. Interactions with stromal cells promote a more oxidized cancer cell redox state in pancreatic tumors. Sci Adv 2022;8:eabg6383. [DOI: 10.1126/sciadv.abg6383] [Reference Citation Analysis]
327 Pan D, Lindau C, Lagies S, Wiedemann N, Kammerer B. Metabolic profiling of isolated mitochondria and cytoplasm reveals compartment-specific metabolic responses. Metabolomics 2018;14:59. [PMID: 29628813 DOI: 10.1007/s11306-018-1352-x] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
328 Grima-Reyes M, Martinez-Turtos A, Abramovich I, Gottlieb E, Chiche J, Ricci JE. Physiological impact of in vivo stable isotope tracing on cancer metabolism. Mol Metab 2021;53:101294. [PMID: 34256164 DOI: 10.1016/j.molmet.2021.101294] [Reference Citation Analysis]
329 Agudelo LZ, Ferreira DMS, Dadvar S, Cervenka I, Ketscher L, Izadi M, Zhengye L, Furrer R, Handschin C, Venckunas T, Brazaitis M, Kamandulis S, Lanner JT, Ruas JL. Skeletal muscle PGC-1α1 reroutes kynurenine metabolism to increase energy efficiency and fatigue-resistance. Nat Commun 2019;10:2767. [PMID: 31235694 DOI: 10.1038/s41467-019-10712-0] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 8.0] [Reference Citation Analysis]
330 Costa A, Frezza C. Metabolic Reprogramming and Oncogenesis. Elsevier; 2017. pp. 213-31. [DOI: 10.1016/bs.ircmb.2017.01.001] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
331 Miettinen TP, Björklund M. Mitochondrial Function and Cell Size: An Allometric Relationship. Trends Cell Biol 2017;27:393-402. [PMID: 28284466 DOI: 10.1016/j.tcb.2017.02.006] [Cited by in Crossref: 55] [Cited by in F6Publishing: 42] [Article Influence: 11.0] [Reference Citation Analysis]
332 Li K, Zheng Y, Wang X. The Potential Relationship Between HIF-1α and Amino Acid Metabolism After Hypoxic Ischemia and Dual Effects on Neurons. Front Neurosci 2021;15:676553. [PMID: 34483819 DOI: 10.3389/fnins.2021.676553] [Reference Citation Analysis]
333 Baechler SA, Factor VM, Dalla Rosa I, Ravji A, Becker D, Khiati S, Miller Jenkins LM, Lang M, Sourbier C, Michaels SA, Neckers LM, Zhang HL, Spinazzola A, Huang SN, Marquardt JU, Pommier Y. The mitochondrial type IB topoisomerase drives mitochondrial translation and carcinogenesis. Nat Commun 2019;10:83. [PMID: 30622257 DOI: 10.1038/s41467-018-07922-3] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
334 Ariyannur PS, Xing G, Barry ES, Benford B, Grunberg NE, Sharma P. Effects of Pyruvate Administration on Mitochondrial Enzymes, Neurological Behaviors, and Neurodegeneration after Traumatic Brain Injury. Aging Dis 2021;12:983-99. [PMID: 34221543 DOI: 10.14336/AD.2020.1015] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
335 Harvey LD, Chan SY. Emerging Metabolic Therapies in Pulmonary Arterial Hypertension. J Clin Med 2017;6:E43. [PMID: 28375184 DOI: 10.3390/jcm6040043] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 5.4] [Reference Citation Analysis]
336 Choueiry F, Singh S, Sircar A, Laliotis G, Sun X, Chavdoula E, Zhang S, Helmig-Mason J, Hart A, Epperla N, Tsichlis P, Baiocchi R, Alinari L, Zhu J, Sehgal L. Integration of Metabolomics and Gene Expression Profiling Elucidates IL4I1 as Modulator of Ibrutinib Resistance in ABC-Diffuse Large B Cell Lymphoma. Cancers (Basel) 2021;13:2146. [PMID: 33946867 DOI: 10.3390/cancers13092146] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
337 Palaskas NJ, Garcia JD, Shirazi R, Shin DS, Puig-Saus C, Braas D, Ribas A, Graeber TG. Global alteration of T-lymphocyte metabolism by PD-L1 checkpoint involves a block of de novo nucleoside phosphate synthesis. Cell Discov 2019;5:62. [PMID: 31798961 DOI: 10.1038/s41421-019-0130-x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
338 Selwan EM, Edinger AL. Branched chain amino acid metabolism and cancer: the importance of keeping things in context. Transl Cancer Res 2017;6:S578-84. [PMID: 30613481 DOI: 10.21037/tcr.2017.05.05] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
339 Bao XR, Ong SE, Goldberger O, Peng J, Sharma R, Thompson DA, Vafai SB, Cox AG, Marutani E, Ichinose F, Goessling W, Regev A, Carr SA, Clish CB, Mootha VK. Mitochondrial dysfunction remodels one-carbon metabolism in human cells. Elife 2016;5:e10575. [PMID: 27307216 DOI: 10.7554/eLife.10575] [Cited by in Crossref: 224] [Cited by in F6Publishing: 123] [Article Influence: 37.3] [Reference Citation Analysis]
340 Unita S, Hirashima N, Shimada M, Tsunekawa T, Tanaka D, Kondo T, Urata N, Kondo H, Saito M, Iwase H, Ito S, Togawa T, Saitoh S, Tanaka Y. Successful treatment of adult-onset type II citrullinemia with a low-carbohydrate diet and L-arginine after DNA analysis produced a definitive diagnosis. Clin J Gastroenterol 2020;13:823-33. [PMID: 31898207 DOI: 10.1007/s12328-019-01083-6] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
341 Bourdeau Julien I, Sephton CF, Dutchak PA. Metabolic Networks Influencing Skeletal Muscle Fiber Composition. Front Cell Dev Biol 2018;6:125. [PMID: 30324104 DOI: 10.3389/fcell.2018.00125] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
342 Michels S, Ganjam GK, Martins H, Schratt GM, Wöhr M, Schwarting RKW, Culmsee C. Downregulation of the psychiatric susceptibility gene Cacna1c promotes mitochondrial resilience to oxidative stress in neuronal cells. Cell Death Discov 2018;4:54. [PMID: 29760952 DOI: 10.1038/s41420-018-0061-6] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
343 Yépez VA, Kremer LS, Iuso A, Gusic M, Kopajtich R, Koňaříková E, Nadel A, Wachutka L, Prokisch H, Gagneur J. OCR-Stats: Robust estimation and statistical testing of mitochondrial respiration activities using Seahorse XF Analyzer. PLoS One 2018;13:e0199938. [PMID: 29995917 DOI: 10.1371/journal.pone.0199938] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 5.5] [Reference Citation Analysis]
344 Wang H, Lu J, Kulkarni S, Zhang W, Gorka JE, Mandel JA, Goetzman ES, Prochownik EV. Metabolic and oncogenic adaptations to pyruvate dehydrogenase inactivation in fibroblasts. J Biol Chem 2019;294:5466-86. [PMID: 30755479 DOI: 10.1074/jbc.RA118.005200] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.7] [Reference Citation Analysis]
345 Ni M, Solmonson A, Pan C, Yang C, Li D, Notzon A, Cai L, Guevara G, Zacharias LG, Faubert B, Vu HS, Jiang L, Ko B, Morales NM, Pei J, Vale G, Rakheja D, Grishin NV, McDonald JG, Gotway GK, McNutt MC, Pascual JM, DeBerardinis RJ. Functional Assessment of Lipoyltransferase-1 Deficiency in Cells, Mice, and Humans. Cell Rep 2019;27:1376-1386.e6. [PMID: 31042466 DOI: 10.1016/j.celrep.2019.04.005] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 8.5] [Reference Citation Analysis]
346 Krall AS, Christofk HR. Rethinking glutamine addiction. Nat Cell Biol 2015;17:1515-7. [PMID: 26612572 DOI: 10.1038/ncb3278] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
347 Tully E, Bharti S, Woo J, Bhujwalla Z, Gabrielson E. Biguanide drugs enhance cytotoxic effects of cisplatin by depleting aspartate and NAD+ in sensitive cancer cells. Cancer Biol Ther 2021;:1-8. [PMID: 34720054 DOI: 10.1080/15384047.2021.1982599] [Reference Citation Analysis]
348 Jain A, Zoncu R. Organelle transporters and inter-organelle communication as drivers of metabolic regulation and cellular homeostasis. Mol Metab 2022;:101481. [PMID: 35342037 DOI: 10.1016/j.molmet.2022.101481] [Reference Citation Analysis]
349 Vasan K, Werner M, Chandel NS. Mitochondrial Metabolism as a Target for Cancer Therapy. Cell Metab 2020;32:341-52. [PMID: 32668195 DOI: 10.1016/j.cmet.2020.06.019] [Cited by in Crossref: 44] [Cited by in F6Publishing: 46] [Article Influence: 22.0] [Reference Citation Analysis]
350 Zhou Y, Xu Z, Quan D, Zhang F, Zhang H, Xiao T, Hou S, Qiao H, Harismendy O, Wang JYJ, Suo G. Nuclear respiratory factor 1 promotes spheroid survival and mesenchymal transition in mammary epithelial cells. Oncogene 2018;37:6152-65. [PMID: 29995872 DOI: 10.1038/s41388-018-0349-2] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
351 Bilen M, Benhammouda S, Slack RS, Germain M. THE INTEGRATED STRESS RESPONSE AS A KEY PATHWAY DOWNSTREAM OF MITOCHONDRIAL DYSFUNCTION. Current Opinion in Physiology 2022. [DOI: 10.1016/j.cophys.2022.100555] [Reference Citation Analysis]
352 Chan K, Robert F, Oertlin C, Kapeller-Libermann D, Avizonis D, Gutierrez J, Handly-Santana A, Doubrovin M, Park J, Schoepfer C, Da Silva B, Yao M, Gorton F, Shi J, Thomas CJ, Brown LE, Porco JA Jr, Pollak M, Larsson O, Pelletier J, Chio IIC. eIF4A supports an oncogenic translation program in pancreatic ductal adenocarcinoma. Nat Commun 2019;10:5151. [PMID: 31723131 DOI: 10.1038/s41467-019-13086-5] [Cited by in Crossref: 20] [Cited by in F6Publishing: 24] [Article Influence: 6.7] [Reference Citation Analysis]
353 Olenchock BA, Rathmell JC, Vander Heiden MG. Biochemical Underpinnings of Immune Cell Metabolic Phenotypes. Immunity 2017;46:703-13. [PMID: 28514672 DOI: 10.1016/j.immuni.2017.04.013] [Cited by in Crossref: 71] [Cited by in F6Publishing: 62] [Article Influence: 14.2] [Reference Citation Analysis]
354 Li N, Li H, Wang Y, Cao L, Zhan X. Quantitative proteomics revealed energy metabolism pathway alterations in human epithelial ovarian carcinoma and their regulation by the antiparasite drug ivermectin: data interpretation in the context of 3P medicine. EPMA J 2020;11:661-94. [PMID: 33240452 DOI: 10.1007/s13167-020-00224-z] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
355 Moses C, Garcia-Bloj B, Harvey AR, Blancafort P. Hallmarks of cancer: The CRISPR generation. Eur J Cancer. 2018;93:10-18. [PMID: 29433054 DOI: 10.1016/j.ejca.2018.01.002] [Cited by in Crossref: 29] [Cited by in F6Publishing: 32] [Article Influence: 7.3] [Reference Citation Analysis]
356 Yoo HC, Han JM. Amino Acid Metabolism in Cancer Drug Resistance. Cells 2022;11:140. [PMID: 35011702 DOI: 10.3390/cells11010140] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
357 Olson KA, Schell JC, Rutter J. Pyruvate and Metabolic Flexibility: Illuminating a Path Toward Selective Cancer Therapies. Trends Biochem Sci 2016;41:219-30. [PMID: 26873641 DOI: 10.1016/j.tibs.2016.01.002] [Cited by in Crossref: 55] [Cited by in F6Publishing: 56] [Article Influence: 9.2] [Reference Citation Analysis]
358 Zhou X, Curbo S, Li F, Krishnan S, Karlsson A. Inhibition of glutamate oxaloacetate transaminase 1 in cancer cell lines results in altered metabolism with increased dependency of glucose. BMC Cancer 2018;18:559. [PMID: 29751795 DOI: 10.1186/s12885-018-4443-1] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 4.5] [Reference Citation Analysis]
359 Garcia-Bermudez J, Baudrier L, La K, Zhu XG, Fidelin J, Sviderskiy VO, Papagiannakopoulos T, Molina H, Snuderl M, Lewis CA, Possemato RL, Birsoy K. Aspartate is a limiting metabolite for cancer cell proliferation under hypoxia and in tumours. Nat Cell Biol 2018;20:775-81. [PMID: 29941933 DOI: 10.1038/s41556-018-0118-z] [Cited by in Crossref: 144] [Cited by in F6Publishing: 125] [Article Influence: 36.0] [Reference Citation Analysis]
360 Barreau K, Montero-Menei C, Eyer J. The neurofilament derived-peptide NFL-TBS.40-63 enters in-vitro in human neural stem cells and increases their differentiation. PLoS One 2018;13:e0201578. [PMID: 30092042 DOI: 10.1371/journal.pone.0201578] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
361 Sharon D, Chan SM. Application of CRISPR-Cas9 Screening Technologies to Study Mitochondrial Biology in Healthy and Disease States. In: Urbani A, Babu M, editors. Mitochondria in Health and in Sickness. Singapore: Springer; 2019. pp. 269-77. [DOI: 10.1007/978-981-13-8367-0_15] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
362 Verma S, Shakya VPS, Idnurm A. Exploring and exploiting the connection between mitochondria and the virulence of human pathogenic fungi. Virulence 2018;9:426-46. [PMID: 29261004 DOI: 10.1080/21505594.2017.1414133] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 6.0] [Reference Citation Analysis]
363 Jeon SM, Hay N. Expanding the concepts of cancer metabolism. Exp Mol Med 2018;50:1-3. [PMID: 29657329 DOI: 10.1038/s12276-018-0070-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
364 Boniface PK, Sano CM, Elizabeth FI. Unveiling the Targets Involved in the Quest of Antileishmanial Leads Using In silico Methods. Curr Drug Targets 2020;21:681-712. [PMID: 32003668 DOI: 10.2174/1389450121666200128112948] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
365 Torrino S, Bertero T. Metabo-reciprocity in cell mechanics: feeling the demands/feeding the demand. Trends in Cell Biology 2022. [DOI: 10.1016/j.tcb.2022.01.013] [Reference Citation Analysis]
366 Zhang Y, Zhang Y, Li W, Wang P, Gu R, Feng Y, Wei S, Peng K, Zhang Y, Su L, Wang Q, Li, Yang D, Wong WT, Yang Y, Ma S. Uncoupling Protein 2 Inhibits Myointimal Hyperplasia in Preclinical Animal Models of Vascular Injury. J Am Heart Assoc 2017;6:e002641. [PMID: 29025747 DOI: 10.1161/JAHA.117.006593] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
367 Wu X, Yeerna H, Goto Y, Ando T, Wu VH, Zhang X, Wang Z, Amornphimoltham P, Murphy AN, Tamayo P, Chen Q, Lippman SM, Gutkind JS. Metformin Inhibits Progression of Head and Neck Squamous Cell Carcinoma by Acting Directly on Carcinoma-Initiating Cells. Cancer Res 2019;79:4360-70. [PMID: 31292160 DOI: 10.1158/0008-5472.CAN-18-3525] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
368 Battaglia S, De Santis S, Rutigliano M, Sallustio F, Picerno A, Frassanito MA, Schaefer I, Vacca A, Moschetta A, Seibel P, Battaglia M, Villani G. Uridine and pyruvate protect T cells' proliferative capacity from mitochondrial toxic antibiotics: a clinical pilot study. Sci Rep 2021;11:12841. [PMID: 34145306 DOI: 10.1038/s41598-021-91559-8] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
369 Cabello-Rivera D, Sarmiento-Soto H, López-Barneo J, Muñoz-Cabello AM. Mitochondrial Complex I Function Is Essential for Neural Stem/Progenitor Cells Proliferation and Differentiation. Front Neurosci 2019;13:664. [PMID: 31297047 DOI: 10.3389/fnins.2019.00664] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
370 Cardenas C, Lovy A, Silva-Pavez E, Urra F, Mizzoni C, Ahumada-Castro U, Bustos G, Jaňa F, Cruz P, Farias P, Mendoza E, Huerta H, Murgas P, Hunter M, Rios M, Cerda O, Georgakoudi I, Zakarian A, Molgó J, Foskett JK. Cancer cells with defective oxidative phosphorylation require endoplasmic reticulum-to-mitochondria Ca2+ transfer for survival. Sci Signal 2020;13:eaay1212. [PMID: 32665411 DOI: 10.1126/scisignal.aay1212] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
371 Chen WW, Freinkman E, Wang T, Birsoy K, Sabatini DM. Absolute Quantification of Matrix Metabolites Reveals the Dynamics of Mitochondrial Metabolism. Cell 2016;166:1324-1337.e11. [PMID: 27565352 DOI: 10.1016/j.cell.2016.07.040] [Cited by in Crossref: 196] [Cited by in F6Publishing: 171] [Article Influence: 32.7] [Reference Citation Analysis]
372 Wu L, Hollinshead KER, Hao Y, Au C, Kroehling L, Ng C, Lin WY, Li D, Silva HM, Shin J, Lafaille JJ, Possemato R, Pacold ME, Papagiannakopoulos T, Kimmelman AC, Satija R, Littman DR. Niche-Selective Inhibition of Pathogenic Th17 Cells by Targeting Metabolic Redundancy. Cell 2020;182:641-654.e20. [PMID: 32615085 DOI: 10.1016/j.cell.2020.06.014] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
373 Raymonda MH, Ciesla JH, Monaghan M, Leach J, Asantewaa G, Smorodintsev-Schiller LA, Lutz MM 4th, Schafer XL, Takimoto T, Dewhurst S, Munger J, Harris IS. Pharmacologic profiling reveals lapatinib as a novel antiviral against SARS-CoV-2 in vitro. Virology 2022;566:60-8. [PMID: 34871905 DOI: 10.1016/j.virol.2021.11.008] [Reference Citation Analysis]
374 Jariyal H, Weinberg F, Achreja A, Nagarath D, Srivastava A. Synthetic lethality: a step forward for personalized medicine in cancer. Drug Discovery Today 2020;25:305-20. [DOI: 10.1016/j.drudis.2019.11.014] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
375 Fang H, Xie A, Du M, Li X, Yang K, Fu Y, Yuan X, Fan R, Yu W, Zhou Z, Sang T, Nie K, Li J, Zhao Q, Chen Z, Yang Y, Hong C, Lyu J. SERAC1 is a component of the mitochondrial serine transporter complex required for the maintenance of mitochondrial DNA. Sci Transl Med 2022;14:eabl6992. [PMID: 35235340 DOI: 10.1126/scitranslmed.abl6992] [Reference Citation Analysis]
376 Kremer JC, Prudner BC, Lange SES, Bean GR, Schultze MB, Brashears CB, Radyk MD, Redlich N, Tzeng SC, Kami K, Shelton L, Li A, Morgan Z, Bomalaski JS, Tsukamoto T, McConathy J, Michel LS, Held JM, Van Tine BA. Arginine Deprivation Inhibits the Warburg Effect and Upregulates Glutamine Anaplerosis and Serine Biosynthesis in ASS1-Deficient Cancers. Cell Rep 2017;18:991-1004. [PMID: 28122247 DOI: 10.1016/j.celrep.2016.12.077] [Cited by in Crossref: 65] [Cited by in F6Publishing: 68] [Article Influence: 13.0] [Reference Citation Analysis]
377 Gaude E, Schmidt C, Gammage PA, Dugourd A, Blacker T, Chew SP, Saez-Rodriguez J, O'Neill JS, Szabadkai G, Minczuk M, Frezza C. NADH Shuttling Couples Cytosolic Reductive Carboxylation of Glutamine with Glycolysis in Cells with Mitochondrial Dysfunction. Mol Cell 2018;69:581-593.e7. [PMID: 29452638 DOI: 10.1016/j.molcel.2018.01.034] [Cited by in Crossref: 79] [Cited by in F6Publishing: 74] [Article Influence: 26.3] [Reference Citation Analysis]
378 Ma Y, Zhu Q, Liang J, Li Y, Li M, Zhang Y, Wang X, Zeng Y, Jiao Y. A CRISPR knockout negative screen reveals synergy between CDKs inhibitor and metformin in the treatment of human cancer in vitro and in vivo. Signal Transduct Target Ther 2020;5:152. [PMID: 32811807 DOI: 10.1038/s41392-020-0203-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
379 Vettore L, Westbrook RL, Tennant DA. New aspects of amino acid metabolism in cancer. Br J Cancer 2020;122:150-6. [PMID: 31819187 DOI: 10.1038/s41416-019-0620-5] [Cited by in Crossref: 67] [Cited by in F6Publishing: 66] [Article Influence: 22.3] [Reference Citation Analysis]
380 Boukalova S, Hubackova S, Milosevic M, Ezrova Z, Neuzil J, Rohlena J. Dihydroorotate dehydrogenase in oxidative phosphorylation and cancer. Biochim Biophys Acta Mol Basis Dis 2020;1866:165759. [PMID: 32151633 DOI: 10.1016/j.bbadis.2020.165759] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
381 Lin S, Huang C, Gunda V, Sun J, Chellappan SP, Li Z, Izumi V, Fang B, Koomen J, Singh PK, Hao J, Yang S. Fascin Controls Metastatic Colonization and Mitochondrial Oxidative Phosphorylation by Remodeling Mitochondrial Actin Filaments. Cell Rep 2019;28:2824-2836.e8. [PMID: 31509745 DOI: 10.1016/j.celrep.2019.08.011] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 10.0] [Reference Citation Analysis]
382 Allen CNS, Arjona SP, Santerre M, Sawaya BE. Hallmarks of Metabolic Reprogramming and Their Role in Viral Pathogenesis. Viruses 2022;14:602. [DOI: 10.3390/v14030602] [Reference Citation Analysis]
383 Heishima K, Sugito N, Soga T, Nishikawa M, Ito Y, Honda R, Kuranaga Y, Sakai H, Ito R, Nakagawa T, Ueda H, Akao Y. Petasin potently inhibits mitochondrial complex I-based metabolism that supports tumor growth and metastasis. J Clin Invest 2021;131:e139933. [PMID: 34623325 DOI: 10.1172/JCI139933] [Reference Citation Analysis]
384 Zhao Y, Wan M, Bai J, Zeng H, Lu W, Li D. pH-Modulated luminescence switching in a Eu-MOF: rapid detection of acidic amino acids. J Mater Chem A 2019;7:11127-33. [DOI: 10.1039/c9ta00384c] [Cited by in Crossref: 37] [Article Influence: 12.3] [Reference Citation Analysis]
385 Secker PF, Beneke S, Schlichenmaier N, Delp J, Gutbier S, Leist M, Dietrich DR. Canagliflozin mediated dual inhibition of mitochondrial glutamate dehydrogenase and complex I: an off-target adverse effect. Cell Death Dis 2018;9:226. [PMID: 29445145 DOI: 10.1038/s41419-018-0273-y] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 6.5] [Reference Citation Analysis]
386 Ma EH, Bantug G, Griss T, Condotta S, Johnson RM, Samborska B, Mainolfi N, Suri V, Guak H, Balmer ML, Verway MJ, Raissi TC, Tsui H, Boukhaled G, Henriques da Costa S, Frezza C, Krawczyk CM, Friedman A, Manfredi M, Richer MJ, Hess C, Jones RG. Serine Is an Essential Metabolite for Effector T Cell Expansion. Cell Metab 2017;25:345-57. [PMID: 28111214 DOI: 10.1016/j.cmet.2016.12.011] [Cited by in Crossref: 206] [Cited by in F6Publishing: 193] [Article Influence: 41.2] [Reference Citation Analysis]
387 Wong CC, Qian Y, Li X, Xu J, Kang W, Tong JH, To KF, Jin Y, Li W, Chen H, Go MY, Wu JL, Cheng KW, Ng SS, Sung JJ, Cai Z, Yu J. SLC25A22 Promotes Proliferation and Survival of Colorectal Cancer Cells With KRAS Mutations and Xenograft Tumor Progression in Mice via Intracellular Synthesis of Aspartate. Gastroenterology 2016;151:945-960.e6. [PMID: 27451147 DOI: 10.1053/j.gastro.2016.07.011] [Cited by in Crossref: 51] [Cited by in F6Publishing: 53] [Article Influence: 8.5] [Reference Citation Analysis]
388 He C, Jiang S, Jin H, Chen S, Lin G, Yao H, Wang X, Mi P, Ji Z, Lin Y, Lin Z, Liu G. Mitochondrial electron transport chain identified as a novel molecular target of SPIO nanoparticles mediated cancer-specific cytotoxicity. Biomaterials 2016;83:102-14. [PMID: 26773667 DOI: 10.1016/j.biomaterials.2016.01.010] [Cited by in Crossref: 50] [Cited by in F6Publishing: 48] [Article Influence: 8.3] [Reference Citation Analysis]
389 Cordes T, Metallo CM. Tracing insights into human metabolism using chemical engineering approaches. Curr Opin Chem Eng 2016;14:72-81. [PMID: 28480159 DOI: 10.1016/j.coche.2016.08.019] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
390 Cohen EB, Geck RC, Toker A. Metabolic pathway alterations in microvascular endothelial cells in response to hypoxia. PLoS One 2020;15:e0232072. [PMID: 32645038 DOI: 10.1371/journal.pone.0232072] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
391 Qin X, Yao W, Shi X, Liu L, Huang F, Ding Y, Zhou Y, Yu L, Jia C, Li S, Rao C, Wang J. Responsive Cells for rhEGF bioassay Obtained through Screening of a CRISPR/Cas9 Library. Sci Rep 2019;9:3780. [PMID: 30846752 DOI: 10.1038/s41598-019-40381-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
392 Thomas HE, Zhang Y, Stefely JA, Veiga SR, Thomas G, Kozma SC, Mercer CA. Mitochondrial Complex I Activity Is Required for Maximal Autophagy. Cell Rep 2018;24:2404-2417.e8. [PMID: 30157433 DOI: 10.1016/j.celrep.2018.07.101] [Cited by in Crossref: 38] [Cited by in F6Publishing: 35] [Article Influence: 19.0] [Reference Citation Analysis]
393 Shen L, Hu G, Karner CM. Bioenergetic Metabolism In Osteoblast Differentiation. Curr Osteoporos Rep 2022. [PMID: 35112289 DOI: 10.1007/s11914-022-00721-2] [Reference Citation Analysis]
394 Luengo A, Gui DY, Vander Heiden MG. Targeting Metabolism for Cancer Therapy. Cell Chem Biol. 2017;24:1161-1180. [PMID: 28938091 DOI: 10.1016/j.chembiol.2017.08.028] [Cited by in Crossref: 315] [Cited by in F6Publishing: 290] [Article Influence: 63.0] [Reference Citation Analysis]
395 Stephenson ZA, Harvey RF, Pryde KR, Mistry S, Hardy RE, Serreli R, Chung I, Allen TE, Stoneley M, MacFarlane M, Fischer PM, Hirst J, Kellam B, Willis AE. Identification of a novel toxicophore in anti-cancer chemotherapeutics that targets mitochondrial respiratory complex I. Elife 2020;9:e55845. [PMID: 32432547 DOI: 10.7554/eLife.55845] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
396 Choi EJ, Jeon SM. NRF2-driven redox metabolism takes center stage in cancer metabolism from an outside-in perspective. Arch Pharm Res 2020;43:321-36. [PMID: 32130657 DOI: 10.1007/s12272-020-01224-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
397 Zhang J, Ratanasirintrawoot S, Chandrasekaran S, Wu Z, Ficarro S, Yu C, Ross C, Cacchiarelli D, Xia Q, Seligson M, Shinoda G, Xie W, Cahan P, Wang L, Ng S, Tintara S, Trapnell C, Onder T, Loh Y, Mikkelsen T, Sliz P, Teitell M, Asara J, Marto J, Li H, Collins J, Daley G. LIN28 Regulates Stem Cell Metabolism and Conversion to Primed Pluripotency. Cell Stem Cell 2016;19:66-80. [DOI: 10.1016/j.stem.2016.05.009] [Cited by in Crossref: 182] [Cited by in F6Publishing: 158] [Article Influence: 30.3] [Reference Citation Analysis]
398 Lin C, Salzillo TC, Bader DA, Wilkenfeld SR, Awad D, Pulliam TL, Dutta P, Pudakalakatti S, Titus M, McGuire SE, Bhattacharya PK, Frigo DE. Prostate Cancer Energetics and Biosynthesis. Adv Exp Med Biol 2019;1210:185-237. [PMID: 31900911 DOI: 10.1007/978-3-030-32656-2_10] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
399 Kshattry S, Saha A, Gries P, Tiziani S, Stone E, Georgiou G, DiGiovanni J. Enzyme-mediated depletion of l-cyst(e)ine synergizes with thioredoxin reductase inhibition for suppression of pancreatic tumor growth. NPJ Precis Oncol 2019;3:16. [PMID: 31231686 DOI: 10.1038/s41698-019-0088-z] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
400 Chen S, Wu X, Duan J, Huang P, Li T, Yin Y, Yin J. Low-protein diets supplemented with glutamic acid or aspartic acid ameliorate intestinal damage in weaned piglets challenged with hydrogen peroxide. Anim Nutr 2021;7:356-64. [PMID: 34258423 DOI: 10.1016/j.aninu.2020.12.005] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
401 Yang H, Qi D, Si X, Yan Z, Guo L, Shao C, Zhang W, Yang L. One novel Cd-MOF as a highly effective multi-functional luminescent sensor for the detection of Fe3+, Hg2+, CrⅥ, Aspartic acid and Glutamic acid in aqueous solution. Journal of Solid State Chemistry 2022. [DOI: 10.1016/j.jssc.2022.123008] [Reference Citation Analysis]
402 Thomas LW, Ashcroft M. The Contextual Essentiality of Mitochondrial Genes in Cancer. Front Cell Dev Biol 2021;9:695351. [PMID: 34746119 DOI: 10.3389/fcell.2021.695351] [Reference Citation Analysis]
403 Kazmi S, Khan MA, Shamma T, Altuhami A, Assiri AM, Broering DC. Therapeutic nexus of T cell immunometabolism in improving transplantation immunotherapy. International Immunopharmacology 2022;106:108621. [DOI: 10.1016/j.intimp.2022.108621] [Reference Citation Analysis]
404 Biancur DE, Paulo JA, Małachowska B, Quiles Del Rey M, Sousa CM, Wang X, Sohn ASW, Chu GC, Gygi SP, Harper JW, Fendler W, Mancias JD, Kimmelman AC. Compensatory metabolic networks in pancreatic cancers upon perturbation of glutamine metabolism. Nat Commun 2017;8:15965. [PMID: 28671190 DOI: 10.1038/ncomms15965] [Cited by in Crossref: 134] [Cited by in F6Publishing: 117] [Article Influence: 26.8] [Reference Citation Analysis]
405 Martínez-Reyes I, Diebold LP, Kong H, Schieber M, Huang H, Hensley CT, Mehta MM, Wang T, Santos JH, Woychik R, Dufour E, Spelbrink JN, Weinberg SE, Zhao Y, DeBerardinis RJ, Chandel NS. TCA Cycle and Mitochondrial Membrane Potential Are Necessary for Diverse Biological Functions. Mol Cell 2016;61:199-209. [PMID: 26725009 DOI: 10.1016/j.molcel.2015.12.002] [Cited by in Crossref: 239] [Cited by in F6Publishing: 228] [Article Influence: 34.1] [Reference Citation Analysis]
406 Ochocki JD, Khare S, Hess M, Ackerman D, Qiu B, Daisak JI, Worth AJ, Lin N, Lee P, Xie H, Li B, Wubbenhorst B, Maguire TG, Nathanson KL, Alwine JC, Blair IA, Nissim I, Keith B, Simon MC. Arginase 2 Suppresses Renal Carcinoma Progression via Biosynthetic Cofactor Pyridoxal Phosphate Depletion and Increased Polyamine Toxicity. Cell Metab 2018;27:1263-1280.e6. [PMID: 29754953 DOI: 10.1016/j.cmet.2018.04.009] [Cited by in Crossref: 39] [Cited by in F6Publishing: 38] [Article Influence: 9.8] [Reference Citation Analysis]
407 Helenius IT, Madala HR, Yeh JJ. An Asp to Strike Out Cancer? Therapeutic Possibilities Arising from Aspartate's Emerging Roles in Cell Proliferation and Survival. Biomolecules 2021;11:1666. [PMID: 34827664 DOI: 10.3390/biom11111666] [Reference Citation Analysis]
408 Audano M, Pedretti S, Crestani M, Caruso D, De Fabiani E, Mitro N. Mitochondrial dysfunction increases fatty acid β-oxidation and translates into impaired neuroblast maturation. FEBS Lett 2019;593:3173-89. [PMID: 31432511 DOI: 10.1002/1873-3468.13584] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
409 Mullen PJ, Garcia G Jr, Purkayastha A, Matulionis N, Schmid EW, Momcilovic M, Sen C, Langerman J, Ramaiah A, Shackelford DB, Damoiseaux R, French SW, Plath K, Gomperts BN, Arumugaswami V, Christofk HR. SARS-CoV-2 infection rewires host cell metabolism and is potentially susceptible to mTORC1 inhibition. Nat Commun 2021;12:1876. [PMID: 33767183 DOI: 10.1038/s41467-021-22166-4] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
410 Vander Heiden MG, DeBerardinis RJ. Understanding the Intersections between Metabolism and Cancer Biology. Cell. 2017;168:657-669. [PMID: 28187287 DOI: 10.1016/j.cell.2016.12.039] [Cited by in Crossref: 815] [Cited by in F6Publishing: 747] [Article Influence: 163.0] [Reference Citation Analysis]
411 Vališ K, Grobárová V, Hernychová L, Bugáňová M, Kavan D, Kalous M, Černý J, Stodůlková E, Kuzma M, Flieger M, Černý J, Novák P. Reprogramming of leukemic cell metabolism through the naphthoquinonic compound Quambalarine B. Oncotarget 2017;8:103137-53. [PMID: 29262552 DOI: 10.18632/oncotarget.21663] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
412 Izreig S, Gariepy A, Kaymak I, Bridges HR, Donayo AO, Bridon G, DeCamp LM, Kitchen-Goosen SM, Avizonis D, Sheldon RD, Laister RC, Minden MD, Johnson NA, Duchaine TF, Rudoltz MS, Yoo S, Pollak MN, Williams KS, Jones RG. Repression of LKB1 by miR-17∼92 Sensitizes MYC-Dependent Lymphoma to Biguanide Treatment. Cell Rep Med 2020;1:100014. [PMID: 32478334 DOI: 10.1016/j.xcrm.2020.100014] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
413 de Beauchamp L, Himonas E, Helgason GV. Mitochondrial metabolism as a potential therapeutic target in myeloid leukaemia. Leukemia 2021. [PMID: 34561557 DOI: 10.1038/s41375-021-01416-w] [Reference Citation Analysis]
414 Zhu XG, Chudnovskiy A, Baudrier L, Prizer B, Liu Y, Ostendorf BN, Yamaguchi N, Arab A, Tavora B, Timson R, Heissel S, de Stanchina E, Molina H, Victora GD, Goodarzi H, Birsoy K. Functional Genomics In Vivo Reveal Metabolic Dependencies of Pancreatic Cancer Cells. Cell Metab 2021;33:211-221.e6. [PMID: 33152324 DOI: 10.1016/j.cmet.2020.10.017] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
415 Ghergurovich JM, Lang JD, Levin MK, Briones N, Facista SJ, Mueller C, Cowan AJ, McBride MJ, Rodriguez ESR, Killian A, Dao T, Lamont J, Barron A, Su X, Hendricks WPD, Espina V, Von Hoff DD, O'Shaughnessy J, Rabinowitz JD. Local production of lactate, ribose phosphate, and amino acids within human triple-negative breast cancer. Med (N Y) 2021;2:736-54. [PMID: 34223403 DOI: 10.1016/j.medj.2021.03.009] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
416 Mazat JP, Ransac S. The Fate of Glutamine in Human Metabolism. The Interplay with Glucose in Proliferating Cells. Metabolites 2019;9:E81. [PMID: 31027329 DOI: 10.3390/metabo9050081] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
417 Zhao H, Swanson KD, Zheng B. Therapeutic Repurposing of Biguanides in Cancer. Trends Cancer 2021;7:714-30. [PMID: 33865798 DOI: 10.1016/j.trecan.2021.03.001] [Reference Citation Analysis]
418 Gorgoglione R, Impedovo V, Riley CL, Fratantonio D, Tiziani S, Palmieri L, Dolce V, Fiermonte G. Glutamine-Derived Aspartate Biosynthesis in Cancer Cells: Role of Mitochondrial Transporters and New Therapeutic Perspectives. Cancers (Basel) 2022;14:245. [PMID: 35008407 DOI: 10.3390/cancers14010245] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
419 Qi L, Martin-Sandoval MS, Merchant S, Gu W, Eckhardt M, Mathews TP, Zhao Z, Agathocleous M, Morrison SJ. Aspartate availability limits hematopoietic stem cell function during hematopoietic regeneration. Cell Stem Cell 2021;28:1982-1999.e8. [PMID: 34450065 DOI: 10.1016/j.stem.2021.07.011] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
420 Ward NP, DeNicola GM. Sulfur metabolism and its contribution to malignancy. Int Rev Cell Mol Biol 2019;347:39-103. [PMID: 31451216 DOI: 10.1016/bs.ircmb.2019.05.001] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
421 Truong T, Suriyanarayanan T, Zeng G, Le TD, Liu L, Li J, Tong C, Wang Y, Seneviratne CJ. Use of Haploid Model of Candida albicans to Uncover Mechanism of Action of a Novel Antifungal Agent. Front Cell Infect Microbiol 2018;8:164. [PMID: 29938200 DOI: 10.3389/fcimb.2018.00164] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
422 Stine ZE, Schug ZT, Salvino JM, Dang CV. Targeting cancer metabolism in the era of precision oncology. Nat Rev Drug Discov 2021. [PMID: 34862480 DOI: 10.1038/s41573-021-00339-6] [Reference Citation Analysis]
423 Khan S, Ince-Dunn G, Suomalainen A, Elo LL. Integrative omics approaches provide biological and clinical insights: examples from mitochondrial diseases. J Clin Invest 2020;130:20-8. [PMID: 31895050 DOI: 10.1172/JCI129202] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 6.5] [Reference Citation Analysis]
424 Keibler MA, Wasylenko TM, Kelleher JK, Iliopoulos O, Vander Heiden MG, Stephanopoulos G. Metabolic requirements for cancer cell proliferation. Cancer Metab 2016;4:16. [PMID: 27540483 DOI: 10.1186/s40170-016-0156-6] [Cited by in Crossref: 62] [Cited by in F6Publishing: 59] [Article Influence: 10.3] [Reference Citation Analysis]
425 Guarecuco R, Williams RT, Baudrier L, La K, Passarelli MC, Ekizoglu N, Mestanoglu M, Alwaseem H, Rostandy B, Fidelin J, Garcia-Bermudez J, Molina H, Birsoy K. Dietary thiamine influences l-asparaginase sensitivity in a subset of leukemia cells. Sci Adv 2020;6:eabc7120. [PMID: 33036978 DOI: 10.1126/sciadv.abc7120] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
426 Balsa E, Perry EA, Bennett CF, Jedrychowski M, Gygi SP, Doench JG, Puigserver P. Defective NADPH production in mitochondrial disease complex I causes inflammation and cell death. Nat Commun 2020;11:2714. [PMID: 32483148 DOI: 10.1038/s41467-020-16423-1] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 10.5] [Reference Citation Analysis]
427 Fu X, Guo X, Wu S, Lin Q, Liu L, Liang H, Niu Y, Li N. Non-Targeted UHPLC-Q-TOF/MS-Based Metabolomics Reveals a Metabolic Shift from Glucose to Glutamine in CPB Cells during ISKNV Infection Cycle. Metabolites 2019;9:E174. [PMID: 31487859 DOI: 10.3390/metabo9090174] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
428 Tran DH, Kesavan R, Rion H, Soflaee MH, Solmonson A, Bezwada D, Vu HS, Cai F, Phillips JA 3rd, DeBerardinis RJ, Hoxhaj G. Mitochondrial NADP+ is essential for proline biosynthesis during cell growth. Nat Metab 2021;3:571-85. [PMID: 33833463 DOI: 10.1038/s42255-021-00374-y] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 9.0] [Reference Citation Analysis]
429 Petit M, Koziel R, Etemad S, Pircher H, Jansen-Dürr P. Depletion of oxaloacetate decarboxylase FAHD1 inhibits mitochondrial electron transport and induces cellular senescence in human endothelial cells. Exp Gerontol 2017;92:7-12. [PMID: 28286170 DOI: 10.1016/j.exger.2017.03.004] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 2.4] [Reference Citation Analysis]
430 Chandrasekaran M, Kim KD, Chun SC. Antibacterial Activity of Chitosan Nanoparticles: A Review. Processes 2020;8:1173. [DOI: 10.3390/pr8091173] [Cited by in Crossref: 12] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
431 Liu M, Wang Y, Ruan Y, Bai C, Qiu L, Cui Y, Ying G, Li B. PKM2 promotes reductive glutamine metabolism. Cancer Biol Med 2018;15:389-99. [PMID: 30891326 DOI: 10.20892/j.issn.2095-3941.2018.0122] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
432 Sharpley MS, Chi F, Hoeve JT, Banerjee U. Metabolic plasticity drives development during mammalian embryogenesis. Dev Cell 2021;56:2329-2347.e6. [PMID: 34428399 DOI: 10.1016/j.devcel.2021.07.020] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
433 Saheki T, Moriyama M, Kuroda E, Funahashi A, Yasuda I, Setogawa Y, Gao Q, Ushikai M, Furuie S, Yamamura KI, Takano K, Nakamura Y, Eto K, Kadowaki T, Sinasac DS, Furukawa T, Horiuchi M, Tai YH. Pivotal role of inter-organ aspartate metabolism for treatment of mitochondrial aspartate-glutamate carrier 2 (citrin) deficiency, based on the mouse model. Sci Rep 2019;9:4179. [PMID: 30862943 DOI: 10.1038/s41598-019-39627-y] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
434 McGuirk S, Audet-Delage Y, St-Pierre J. Metabolic Fitness and Plasticity in Cancer Progression. Trends Cancer 2020;6:49-61. [PMID: 31952781 DOI: 10.1016/j.trecan.2019.11.009] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 15.0] [Reference Citation Analysis]
435 Kim HK, Noh YH, Nilius B, Ko KS, Rhee BD, Kim N, Han J. Current and upcoming mitochondrial targets for cancer therapy. Semin Cancer Biol 2017;47:154-67. [PMID: 28627410 DOI: 10.1016/j.semcancer.2017.06.006] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 6.0] [Reference Citation Analysis]
436 Kory N, Uit de Bos J, van der Rijt S, Jankovic N, Güra M, Arp N, Pena IA, Prakash G, Chan SH, Kunchok T, Lewis CA, Sabatini DM. MCART1/SLC25A51 is required for mitochondrial NAD transport. Sci Adv 2020;6:eabe5310. [PMID: 33087354 DOI: 10.1126/sciadv.abe5310] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 9.5] [Reference Citation Analysis]
437 Wang X, Han C, Jia Y, Wang J, Ge W, Duan L. Proteomic Profiling of Exosomes From Hemorrhagic Moyamoya Disease and Dysfunction of Mitochondria in Endothelial Cells. Stroke 2021;:STROKEAHA120032297. [PMID: 34334053 DOI: 10.1161/STROKEAHA.120.032297] [Reference Citation Analysis]
438 Balcázar M, Cañizares S, Borja T, Pontón P, Bisiou S, Carabasse E, Bacilieri A, Canavese C, Diaz RF, Cabrera F, Caicedo A. Bases for Treating Skin Aging With Artificial Mitochondrial Transfer/Transplant (AMT/T). Front Bioeng Biotechnol 2020;8:919. [PMID: 32903493 DOI: 10.3389/fbioe.2020.00919] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
439 Gao H, Shu Q, Chen J, Fan K, Xu P, Zhou Q, Li C, Zheng H. Antibiotic Exposure Has Sex-Dependent Effects on the Gut Microbiota and Metabolism of Short-Chain Fatty Acids and Amino Acids in Mice. mSystems 2019;4:e00048-19. [PMID: 31164448 DOI: 10.1128/mSystems.00048-19] [Cited by in Crossref: 15] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
440 Jumaa H, Caganova M, McAllister EJ, Hoenig L, He X, Saltukoglu D, Brenker K, Köhler M, Leben R, Hauser AE, Niesner R, Rajewsky K, Reth M, Jellusova J. Immunoglobulin expression in the endoplasmic reticulum shapes the metabolic fitness of B lymphocytes. Life Sci Alliance 2020;3:e202000700. [PMID: 32341085 DOI: 10.26508/lsa.202000700] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
441 Wang YP, Sharda A, Xu SN, van Gastel N, Man CH, Choi U, Leong WZ, Li X, Scadden DT. Malic enzyme 2 connects the Krebs cycle intermediate fumarate to mitochondrial biogenesis. Cell Metab 2021;33:1027-1041.e8. [PMID: 33770508 DOI: 10.1016/j.cmet.2021.03.003] [Reference Citation Analysis]
442 Zhai X, Liu K, Fang H, Zhang Q, Gao X, Liu F, Zhou S, Wang X, Niu Y, Hong Y, Lin SH, Liu WH, Xiao C, Li Q, Xiao N. Mitochondrial C1qbp promotes differentiation of effector CD8+ T cells via metabolic-epigenetic reprogramming. Sci Adv 2021;7:eabk0490. [PMID: 34860557 DOI: 10.1126/sciadv.abk0490] [Reference Citation Analysis]
443 Chen CC, Li B, Millman SE, Chen C, Li X, Morris JP 4th, Mayle A, Ho YJ, Loizou E, Liu H, Qin W, Shah H, Violante S, Cross JR, Lowe SW, Zhang L. Vitamin B6 Addiction in Acute Myeloid Leukemia. Cancer Cell 2020;37:71-84.e7. [PMID: 31935373 DOI: 10.1016/j.ccell.2019.12.002] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
444 Ju R, Fei K, Li S, Chen C, Zhu L, Li J, Zhang D, Guo L, Ye C. Metabolic Mechanisms and a Rational Combinational Application of Carboxyamidotriazole in Fighting Pancreatic Cancer Progression after Chemotherapy. J Pharmacol Exp Ther 2018;367:20-7. [PMID: 30002095 DOI: 10.1124/jpet.118.249326] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
445 Lin Q, He Y, Wang X, Zhang Y, Hu M, Guo W, He Y, Zhang T, Lai L, Sun Z, Yi Z, Liu M, Chen Y. Targeting Pyruvate Carboxylase by a Small Molecule Suppresses Breast Cancer Progression. Adv Sci (Weinh) 2020;7:1903483. [PMID: 32382484 DOI: 10.1002/advs.201903483] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 9.5] [Reference Citation Analysis]
446 Kavanaugh BC, Warren EB, Baytas O, Schmidt M, Merck D, Buch K, Liu JS, Phornphutkul C, Caruso P, Morrow EM. Longitudinal MRI findings in patient with SLC25A12 pathogenic variants inform disease progression and classification. Am J Med Genet A 2019;179:2284-91. [PMID: 31403263 DOI: 10.1002/ajmg.a.61322] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
447 Rinaldi G, Rossi M, Fendt S. Metabolic interactions in cancer: cellular metabolism at the interface between the microenvironment, the cancer cell phenotype and the epigenetic landscape: Metabolic interactions in cancer. WIREs Syst Biol Med 2018;10:e1397. [DOI: 10.1002/wsbm.1397] [Cited by in Crossref: 36] [Cited by in F6Publishing: 34] [Article Influence: 7.2] [Reference Citation Analysis]
448 Liu X, Romero IL, Litchfield LM, Lengyel E, Locasale JW. Metformin Targets Central Carbon Metabolism and Reveals Mitochondrial Requirements in Human Cancers. Cell Metab 2016;24:728-39. [PMID: 27746051 DOI: 10.1016/j.cmet.2016.09.005] [Cited by in Crossref: 134] [Cited by in F6Publishing: 126] [Article Influence: 22.3] [Reference Citation Analysis]
449 Maynard AG, Kanarek N. NADH Ties One-Carbon Metabolism to Cellular Respiration. Cell Metab 2020;31:660-2. [PMID: 32268110 DOI: 10.1016/j.cmet.2020.03.012] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
450 Perez-Gomez R, Magnin V, Mihajlovic Z, Slaninova V, Krejci A. Downregulation of respiratory complex I mediates major signalling changes triggered by TOR activation. Sci Rep 2020;10:4401. [PMID: 32157127 DOI: 10.1038/s41598-020-61244-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
451 Zhao H, Liu Y, Wang L, Jin G, Zhao X, Xu J, Zhang G, Ma Y, Yin N, Peng M. Genome-wide fitness gene identification reveals Roquin as a potent suppressor of CD8 T cell expansion and anti-tumor immunity. Cell Rep 2021;37:110083. [PMID: 34879274 DOI: 10.1016/j.celrep.2021.110083] [Reference Citation Analysis]
452 Kumar R, Banerjee R. Regulation of the redox metabolome and thiol proteome by hydrogen sulfide. Crit Rev Biochem Mol Biol 2021;56:221-35. [PMID: 33722121 DOI: 10.1080/10409238.2021.1893641] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
453 Lam WY, Becker AM, Kennerly KM, Wong R, Curtis JD, Llufrio EM, McCommis KS, Fahrmann J, Pizzato HA, Nunley RM, Lee J, Wolfgang MJ, Patti GJ, Finck BN, Pearce EL, Bhattacharya D. Mitochondrial Pyruvate Import Promotes Long-Term Survival of Antibody-Secreting Plasma Cells. Immunity 2016;45:60-73. [PMID: 27396958 DOI: 10.1016/j.immuni.2016.06.011] [Cited by in Crossref: 111] [Cited by in F6Publishing: 102] [Article Influence: 18.5] [Reference Citation Analysis]
454 Wei J, Raynor J, Nguyen TL, Chi H. Nutrient and Metabolic Sensing in T Cell Responses. Front Immunol 2017;8:247. [PMID: 28337199 DOI: 10.3389/fimmu.2017.00247] [Cited by in Crossref: 44] [Cited by in F6Publishing: 42] [Article Influence: 8.8] [Reference Citation Analysis]
455 Wiley CD, Campisi J. From Ancient Pathways to Aging Cells-Connecting Metabolism and Cellular Senescence. Cell Metab 2016;23:1013-21. [PMID: 27304503 DOI: 10.1016/j.cmet.2016.05.010] [Cited by in Crossref: 168] [Cited by in F6Publishing: 164] [Article Influence: 33.6] [Reference Citation Analysis]
456 D'Andrea A, Gritti I, Nicoli P, Giorgio M, Doni M, Conti A, Bianchi V, Casoli L, Sabò A, Mironov A, Beznoussenko GV, Amati B. The mitochondrial translation machinery as a therapeutic target in Myc-driven lymphomas. Oncotarget 2016;7:72415-30. [PMID: 27635472 DOI: 10.18632/oncotarget.11719] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 8.0] [Reference Citation Analysis]
457 Cichorek M, Ronowska A, Dzierzbicka K, Gensicka-Kowalewska M, Deptula M, Pelikant-Malecka I. Chloroacridine derivatives as potential anticancer agents which may act as tricarboxylic acid cycle enzyme inhibitors. Biomed Pharmacother 2020;130:110515. [PMID: 34321163 DOI: 10.1016/j.biopha.2020.110515] [Reference Citation Analysis]
458 Shyer JA, Flavell RA, Bailis W. Metabolic signaling in T cells. Cell Res 2020;30:649-59. [PMID: 32709897 DOI: 10.1038/s41422-020-0379-5] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 16.5] [Reference Citation Analysis]
459 Karigane D, Takubo K. Metabolic regulation of hematopoietic and leukemic stem/progenitor cells under homeostatic and stress conditions. Int J Hematol 2017;106:18-26. [PMID: 28540498 DOI: 10.1007/s12185-017-2261-x] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 3.4] [Reference Citation Analysis]
460 Ratnikov BI, Scott DA, Osterman AL, Smith JW, Ronai ZA. Metabolic rewiring in melanoma. Oncogene 2017;36:147-57. [PMID: 27270434 DOI: 10.1038/onc.2016.198] [Cited by in Crossref: 87] [Cited by in F6Publishing: 81] [Article Influence: 14.5] [Reference Citation Analysis]
461 Dai X, Blancafort P, Wang P, Sgro A, Thompson EW, Ostrikov KK. Innovative Precision Gene-Editing Tools in Personalized Cancer Medicine. Adv Sci (Weinh) 2020;7:1902552. [PMID: 32596104 DOI: 10.1002/advs.201902552] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
462 Elbehairi SEI, Alfaifi MY, Shati AA, Alshehri MA, Elshaarawy RF, Hafez HS. Role of Pd(II)–chitooligosaccharides–Gboxin analog in oxidative phosphorylation inhibition and energy depletion: Targeting mitochondrial dynamics. Chem Biol Drug Des 2020;96:1148-61. [DOI: 10.1111/cbdd.13703] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
463 Moretton A, Loizou JI. Interplay between Cellular Metabolism and the DNA Damage Response in Cancer. Cancers (Basel) 2020;12:E2051. [PMID: 32722390 DOI: 10.3390/cancers12082051] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
464 Baccelli I, Gareau Y, Lehnertz B, Gingras S, Spinella J, Corneau S, Mayotte N, Girard S, Frechette M, Blouin-chagnon V, Leveillé K, Boivin I, Macrae T, Krosl J, Thiollier C, Lavallée V, Kanshin E, Bertomeu T, Coulombe-huntington J, St-denis C, Bordeleau M, Boucher G, Roux PP, Lemieux S, Tyers M, Thibault P, Hébert J, Marinier A, Sauvageau G. Mubritinib Targets the Electron Transport Chain Complex I and Reveals the Landscape of OXPHOS Dependency in Acute Myeloid Leukemia. Cancer Cell 2019;36:84-99.e8. [DOI: 10.1016/j.ccell.2019.06.003] [Cited by in Crossref: 49] [Cited by in F6Publishing: 38] [Article Influence: 16.3] [Reference Citation Analysis]
465 Hu X, Calton MA, Tang S, Vollrath D. Depletion of Mitochondrial DNA in Differentiated Retinal Pigment Epithelial Cells. Sci Rep 2019;9:15355. [PMID: 31653972 DOI: 10.1038/s41598-019-51761-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
466 Shah YM, Lyssiotis CA. Mitochondrial Amino Acid Metabolism Provides Vulnerabilities in Mutant KRAS-Driven Cancers. Gastroenterology 2016;151:798-801. [PMID: 27713037 DOI: 10.1053/j.gastro.2016.09.036] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
467 Mehazri L, Shpungin S, Bel S, Nir U. Loss of Fer Jeopardizes Metabolic Plasticity and Mitochondrial Homeostasis in Lung and Breast Carcinoma Cells. Int J Mol Sci 2021;22:3387. [PMID: 33806191 DOI: 10.3390/ijms22073387] [Reference Citation Analysis]
468 Solmonson A, Faubert B, Gu W, Rao A, Cowdin MA, Menendez-Montes I, Kelekar S, Rogers TJ, Pan C, Guevara G, Tarangelo A, Zacharias LG, Martin-Sandoval MS, Do D, Pachnis P, Dumesnil D, Mathews TP, Tasdogan A, Pham A, Cai L, Zhao Z, Ni M, Cleaver O, Sadek HA, Morrison SJ, DeBerardinis RJ. Compartmentalized metabolism supports midgestation mammalian development. Nature 2022. [PMID: 35388219 DOI: 10.1038/s41586-022-04557-9] [Reference Citation Analysis]
469 Jiang N, Xie B, Xiao W, Fan M, Xu S, Duan Y, Hamsafar Y, Evans AC, Huang J, Zhou W, Lin X, Ye N, Wanggou S, Chen W, Jing D, Fragoso RC, Dugger BN, Wilson PF, Coleman MA, Xia S, Li X, Sun L, Monjazeb AM, Wang A, Murphy WJ, Kung H, Lam KS, Chen H, Li JJ. Fatty acid oxidation fuels glioblastoma radioresistance with CD47-mediated immune evasion. Nat Commun 2022;13. [DOI: 10.1038/s41467-022-29137-3] [Reference Citation Analysis]
470 Wei J, Long L, Zheng W, Dhungana Y, Lim SA, Guy C, Wang Y, Wang YD, Qian C, Xu B, Kc A, Saravia J, Huang H, Yu J, Doench JG, Geiger TL, Chi H. Targeting REGNASE-1 programs long-lived effector T cells for cancer therapy. Nature 2019;576:471-6. [PMID: 31827283 DOI: 10.1038/s41586-019-1821-z] [Cited by in Crossref: 96] [Cited by in F6Publishing: 81] [Article Influence: 32.0] [Reference Citation Analysis]
471 Soares R, Ribeiro FF, Xapelli S, Genebra T, Ribeiro MF, Sebastião AM, Rodrigues CMP, Solá S. Tauroursodeoxycholic Acid Enhances Mitochondrial Biogenesis, Neural Stem Cell Pool, and Early Neurogenesis in Adult Rats. Mol Neurobiol 2018;55:3725-38. [PMID: 28534273 DOI: 10.1007/s12035-017-0592-5] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
472 Kim S, Im JH, Kim WK, Choi YJ, Lee JY, Kim SK, Kim SJ, Kwon SW, Kang KW. Enhanced Sensitivity of Nonsmall Cell Lung Cancer with Acquired Resistance to Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors to Phenformin: The Roles of a Metabolic Shift to Oxidative Phosphorylation and Redox Balance. Oxid Med Cell Longev 2021;2021:5428364. [PMID: 34367462 DOI: 10.1155/2021/5428364] [Reference Citation Analysis]
473 Lee H, Lee H, Park S, Kim M, Park JY, Jin H, Oh K, Bae J, Yang Y, Choi HK. Integrative Metabolomic and Lipidomic Profiling of Lung Squamous Cell Carcinoma for Characterization of Metabolites and Intact Lipid Species Related to the Metastatic Potential. Cancers (Basel) 2021;13:4179. [PMID: 34439333 DOI: 10.3390/cancers13164179] [Reference Citation Analysis]
474 Mehta KY, Wu HJ, Menon SS, Fallah Y, Zhong X, Rizk N, Unger K, Mapstone M, Fiandaca MS, Federoff HJ, Cheema AK. Metabolomic biomarkers of pancreatic cancer: a meta-analysis study. Oncotarget. 2017;8:68899-68915. [PMID: 28978166 DOI: 10.18632/oncotarget.20324] [Cited by in Crossref: 34] [Cited by in F6Publishing: 28] [Article Influence: 6.8] [Reference Citation Analysis]
475 Janská L, Anandi L, Kirchberger NC, Marinkovic ZS, Schachtner LT, Guzelsoy G, Carmona-Fontaine C. The MEMIC: An ex vivo system to model the complexity of the tumor microenvironment. Dis Model Mech 2021:dmm. [PMID: 34278418 DOI: 10.1242/dmm.048942] [Reference Citation Analysis]
476 Krall AS, Mullen PJ, Surjono F, Momcilovic M, Schmid EW, Halbrook CJ, Thambundit A, Mittelman SD, Lyssiotis CA, Shackelford DB, Knott SRV, Christofk HR. Asparagine couples mitochondrial respiration to ATF4 activity and tumor growth. Cell Metab 2021;33:1013-1026.e6. [PMID: 33609439 DOI: 10.1016/j.cmet.2021.02.001] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 12.0] [Reference Citation Analysis]
477 Bernfeld E, Foster DA. Glutamine as an Essential Amino Acid for KRas-Driven Cancer Cells. Trends Endocrinol Metab 2019;30:357-68. [PMID: 31040047 DOI: 10.1016/j.tem.2019.03.003] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 4.7] [Reference Citation Analysis]
478 Gui DY, Sullivan LB, Luengo A, Hosios AM, Bush LN, Gitego N, Davidson SM, Freinkman E, Thomas CJ, Vander Heiden MG. Environment Dictates Dependence on Mitochondrial Complex I for NAD+ and Aspartate Production and Determines Cancer Cell Sensitivity to Metformin. Cell Metab 2016;24:716-27. [PMID: 27746050 DOI: 10.1016/j.cmet.2016.09.006] [Cited by in Crossref: 164] [Cited by in F6Publishing: 150] [Article Influence: 27.3] [Reference Citation Analysis]
479 Zhang B, Tornmalm J, Widengren J, Vakifahmetoglu-Norberg H, Norberg E. Characterization of the Role of the Malate Dehydrogenases to Lung Tumor Cell Survival. J Cancer 2017;8:2088-96. [PMID: 28819410 DOI: 10.7150/jca.19373] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 3.6] [Reference Citation Analysis]
480 Akdoğan E, Tardu M, Garipler G, Baytek G, Kavakli İH, Dunn CD. Reduced Glucose Sensation Can Increase the Fitness of Saccharomyces cerevisiae Lacking Mitochondrial DNA. PLoS One 2016;11:e0146511. [PMID: 26751567 DOI: 10.1371/journal.pone.0146511] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
481 To TL, Cuadros AM, Shah H, Hung WHW, Li Y, Kim SH, Rubin DHF, Boe RH, Rath S, Eaton JK, Piccioni F, Goodale A, Kalani Z, Doench JG, Root DE, Schreiber SL, Vafai SB, Mootha VK. A Compendium of Genetic Modifiers of Mitochondrial Dysfunction Reveals Intra-organelle Buffering. Cell 2019;179:1222-1238.e17. [PMID: 31730859 DOI: 10.1016/j.cell.2019.10.032] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 16.5] [Reference Citation Analysis]
482 Berridge MV, McConnell MJ, Grasso C, Bajzikova M, Kovarova J, Neuzil J. Horizontal transfer of mitochondria between mammalian cells: beyond co-culture approaches. Curr Opin Genet Dev 2016;38:75-82. [PMID: 27219870 DOI: 10.1016/j.gde.2016.04.003] [Cited by in Crossref: 48] [Cited by in F6Publishing: 47] [Article Influence: 8.0] [Reference Citation Analysis]
483 Poillet-Perez L, White E. Role of tumor and host autophagy in cancer metabolism. Genes Dev 2019;33:610-9. [PMID: 31160394 DOI: 10.1101/gad.325514.119] [Cited by in Crossref: 86] [Cited by in F6Publishing: 87] [Article Influence: 28.7] [Reference Citation Analysis]
484 Dai Z, Shestov AA, Lai L, Locasale JW. A Flux Balance of Glucose Metabolism Clarifies the Requirements of the Warburg Effect. Biophys J 2016;111:1088-100. [PMID: 27602736 DOI: 10.1016/j.bpj.2016.07.028] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 6.2] [Reference Citation Analysis]
485 Yang G, Xia Y, Ren W. Glutamine metabolism in Th17/Treg cell fate: applications in Th17 cell-associated diseases. Sci China Life Sci 2021;64:221-33. [PMID: 32671630 DOI: 10.1007/s11427-020-1703-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
486 Pavlova NN, Zhu J, Thompson CB. The hallmarks of cancer metabolism: Still emerging. Cell Metabolism 2022. [DOI: 10.1016/j.cmet.2022.01.007] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 10.0] [Reference Citation Analysis]
487 Cuyàs E, Verdura S, Martin-Castillo B, Alarcón T, Lupu R, Bosch-Barrera J, Menendez JA. Tumor Cell-Intrinsic Immunometabolism and Precision Nutrition in Cancer Immunotherapy. Cancers (Basel) 2020;12:E1757. [PMID: 32630618 DOI: 10.3390/cancers12071757] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
488 Papa S, Choy PM, Bubici C. The ERK and JNK pathways in the regulation of metabolic reprogramming. Oncogene 2019;38:2223-40. [PMID: 30487597 DOI: 10.1038/s41388-018-0582-8] [Cited by in Crossref: 90] [Cited by in F6Publishing: 85] [Article Influence: 22.5] [Reference Citation Analysis]
489 Canfield C, Bradshaw PC. Amino acids in the regulation of aging and aging-related diseases. Translational Medicine of Aging 2019;3:70-89. [DOI: 10.1016/j.tma.2019.09.001] [Cited by in Crossref: 16] [Cited by in F6Publishing: 5] [Article Influence: 5.3] [Reference Citation Analysis]
490 Chen Q, Kirk K, Shurubor YI, Zhao D, Arreguin AJ, Shahi I, Valsecchi F, Primiano G, Calder EL, Carelli V, Denton TT, Beal MF, Gross SS, Manfredi G, D'Aurelio M. Rewiring of Glutamine Metabolism Is a Bioenergetic Adaptation of Human Cells with Mitochondrial DNA Mutations. Cell Metab 2018;27:1007-1025.e5. [PMID: 29657030 DOI: 10.1016/j.cmet.2018.03.002] [Cited by in Crossref: 69] [Cited by in F6Publishing: 63] [Article Influence: 17.3] [Reference Citation Analysis]
491 Oberkersch RE, Pontarin G, Astone M, Spizzotin M, Arslanbaeva L, Tosi G, Panieri E, Ricciardi S, Allega MF, Brossa A, Grumati P, Bussolati B, Biffo S, Tardito S, Santoro MM. Aspartate metabolism in endothelial cells activates the mTORC1 pathway to initiate translation during angiogenesis. Dev Cell 2022:S1534-5807(22)00286-6. [PMID: 35580611 DOI: 10.1016/j.devcel.2022.04.018] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
492 Hosios AM, Vander Heiden MG. The redox requirements of proliferating mammalian cells. J Biol Chem 2018;293:7490-8. [PMID: 29339555 DOI: 10.1074/jbc.TM117.000239] [Cited by in Crossref: 53] [Cited by in F6Publishing: 27] [Article Influence: 13.3] [Reference Citation Analysis]
493 Sanjana NE. Genome-scale CRISPR pooled screens. Anal Biochem 2017;532:95-9. [PMID: 27261176 DOI: 10.1016/j.ab.2016.05.014] [Cited by in Crossref: 31] [Cited by in F6Publishing: 29] [Article Influence: 5.2] [Reference Citation Analysis]
494 Nacarelli T, Sell C. Targeting metabolism in cellular senescence, a role for intervention. Molecular and Cellular Endocrinology 2017;455:83-92. [DOI: 10.1016/j.mce.2016.08.049] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 6.4] [Reference Citation Analysis]
495 Hendrick E, Peixoto P, Blomme A, Polese C, Matheus N, Cimino J, Frère A, Mouithys-Mickalad A, Serteyn D, Bettendorff L, Elmoualij B, De Tullio P, Eppe G, Dequiedt F, Castronovo V, Mottet D. Metabolic inhibitors accentuate the anti-tumoral effect of HDAC5 inhibition. Oncogene 2017;36:4859-74. [PMID: 28414307 DOI: 10.1038/onc.2017.103] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.4] [Reference Citation Analysis]
496 Zurkirchen L, Varum S, Giger S, Klug A, Häusel J, Bossart R, Zemke M, Cantù C, Atak ZK, Zamboni N, Basler K, Sommer L. Yin Yang 1 sustains biosynthetic demands during brain development in a stage-specific manner. Nat Commun 2019;10:2192. [PMID: 31097699 DOI: 10.1038/s41467-019-09823-5] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
497 Guo JY, Teng X, Laddha SV, Ma S, Van Nostrand SC, Yang Y, Khor S, Chan CS, Rabinowitz JD, White E. Autophagy provides metabolic substrates to maintain energy charge and nucleotide pools in Ras-driven lung cancer cells. Genes Dev 2016;30:1704-17. [PMID: 27516533 DOI: 10.1101/gad.283416.116] [Cited by in Crossref: 176] [Cited by in F6Publishing: 174] [Article Influence: 29.3] [Reference Citation Analysis]
498 Li AM, Ye J. Reprogramming of serine, glycine and one-carbon metabolism in cancer. Biochim Biophys Acta Mol Basis Dis 2020;1866:165841. [PMID: 32439610 DOI: 10.1016/j.bbadis.2020.165841] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
499 Greene J, Segaran A, Lord S. Targeting OXPHOS and the electronic transport chain in cancer; molecular and therapeutic implications. Semin Cancer Biol 2022:S1044-579X(22)00023-2. [PMID: 35122973 DOI: 10.1016/j.semcancer.2022.02.002] [Reference Citation Analysis]
500 Lane AN, Higashi RM, Fan TW. NMR and MS-based Stable Isotope-Resolved Metabolomics and Applications in Cancer Metabolism. Trends Analyt Chem 2019;120:115322. [PMID: 32523238 DOI: 10.1016/j.trac.2018.11.020] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
501 Vemuri S, Srivastava R, Mir Q, Hashemikhabir S, Dong XC, Janga SC. SliceIt: A genome-wide resource and visualization tool to design CRISPR/Cas9 screens for editing protein-RNA interaction sites in the human genome. Methods 2020;178:104-13. [PMID: 31494246 DOI: 10.1016/j.ymeth.2019.09.004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
502 Zaal EA, Berkers CR. The Influence of Metabolism on Drug Response in Cancer. Front Oncol 2018;8:500. [PMID: 30456204 DOI: 10.3389/fonc.2018.00500] [Cited by in Crossref: 80] [Cited by in F6Publishing: 73] [Article Influence: 20.0] [Reference Citation Analysis]
503 Reczek CR, Birsoy K, Kong H, Martínez-Reyes I, Wang T, Gao P, Sabatini DM, Chandel NS. A CRISPR screen identifies a pathway required for paraquat-induced cell death. Nat Chem Biol 2017;13:1274-9. [PMID: 29058724 DOI: 10.1038/nchembio.2499] [Cited by in Crossref: 65] [Cited by in F6Publishing: 58] [Article Influence: 13.0] [Reference Citation Analysis]
504 Lu M, Sanderson SM, Zessin A, Ashcraft KA, Jones LW, Dewhirst MW, Locasale JW, Hsu DS. Exercise inhibits tumor growth and central carbon metabolism in patient-derived xenograft models of colorectal cancer. Cancer Metab. 2018;6:14. [PMID: 30473788 DOI: 10.1186/s40170-018-0190-7] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
505 Meßner M, Schmitt S, Ardelt MA, Fröhlich T, Müller M, Pein H, Huber-Cantonati P, Ortler C, Koenig LM, Zobel L, Koeberle A, Arnold GJ, Rothenfußer S, Kiemer AK, Gerbes AL, Zischka H, Vollmar AM, Pachmayr J. Metabolic implication of tigecycline as an efficacious second-line treatment for sorafenib-resistant hepatocellular carcinoma. FASEB J 2020;34:11860-82. [PMID: 32652772 DOI: 10.1096/fj.202001128R] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
506 Stefano GB, Kream RM. Cancer: Mitochondrial Origins. Med Sci Monit 2015;21:3736-9. [PMID: 26621573 DOI: 10.12659/msm.895990] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 2.7] [Reference Citation Analysis]
507 Zhao Y, Wang J, Wang H, Huang Y, Qi M, Liao S, Bin P, Yin Y. Effects of GABA Supplementation on Intestinal SIgA Secretion and Gut Microbiota in the Healthy and ETEC-Infected Weanling Piglets. Mediators Inflamm 2020;2020:7368483. [PMID: 32565729 DOI: 10.1155/2020/7368483] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
508 Duteil D, Tosic M, Lausecker F, Nenseth HZ, Müller JM, Urban S, Willmann D, Petroll K, Messaddeq N, Arrigoni L, Manke T, Kornfeld JW, Brüning JC, Zagoriy V, Meret M, Dengjel J, Kanouni T, Schüle R. Lsd1 Ablation Triggers Metabolic Reprogramming of Brown Adipose Tissue. Cell Rep 2016;17:1008-21. [PMID: 27760309 DOI: 10.1016/j.celrep.2016.09.053] [Cited by in Crossref: 46] [Cited by in F6Publishing: 42] [Article Influence: 9.2] [Reference Citation Analysis]
509 Desdín-Micó G, Soto-Heredero G, Mittelbrunn M. Mitochondrial activity in T cells. Mitochondrion 2018;41:51-7. [PMID: 29032101 DOI: 10.1016/j.mito.2017.10.006] [Cited by in Crossref: 43] [Cited by in F6Publishing: 38] [Article Influence: 8.6] [Reference Citation Analysis]
510 Gong TT, Wu QJ, Lin B, Ruan SK, Kushima M, Takimoto M. Observational Studies on the Association Between Post-diagnostic Metformin Use and Survival in Ovarian Cancer: A Systematic Review and Meta-Analysis. Front Oncol 2019;9:458. [PMID: 31192140 DOI: 10.3389/fonc.2019.00458] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
511 Tsuji A, Akao T, Masuya T, Murai M, Miyoshi H. IACS-010759, a potent inhibitor of glycolysis-deficient hypoxic tumor cells, inhibits mitochondrial respiratory complex I through a unique mechanism. J Biol Chem 2020;295:7481-91. [PMID: 32295842 DOI: 10.1074/jbc.RA120.013366] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 6.5] [Reference Citation Analysis]
512 Kong X, Chen X, Ou S, Wang W, Li R. Derivation of human triploid trophoblast stem cells. J Assist Reprod Genet 2022. [PMID: 35243570 DOI: 10.1007/s10815-022-02436-w] [Reference Citation Analysis]
513 Rai SK, Bril F, Hatch HM, Xu Y, Shelton L, Kalavalapalli S, Click A, Lee D, Beecher C, Kirby A, Kong K, Trevino J, Jha A, Jatav S, Kriti K, Luthra S, Garrett TJ, Guingab-Cagmat J, Plant D, Bose P, Cusi K, Hromas RA, Tischler AS, Powers JF, Gupta P, Bibb J, Beuschlein F, Robledo M, Calsina B, Timmers H, Taieb D, Kroiss M, Richter S, Langton K, Eisenhofer G, Bergeron R Jr, Pacak K, Tevosian SG, Ghayee HK. Targeting pheochromocytoma/paraganglioma with polyamine inhibitors. Metabolism 2020;110:154297. [PMID: 32562798 DOI: 10.1016/j.metabol.2020.154297] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
514 Guruceaga X, Perez-Cuesta U, Pellon A, Cendon-Sanchez S, Pelegri-Martinez E, Gonzalez O, Hernando FL, Mayayo E, Anguita J, Alonso RM, Keller NP, Ramirez-Garcia A, Rementeria A. Aspergillus fumigatus Fumagillin Contributes to Host Cell Damage. J Fungi (Basel) 2021;7:936. [PMID: 34829223 DOI: 10.3390/jof7110936] [Reference Citation Analysis]
515 Corbet C, Feron O. Cancer cell metabolism and mitochondria: Nutrient plasticity for TCA cycle fueling. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2017;1868:7-15. [DOI: 10.1016/j.bbcan.2017.01.002] [Cited by in Crossref: 57] [Cited by in F6Publishing: 61] [Article Influence: 11.4] [Reference Citation Analysis]
516 Harding CR, Sidik SM, Petrova B, Gnädig NF, Okombo J, Herneisen AL, Ward KE, Markus BM, Boydston EA, Fidock DA, Lourido S. Genetic screens reveal a central role for heme metabolism in artemisinin susceptibility. Nat Commun 2020;11:4813. [PMID: 32968076 DOI: 10.1038/s41467-020-18624-0] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
517 Capece D, Verzella D, Di Francesco B, Alesse E, Franzoso G, Zazzeroni F. NF-κB and mitochondria cross paths in cancer: mitochondrial metabolism and beyond. Seminars in Cell & Developmental Biology 2020;98:118-28. [DOI: 10.1016/j.semcdb.2019.05.021] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 9.0] [Reference Citation Analysis]
518 Delp J, Gutbier S, Cerff M, Zasada C, Niedenführ S, Zhao L, Smirnova L, Hartung T, Borlinghaus H, Schreiber F, Bergemann J, Gätgens J, Beyss M, Azzouzi S, Waldmann T, Kempa S, Nöh K, Leist M. Stage-specific metabolic features of differentiating neurons: Implications for toxicant sensitivity. Toxicol Appl Pharmacol 2018;354:64-80. [PMID: 29278688 DOI: 10.1016/j.taap.2017.12.013] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 3.2] [Reference Citation Analysis]
519 Bader DA, McGuire SE. Tumour metabolism and its unique properties in prostate adenocarcinoma. Nat Rev Urol 2020;17:214-31. [PMID: 32112053 DOI: 10.1038/s41585-020-0288-x] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 10.5] [Reference Citation Analysis]
520 Shah R, Murthy V, Pacold M, Danielson K, Tanriverdi K, Larson MG, Hanspers K, Pico A, Mick E, Reis J, de Ferranti S, Freinkman E, Levy D, Hoffmann U, Osganian S, Das S, Freedman JE. Extracellular RNAs Are Associated With Insulin Resistance and Metabolic Phenotypes. Diabetes Care 2017;40:546-53. [PMID: 28183786 DOI: 10.2337/dc16-1354] [Cited by in Crossref: 47] [Cited by in F6Publishing: 46] [Article Influence: 9.4] [Reference Citation Analysis]
521 Ignatenko O, Nikkanen J, Kononov A, Zamboni N, Ince-Dunn G, Suomalainen A. Mitochondrial spongiotic brain disease: astrocytic stress and harmful rapamycin and ketosis effect. Life Sci Alliance 2020;3:e202000797. [PMID: 32737078 DOI: 10.26508/lsa.202000797] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
522 Kim JY, Lee SH, Bae IH, Shin DW, Min D, Ham M, Kim KH, Lee TR, Kim HJ, Son ED, Lee AY, Song YW, Kil IS. Pyruvate Protects against Cellular Senescence through the Control of Mitochondrial and Lysosomal Function in Dermal Fibroblasts. J Invest Dermatol 2018;138:2522-30. [PMID: 29959907 DOI: 10.1016/j.jid.2018.05.033] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
523 Cai L, Zhou S, Wang Y, Xu X, Zhang L, Cai Z. New insights into the anti- hepatoma mechanism of triple-helix β- glucan by metabolomics profiling. Carbohydr Polym 2021;269:118289. [PMID: 34294315 DOI: 10.1016/j.carbpol.2021.118289] [Reference Citation Analysis]
524 Yang Y, Gomez M, Marsh T, Poillet-Perez L, Sawant A, Chen L, Park NR, Jackson SR, Hu Z, Alon N, Liu C, Debnath J, Guan JL, Davidson S, Verzi M, White E. Autophagy in PDGFRα+ mesenchymal cells is essential for intestinal stem cell survival. Proc Natl Acad Sci U S A 2022;119:e2202016119. [PMID: 35537042 DOI: 10.1073/pnas.2202016119] [Reference Citation Analysis]
525 Cluntun AA, Badolia R, Lettlova S, Parnell KM, Shankar TS, Diakos NA, Olson KA, Taleb I, Tatum SM, Berg JA, Cunningham CN, Van Ry T, Bott AJ, Krokidi AT, Fogarty S, Skedros S, Swiatek WI, Yu X, Luo B, Merx S, Navankasattusas S, Cox JE, Ducker GS, Holland WL, McKellar SH, Rutter J, Drakos SG. The pyruvate-lactate axis modulates cardiac hypertrophy and heart failure. Cell Metab 2021;33:629-648.e10. [PMID: 33333007 DOI: 10.1016/j.cmet.2020.12.003] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 9.0] [Reference Citation Analysis]
526 Liu Y, Birsoy K. Asparagine, a Key Metabolite in Cellular Response to Mitochondrial Dysfunction. Trends Cancer 2021;7:479-81. [PMID: 33896762 DOI: 10.1016/j.trecan.2021.04.001] [Reference Citation Analysis]
527 Mana MD, Hussey AM, Tzouanas CN, Imada S, Barrera Millan Y, Bahceci D, Saiz DR, Webb AT, Lewis CA, Carmeliet P, Mihaylova MM, Shalek AK, Yilmaz ÖH. High-fat diet-activated fatty acid oxidation mediates intestinal stemness and tumorigenicity. Cell Rep 2021;35:109212. [PMID: 34107251 DOI: 10.1016/j.celrep.2021.109212] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
528 Broeks MH, Shamseldin HE, Alhashem A, Hashem M, Abdulwahab F, Alshedi T, Alobaid I, Zwartkruis F, Westland D, Fuchs S, Verhoeven-Duif NM, Jans JJM, Alkuraya FS. MDH1 deficiency is a metabolic disorder of the malate-aspartate shuttle associated with early onset severe encephalopathy. Hum Genet 2019;138:1247-57. [PMID: 31538237 DOI: 10.1007/s00439-019-02063-z] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
529 Jiang J, Pavlova NN, Zhang J. Asparagine, a critical limiting metabolite during glutamine starvation. Mol Cell Oncol 2018;5:e1441633. [PMID: 30250896 DOI: 10.1080/23723556.2018.1441633] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
530 Gonçalves AC, Richiardone E, Jorge J, Polónia B, Xavier CPR, Salaroglio IC, Riganti C, Vasconcelos MH, Corbet C, Sarmento-Ribeiro AB. Impact of cancer metabolism on therapy resistance - Clinical implications. Drug Resist Updat 2021;:100797. [PMID: 34955385 DOI: 10.1016/j.drup.2021.100797] [Reference Citation Analysis]
531 Hu Y, Zhang X, Wang O, Xing X, Cui M, Wang M, Song C, Liao Q. Spectrum of mitochondrial genomic variation in parathyroid neoplasms. Endocrine 2021. [PMID: 34296389 DOI: 10.1007/s12020-021-02825-8] [Reference Citation Analysis]
532 Khodaman E, Barzegar H, Jokar A, Jooyandeh H. Production and evaluation of Physicochemical, Mechanical and Antimicrobial Properties of Chia (Salvia hispanica L.) mucilage-gelatin based Edible Films Incorporated with Chitosan Nanoparticles. Food Measure. [DOI: 10.1007/s11694-022-01470-7] [Reference Citation Analysis]
533 Zhu Y, Li T, Ramos da Silva S, Lee JJ, Lu C, Eoh H, Jung JU, Gao SJ. A Critical Role of Glutamine and Asparagine γ-Nitrogen in Nucleotide Biosynthesis in Cancer Cells Hijacked by an Oncogenic Virus. mBio 2017;8:e01179-17. [PMID: 28811348 DOI: 10.1128/mBio.01179-17] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 5.4] [Reference Citation Analysis]
534 Yamaguchi N, Weinberg EM, Nguyen A, Liberti MV, Goodarzi H, Janjigian YY, Paty PB, Saltz LB, Kingham TP, Loo JM, de Stanchina E, Tavazoie SF. PCK1 and DHODH drive colorectal cancer liver metastatic colonization and hypoxic growth by promoting nucleotide synthesis. Elife 2019;8:e52135. [PMID: 31841108 DOI: 10.7554/eLife.52135] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
535 Volobueva AS, Melnichenko AA, Grechko AV, Orekhov AN. Mitochondrial genome variability: the effect on cellular functional activity. Ther Clin Risk Manag 2018;14:237-45. [PMID: 29467576 DOI: 10.2147/TCRM.S153895] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
536 Wang YQ, Wang HL, Xu J, Tan J, Fu LN, Wang JL, Zou TH, Sun DF, Gao QY, Chen YX, Fang JY. Sirtuin5 contributes to colorectal carcinogenesis by enhancing glutaminolysis in a deglutarylation-dependent manner. Nat Commun 2018;9:545. [PMID: 29416026 DOI: 10.1038/s41467-018-02951-4] [Cited by in Crossref: 54] [Cited by in F6Publishing: 49] [Article Influence: 13.5] [Reference Citation Analysis]
537 Somarribas Patterson LF, Vardhana SA. Metabolic regulation of the cancer-immunity cycle. Trends Immunol 2021;42:975-93. [PMID: 34610889 DOI: 10.1016/j.it.2021.09.002] [Reference Citation Analysis]
538 Deng L, Yao P, Li L, Ji F, Zhao S, Xu C, Lan X, Jiang P. p53-mediated control of aspartate-asparagine homeostasis dictates LKB1 activity and modulates cell survival. Nat Commun 2020;11:1755. [PMID: 32273511 DOI: 10.1038/s41467-020-15573-6] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
539 Gu X, Orozco JM, Saxton RA, Condon KJ, Liu GY, Krawczyk PA, Scaria SM, Harper JW, Gygi SP, Sabatini DM. SAMTOR is an S-adenosylmethionine sensor for the mTORC1 pathway. Science 2017;358:813-8. [PMID: 29123071 DOI: 10.1126/science.aao3265] [Cited by in Crossref: 202] [Cited by in F6Publishing: 191] [Article Influence: 50.5] [Reference Citation Analysis]
540 Oliveira GL, Coelho AR, Marques R, Oliveira PJ. Cancer cell metabolism: Rewiring the mitochondrial hub. Biochim Biophys Acta Mol Basis Dis 2021;1867:166016. [PMID: 33246010 DOI: 10.1016/j.bbadis.2020.166016] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
541 Sissler M, González-serrano LE, Westhof E. Recent Advances in Mitochondrial Aminoacyl-tRNA Synthetases and Disease. Trends in Molecular Medicine 2017;23:693-708. [DOI: 10.1016/j.molmed.2017.06.002] [Cited by in Crossref: 86] [Cited by in F6Publishing: 86] [Article Influence: 17.2] [Reference Citation Analysis]
542 Lee S, Wen H, An YJ, Cha JW, Ko Y, Hyberts SG, Park S. Carbon Isotopomer Analysis with Non-Unifom Sampling HSQC NMR for Cell Extract and Live Cell Metabolomics Studies. Anal Chem 2017;89:1078-85. [DOI: 10.1021/acs.analchem.6b02107] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
543 Spivak AY, Nedopekina DA, Gubaidullin RR, Dubinin MV, Belosludtsev KN. Conjugation of Natural Triterpenic Acids with Delocalized Lipophilic Cations: Selective Targeting Cancer Cell Mitochondria. J Pers Med 2021;11:470. [PMID: 34070567 DOI: 10.3390/jpm11060470] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
544 Hulea L, Gravel SP, Morita M, Cargnello M, Uchenunu O, Im YK, Lehuédé C, Ma EH, Leibovitch M, McLaughlan S, Blouin MJ, Parisotto M, Papavasiliou V, Lavoie C, Larsson O, Ohh M, Ferreira T, Greenwood C, Bridon G, Avizonis D, Ferbeyre G, Siegel P, Jones RG, Muller W, Ursini-Siegel J, St-Pierre J, Pollak M, Topisirovic I. Translational and HIF-1α-Dependent Metabolic Reprogramming Underpin Metabolic Plasticity and Responses to Kinase Inhibitors and Biguanides. Cell Metab 2018;28:817-832.e8. [PMID: 30244971 DOI: 10.1016/j.cmet.2018.09.001] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 8.0] [Reference Citation Analysis]
545 Runtsch MC, O'Neill LA. GOTcha: lncRNA-ACOD1 targets metabolism during viral infection. Cell Res 2018;28:137-8. [PMID: 29192676 DOI: 10.1038/cr.2017.153] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
546 Spina R, Voss DM, Yang X, Sohn JW, Vinkler R, Schraner J, Sloan A, Welford SM, Avril N, Ames HM, Woodworth GF, Bar EE. MCT4 regulates de novo pyrimidine biosynthesis in GBM in a lactate-independent manner. Neurooncol Adv 2020;2:vdz062. [PMID: 32002519 DOI: 10.1093/noajnl/vdz062] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
547 Rahman J, Rahman S. Mitochondrial medicine in the omics era. The Lancet 2018;391:2560-74. [DOI: 10.1016/s0140-6736(18)30727-x] [Cited by in Crossref: 106] [Cited by in F6Publishing: 52] [Article Influence: 26.5] [Reference Citation Analysis]
548 Kory N, Wyant GA, Prakash G, Uit de Bos J, Bottanelli F, Pacold ME, Chan SH, Lewis CA, Wang T, Keys HR, Guo YE, Sabatini DM. SFXN1 is a mitochondrial serine transporter required for one-carbon metabolism. Science 2018;362:eaat9528. [PMID: 30442778 DOI: 10.1126/science.aat9528] [Cited by in Crossref: 72] [Cited by in F6Publishing: 73] [Article Influence: 24.0] [Reference Citation Analysis]
549 Kaufman BA, Picard M, Sondheimer N. Mitochondrial DNA, nuclear context, and the risk for carcinogenesis. Environ Mol Mutagen 2019;60:455-62. [PMID: 29332303 DOI: 10.1002/em.22169] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
550 Baksh SC, Fuchs E. A Metabolic Bottleneck for Stem Cell Transformation. Cell 2020;182:1377-8. [PMID: 32946778 DOI: 10.1016/j.cell.2020.08.038] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
551 Yan B, Dong L, Neuzil J. Mitochondria: An intriguing target for killing tumour-initiating cells. Mitochondrion 2016;26:86-93. [DOI: 10.1016/j.mito.2015.12.007] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 5.3] [Reference Citation Analysis]
552 Lesner NP, Gokhale AS, Kota K, DeBerardinis RJ, Mishra P. α-ketobutyrate links alterations in cystine metabolism to glucose oxidation in mtDNA mutant cells. Metab Eng 2020;60:157-67. [PMID: 32330654 DOI: 10.1016/j.ymben.2020.03.010] [Reference Citation Analysis]
553 Lorendeau D, Rinaldi G, Boon R, Spincemaille P, Metzger K, Jäger C, Christen S, Dong X, Kuenen S, Voordeckers K, Verstreken P, Cassiman D, Vermeersch P, Verfaillie C, Hiller K, Fendt S. Dual loss of succinate dehydrogenase (SDH) and complex I activity is necessary to recapitulate the metabolic phenotype of SDH mutant tumors. Metabolic Engineering 2017;43:187-97. [DOI: 10.1016/j.ymben.2016.11.005] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 7.2] [Reference Citation Analysis]
554 Adelmann CH, Wang T, Sabatini DM, Lander ES. Genome-Wide CRISPR/Cas9 Screening for Identification of Cancer Genes in Cell Lines. Methods Mol Biol 2019;1907:125-36. [PMID: 30542996 DOI: 10.1007/978-1-4939-8967-6_10] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
555 Singh HR, Ladurner AG. ACF takes the driver's seat. Mol Cell. 2014;55:345-346. [PMID: 25105485 DOI: 10.1016/j.molcel] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
556 Han C, Yang L, Choi HH, Baddour J, Achreja A, Liu Y, Li Y, Li J, Wan G, Huang C, Ji G, Zhang X, Nagrath D, Lu X. Amplification of USP13 drives ovarian cancer metabolism. Nat Commun 2016;7:13525. [PMID: 27892457 DOI: 10.1038/ncomms13525] [Cited by in Crossref: 40] [Cited by in F6Publishing: 36] [Article Influence: 6.7] [Reference Citation Analysis]
557 Huang H, Zhou P, Wei J, Long L, Shi H, Dhungana Y, Chapman NM, Fu G, Saravia J, Raynor JL, Liu S, Palacios G, Wang YD, Qian C, Yu J, Chi H. In vivo CRISPR screening reveals nutrient signaling processes underpinning CD8+ T cell fate decisions. Cell 2021;184:1245-1261.e21. [PMID: 33636132 DOI: 10.1016/j.cell.2021.02.021] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
558 Feist M, Schwarzfischer P, Heinrich P, Sun X, Kemper J, von Bonin F, Perez-Rubio P, Taruttis F, Rehberg T, Dettmer K, Gronwald W, Reinders J, Engelmann JC, Dudek J, Klapper W, Trümper L, Spang R, Oefner PJ, Kube D. Cooperative STAT/NF-κB signaling regulates lymphoma metabolic reprogramming and aberrant GOT2 expression. Nat Commun 2018;9:1514. [PMID: 29666362 DOI: 10.1038/s41467-018-03803-x] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
559 Schneider SS, Henchey EM, Sultana N, Morin SM, Jerry DJ, Makari-Judson G, Crisi GM, Arenas RB, Johnson M, Mason HS, Yadava N. Individual-specific variation in the respiratory activities of HMECs and their bioenergetic response to IGF1 and TNFα. J Cell Physiol 2017;232:2750-65. [PMID: 28369883 DOI: 10.1002/jcp.25932] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
560 Vancura A, Bu P, Bhagwat M, Zeng J, Vancurova I. Metformin as an Anticancer Agent. Trends Pharmacol Sci 2018;39:867-78. [PMID: 30150001 DOI: 10.1016/j.tips.2018.07.006] [Cited by in Crossref: 86] [Cited by in F6Publishing: 78] [Article Influence: 21.5] [Reference Citation Analysis]
561 Cai L, Hu C, Yu S, Liu L, Yu X, Chen J, Liu X, Lin F, Zhang C, Li W, Yan X. Identification and validation of a six-gene signature associated with glycolysis to predict the prognosis of patients with cervical cancer. BMC Cancer 2020;20:1133. [PMID: 33228592 DOI: 10.1186/s12885-020-07598-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
562 El-Kaliuoby MI, Amer M, Shehata N. Enhancement of Nano-Biopolymer Antibacterial Activity by Pulsed Electric Fields. Polymers (Basel) 2021;13:1869. [PMID: 34200040 DOI: 10.3390/polym13111869] [Reference Citation Analysis]
563 Fuentes-Retamal S, Sandoval-Acuña C, Peredo-Silva L, Guzmán-Rivera D, Pavani M, Torrealba N, Truksa J, Castro-Castillo V, Catalán M, Kemmerling U, Urra FA, Ferreira J. Complex Mitochondrial Dysfunction Induced by TPP+-Gentisic Acid and Mitochondrial Translation Inhibition by Doxycycline Evokes Synergistic Lethality in Breast Cancer Cells. Cells 2020;9:E407. [PMID: 32053908 DOI: 10.3390/cells9020407] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
564 Guo C, Chen S, Liu W, Ma Y, Li J, Fisher PB, Fang X, Wang XY. Immunometabolism: A new target for improving cancer immunotherapy. Adv Cancer Res 2019;143:195-253. [PMID: 31202359 DOI: 10.1016/bs.acr.2019.03.004] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 5.3] [Reference Citation Analysis]
565 Lee P, Malik D, Perkons N, Huangyang P, Khare S, Rhoades S, Gong YY, Burrows M, Finan JM, Nissim I, Gade TPF, Weljie AM, Simon MC. Targeting glutamine metabolism slows soft tissue sarcoma growth. Nat Commun 2020;11:498. [PMID: 31980651 DOI: 10.1038/s41467-020-14374-1] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 13.0] [Reference Citation Analysis]
566 Lee WD, Mukha D, Aizenshtein E, Shlomi T. Spatial-fluxomics provides a subcellular-compartmentalized view of reductive glutamine metabolism in cancer cells. Nat Commun 2019;10:1351. [PMID: 30903027 DOI: 10.1038/s41467-019-09352-1] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 7.0] [Reference Citation Analysis]
567 Graham DB, Root DE. Resources for the design of CRISPR gene editing experiments. Genome Biol 2015;16:260. [PMID: 26612492 DOI: 10.1186/s13059-015-0823-x] [Cited by in Crossref: 68] [Cited by in F6Publishing: 59] [Article Influence: 9.7] [Reference Citation Analysis]
568 Hamon MP, Gergondey R, L'honoré A, Friguet B. Mitochondrial Lon protease - depleted HeLa cells exhibit proteome modifications related to protein quality control, stress response and energy metabolism. Free Radic Biol Med 2020;148:83-95. [PMID: 31904544 DOI: 10.1016/j.freeradbiomed.2019.12.039] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
569 Torrino S, Grasset EM, Audebert S, Belhadj I, Lacoux C, Haynes M, Pisano S, Abélanet S, Brau F, Chan SY, Mari B, Oldham WM, Ewald AJ, Bertero T. Mechano-induced cell metabolism promotes microtubule glutamylation to force metastasis. Cell Metab 2021;33:1342-1357.e10. [PMID: 34102109 DOI: 10.1016/j.cmet.2021.05.009] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
570 Wang T. Paring down to the essentials. Science 2018;362:904. [PMID: 30467164 DOI: 10.1126/science.aav6872] [Reference Citation Analysis]
571 Coloff JL, Murphy JP, Braun CR, Harris IS, Shelton LM, Kami K, Gygi SP, Selfors LM, Brugge JS. Differential Glutamate Metabolism in Proliferating and Quiescent Mammary Epithelial Cells. Cell Metab 2016;23:867-80. [PMID: 27133130 DOI: 10.1016/j.cmet.2016.03.016] [Cited by in Crossref: 130] [Cited by in F6Publishing: 127] [Article Influence: 21.7] [Reference Citation Analysis]
572 De Vitto H, Arachchige DB, Richardson BC, French JB. The Intersection of Purine and Mitochondrial Metabolism in Cancer. Cells 2021;10:2603. [PMID: 34685583 DOI: 10.3390/cells10102603] [Reference Citation Analysis]
573 Kaspar S, Oertlin C, Szczepanowska K, Kukat A, Senft K, Lucas C, Brodesser S, Hatzoglou M, Larsson O, Topisirovic I, Trifunovic A. Adaptation to mitochondrial stress requires CHOP-directed tuning of ISR. Sci Adv 2021;7:eabf0971. [PMID: 34039602 DOI: 10.1126/sciadv.abf0971] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
574 Davis RJ, Gönen M, Margineantu DH, Handeli S, Swanger J, Hoellerbauer P, Paddison PJ, Gu H, Raftery D, Grim JE, Hockenbery DM, Margolin AA, Clurman BE. Pan-cancer transcriptional signatures predictive of oncogenic mutations reveal that Fbw7 regulates cancer cell oxidative metabolism. Proc Natl Acad Sci U S A 2018;115:5462-7. [PMID: 29735700 DOI: 10.1073/pnas.1718338115] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
575 Ahmad F, Wang X, Jiang Z, Yu X, Liu X, Mao R, Chen X, Li W. Codoping Enhanced Radioluminescence of Nanoscintillators for X-ray-Activated Synergistic Cancer Therapy and Prognosis Using Metabolomics. ACS Nano 2019;13:10419-33. [PMID: 31430127 DOI: 10.1021/acsnano.9b04213] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 9.3] [Reference Citation Analysis]
576 Boukalova S, Rohlenova K, Rohlena J, Neuzil J. Mitocans: Mitochondrially Targeted Anti-cancer Drugs. In: Oliveira PJ, editor. Mitochondrial Biology and Experimental Therapeutics. Cham: Springer International Publishing; 2018. pp. 613-35. [DOI: 10.1007/978-3-319-73344-9_27] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
577 Zhou T, Yang Y, Chen Q, Xie L. Glutamine Metabolism Is Essential for Stemness of Bone Marrow Mesenchymal Stem Cells and Bone Homeostasis. Stem Cells Int 2019;2019:8928934. [PMID: 31611919 DOI: 10.1155/2019/8928934] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
578 Kurelac I, Abarrategi A, Ragazzi M, Iommarini L, Umesh Ganesh N, Snoeks T, Bonnet D, Porcelli AM, Malanchi I, Gasparre G. A Humanized Bone Niche Model Reveals Bone Tissue Preservation Upon Targeting Mitochondrial Complex I in Pseudo-Orthotopic Osteosarcoma. J Clin Med 2019;8:E2184. [PMID: 31835761 DOI: 10.3390/jcm8122184] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
579 Ducker GS, Rabinowitz JD. One-Carbon Metabolism in Health and Disease. Cell Metab 2017;25:27-42. [PMID: 27641100 DOI: 10.1016/j.cmet.2016.08.009] [Cited by in Crossref: 583] [Cited by in F6Publishing: 543] [Article Influence: 97.2] [Reference Citation Analysis]
580 Yang YZ, Xiao N, Liu SG, Han L, Li NB, Luo HQ. pH-induced aggregation of hydrophilic carbon dots for fluorescence detection of acidic amino acid and intracellular pH imaging. Mater Sci Eng C Mater Biol Appl 2020;108:110401. [PMID: 31923930 DOI: 10.1016/j.msec.2019.110401] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 3.7] [Reference Citation Analysis]
581 Guevara-Cruz M, Vargas-Morales JM, Méndez-García AL, López-Barradas AM, Granados-Portillo O, Ordaz-Nava G, Rocha-Viggiano AK, Gutierrez-Leyte CA, Medina-Cerda E, Rosado JL, Morales JC, Torres N, Tovar AR, Noriega LG. Amino acid profiles of young adults differ by sex, body mass index and insulin resistance. Nutr Metab Cardiovasc Dis 2018;28:393-401. [PMID: 29422298 DOI: 10.1016/j.numecd.2018.01.001] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]
582 Mok S, Stokes BH, Gnädig NF, Ross LS, Yeo T, Amaratunga C, Allman E, Solyakov L, Bottrill AR, Tripathi J, Fairhurst RM, Llinás M, Bozdech Z, Tobin AB, Fidock DA. Artemisinin-resistant K13 mutations rewire Plasmodium falciparum's intra-erythrocytic metabolic program to enhance survival. Nat Commun 2021;12:530. [PMID: 33483501 DOI: 10.1038/s41467-020-20805-w] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
583 Van Vranken JG, Rutter J. You Down With ETC? Yeah, You Know D! Cell 2015;162:471-3. [PMID: 26232217 DOI: 10.1016/j.cell.2015.07.027] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
584 Pavlova NN, Hui S, Ghergurovich JM, Fan J, Intlekofer AM, White RM, Rabinowitz JD, Thompson CB, Zhang J. As Extracellular Glutamine Levels Decline, Asparagine Becomes an Essential Amino Acid. Cell Metab 2018;27:428-438.e5. [PMID: 29337136 DOI: 10.1016/j.cmet.2017.12.006] [Cited by in Crossref: 107] [Cited by in F6Publishing: 94] [Article Influence: 26.8] [Reference Citation Analysis]
585 Borst P. The malate-aspartate shuttle (Borst cycle): How it started and developed into a major metabolic pathway. IUBMB Life 2020;72:2241-59. [PMID: 32916028 DOI: 10.1002/iub.2367] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 10.0] [Reference Citation Analysis]
586 Yue J, Wang R, Ma X, Liu J, Lu X, Balaso Thakar S, An N, Liu J, Xia E, Liu Y. Full-length transcriptome sequencing provides insights into the evolution of apocarotenoid biosynthesis in Crocus sativus. Comput Struct Biotechnol J 2020;18:774-83. [PMID: 32280432 DOI: 10.1016/j.csbj.2020.03.022] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
587 Lieu EL, Nguyen T, Rhyne S, Kim J. Amino acids in cancer. Exp Mol Med 2020;52:15-30. [PMID: 31980738 DOI: 10.1038/s12276-020-0375-3] [Cited by in Crossref: 98] [Cited by in F6Publishing: 93] [Article Influence: 49.0] [Reference Citation Analysis]
588 Proleón A, Torrejón D, Urra FA, Lazo F, López-Torres C, Fuentes-Retamal S, Quispe E, Bautista L, Agurto A, Gavilan RG, Sandoval GA, Rodríguez E, Sánchez EF, Yarlequé A, Vivas-Ruiz DE. Functional, immunological characterization, and anticancer activity of BaMtx: A new Lys49- PLA2 homologue isolated from the venom of Peruvian Bothrops atrox snake (Serpentes: Viperidae). Int J Biol Macromol 2022;206:990-1002. [PMID: 35321814 DOI: 10.1016/j.ijbiomac.2022.03.111] [Reference Citation Analysis]
589 Profilo E, Peña-altamira LE, Corricelli M, Castegna A, Danese A, Agrimi G, Petralla S, Giannuzzi G, Porcelli V, Sbano L, Viscomi C, Massenzio F, Palmieri EM, Giorgi C, Fiermonte G, Virgili M, Palmieri L, Zeviani M, Pinton P, Monti B, Palmieri F, Lasorsa FM. Down-regulation of the mitochondrial aspartate-glutamate carrier isoform 1 AGC1 inhibits proliferation and N-acetylaspartate synthesis in Neuro2A cells. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2017;1863:1422-35. [DOI: 10.1016/j.bbadis.2017.02.022] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
590 Choi BH, Coloff JL. The Diverse Functions of Non-Essential Amino Acids in Cancer. Cancers (Basel) 2019;11:E675. [PMID: 31096630 DOI: 10.3390/cancers11050675] [Cited by in Crossref: 48] [Cited by in F6Publishing: 38] [Article Influence: 16.0] [Reference Citation Analysis]
591 Mazat JP, Ransac S. The Fate of Glutamine in Human Metabolism. The Interplay with Glucose in Proliferating Cells. Metabolites. 2019;9. [PMID: 31027329 DOI: 10.1101/477224] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
592 Schwörer S, Berisa M, Violante S, Qin W, Zhu J, Hendrickson RC, Cross JR, Thompson CB. Proline biosynthesis is a vent for TGFβ-induced mitochondrial redox stress. EMBO J 2020;39:e103334. [PMID: 32134147 DOI: 10.15252/embj.2019103334] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 15.0] [Reference Citation Analysis]
593 Naz S, Leiker AJ, Choudhuri R, Preston O, Sowers AL, Gohain S, Gamson J, Mathias A, Van Waes C, Cook JA, Mitchell JB. Pharmacological Inhibition of HSP90 Radiosensitizes Head and Neck Squamous Cell Carcinoma Xenograft by Inhibition of DNA Damage Repair, Nucleotide Metabolism, and Radiation-Induced Tumor Vasculogenesis. Int J Radiat Oncol Biol Phys 2021;110:1295-305. [PMID: 33838214 DOI: 10.1016/j.ijrobp.2021.03.048] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
594 Igelmann S, Lessard F, Uchenunu O, Bouchard J, Fernandez-Ruiz A, Rowell MC, Lopes-Paciencia S, Papadopoli D, Fouillen A, Ponce KJ, Huot G, Mignacca L, Benfdil M, Kalegari P, Wahba HM, Pencik J, Vuong N, Quenneville J, Guillon J, Bourdeau V, Hulea L, Gagnon E, Kenner L, Moriggl R, Nanci A, Pollak MN, Omichinski JG, Topisirovic I, Ferbeyre G. A hydride transfer complex reprograms NAD metabolism and bypasses senescence. Mol Cell 2021;81:3848-3865.e19. [PMID: 34547241 DOI: 10.1016/j.molcel.2021.08.028] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
595 Donati G, Ravà M, Filipuzzi M, Nicoli P, Cassina L, Verrecchia A, Doni M, Rodighiero S, Parodi F, Boletta A, Vellano CP, Marszalek JR, Draetta GF, Amati B. Targeting mitochondrial respiration and the BCL2 family in high-grade MYC-associated B-cell lymphoma. Mol Oncol 2021. [PMID: 34632715 DOI: 10.1002/1878-0261.13115] [Reference Citation Analysis]
596 Chen J, Sutter BM, Shi L, Tu BP. GATOR1 regulates nitrogenic cataplerotic reactions of the mitochondrial TCA cycle. Nat Chem Biol 2017;13:1179-86. [PMID: 28920930 DOI: 10.1038/nchembio.2478] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.2] [Reference Citation Analysis]
597 Karlstaedt A, Schiffer W, Taegtmeyer H. Actionable Metabolic Pathways in Heart Failure and Cancer-Lessons From Cancer Cell Metabolism. Front Cardiovasc Med 2018;5:71. [PMID: 29971237 DOI: 10.3389/fcvm.2018.00071] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
598 Yang L, Garcia Canaveras JC, Chen Z, Wang L, Liang L, Jang C, Mayr JA, Zhang Z, Ghergurovich JM, Zhan L, Joshi S, Hu Z, McReynolds MR, Su X, White E, Morscher RJ, Rabinowitz JD. Serine Catabolism Feeds NADH when Respiration Is Impaired. Cell Metab 2020;31:809-821.e6. [PMID: 32187526 DOI: 10.1016/j.cmet.2020.02.017] [Cited by in Crossref: 41] [Cited by in F6Publishing: 38] [Article Influence: 20.5] [Reference Citation Analysis]
599 Allen EL, Ulanet DB, Pirman D, Mahoney CE, Coco J, Si Y, Chen Y, Huang L, Ren J, Choe S, Clasquin MF, Artin E, Fan ZP, Cianchetta G, Murtie J, Dorsch M, Jin S, Smolen GA. Differential Aspartate Usage Identifies a Subset of Cancer Cells Particularly Dependent on OGDH. Cell Rep 2016;17:876-90. [PMID: 27732861 DOI: 10.1016/j.celrep.2016.09.052] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 7.0] [Reference Citation Analysis]
600 Reznik E, Wang Q, La K, Schultz N, Sander C. Mitochondrial respiratory gene expression is suppressed in many cancers. Elife. 2017;6. [PMID: 28099114 DOI: 10.7554/elife.21592] [Cited by in Crossref: 55] [Cited by in F6Publishing: 39] [Article Influence: 11.0] [Reference Citation Analysis]
601 Khare S, Kim LC, Lobel G, Doulias PT, Ischiropoulos H, Nissim I, Keith B, Simon MC. ASS1 and ASL suppress growth in clear cell renal cell carcinoma via altered nitrogen metabolism. Cancer Metab 2021;9:40. [PMID: 34861885 DOI: 10.1186/s40170-021-00271-8] [Reference Citation Analysis]
602 Shen Y, Sherman JW, Chen X, Wang R. Phosphorylation of CDC25C by AMP-activated protein kinase mediates a metabolic checkpoint during cell-cycle G2/M-phase transition. J Biol Chem 2018;293:5185-99. [PMID: 29467227 DOI: 10.1074/jbc.RA117.001379] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
603 Chen WW, Freinkman E, Sabatini DM. Rapid immunopurification of mitochondria for metabolite profiling and absolute quantification of matrix metabolites. Nat Protoc 2017;12:2215-31. [PMID: 29532801 DOI: 10.1038/nprot.2017.104] [Cited by in Crossref: 36] [Cited by in F6Publishing: 27] [Article Influence: 7.2] [Reference Citation Analysis]
604 Song Z, Yang Y, Wu Y, Zheng M, Sun D, Li H, Chen L. Glutamic oxaloacetic transaminase 1 as a potential target in human cancer. Eur J Pharmacol 2022;917:174754. [PMID: 35007521 DOI: 10.1016/j.ejphar.2022.174754] [Reference Citation Analysis]
605 Park S, Safi R, Liu X, Baldi R, Liu W, Liu J, Locasale JW, Chang CY, McDonnell DP. Inhibition of ERRα Prevents Mitochondrial Pyruvate Uptake Exposing NADPH-Generating Pathways as Targetable Vulnerabilities in Breast Cancer. Cell Rep 2019;27:3587-3601.e4. [PMID: 31216477 DOI: 10.1016/j.celrep.2019.05.066] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 7.5] [Reference Citation Analysis]
606 Tian X, Zhang N, Yang Y, Wang Y, Chu J, Zhuang Y, Zhang S. The effect of redox environment on l -lactic acid production by Lactobacillus paracasei —A proof by genetically encoded in vivo NADH biosensor. Process Biochemistry 2015;50:2029-34. [DOI: 10.1016/j.procbio.2015.10.001] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
607 Sun L, Fu J, Zhou Y. Metabolism Controls the Balance of Th17/T-Regulatory Cells. Front Immunol 2017;8:1632. [PMID: 29230216 DOI: 10.3389/fimmu.2017.01632] [Cited by in Crossref: 41] [Cited by in F6Publishing: 45] [Article Influence: 8.2] [Reference Citation Analysis]
608 Spinelli JB, Haigis MC. The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol 2018;20:745-54. [PMID: 29950572 DOI: 10.1038/s41556-018-0124-1] [Cited by in Crossref: 281] [Cited by in F6Publishing: 279] [Article Influence: 70.3] [Reference Citation Analysis]
609 Molina JR, Sun Y, Protopopova M, Gera S, Bandi M, Bristow C, McAfoos T, Morlacchi P, Ackroyd J, Agip AA, Al-Atrash G, Asara J, Bardenhagen J, Carrillo CC, Carroll C, Chang E, Ciurea S, Cross JB, Czako B, Deem A, Daver N, de Groot JF, Dong JW, Feng N, Gao G, Gay J, Do MG, Greer J, Giuliani V, Han J, Han L, Henry VK, Hirst J, Huang S, Jiang Y, Kang Z, Khor T, Konoplev S, Lin YH, Liu G, Lodi A, Lofton T, Ma H, Mahendra M, Matre P, Mullinax R, Peoples M, Petrocchi A, Rodriguez-Canale J, Serreli R, Shi T, Smith M, Tabe Y, Theroff J, Tiziani S, Xu Q, Zhang Q, Muller F, DePinho RA, Toniatti C, Draetta GF, Heffernan TP, Konopleva M, Jones P, Di Francesco ME, Marszalek JR. An inhibitor of oxidative phosphorylation exploits cancer vulnerability. Nat Med 2018;24:1036-46. [PMID: 29892070 DOI: 10.1038/s41591-018-0052-4] [Cited by in Crossref: 259] [Cited by in F6Publishing: 251] [Article Influence: 64.8] [Reference Citation Analysis]
610 Tsogtbaatar E, Landin C, Minter-Dykhouse K, Folmes CDL. Energy Metabolism Regulates Stem Cell Pluripotency. Front Cell Dev Biol 2020;8:87. [PMID: 32181250 DOI: 10.3389/fcell.2020.00087] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 14.0] [Reference Citation Analysis]
611 Qu C, Zhang S, Wang W, Li M, Wang Y, van der Heijde-Mulder M, Shokrollahi E, Hakim MS, Raat NJH, Peppelenbosch MP, Pan Q. Mitochondrial electron transport chain complex III sustains hepatitis E virus replication and represents an antiviral target. FASEB J 2019;33:1008-19. [PMID: 30070932 DOI: 10.1096/fj.201800620R] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
612 Vatrinet R, Leone G, De Luise M, Girolimetti G, Vidone M, Gasparre G, Porcelli AM. The α-ketoglutarate dehydrogenase complex in cancer metabolic plasticity. Cancer Metab 2017;5:3. [PMID: 28184304 DOI: 10.1186/s40170-017-0165-0] [Cited by in Crossref: 43] [Cited by in F6Publishing: 37] [Article Influence: 8.6] [Reference Citation Analysis]
613 Ferreira WAS, de Oliveira EHC. Expression of GOT2 Is Epigenetically Regulated by DNA Methylation and Correlates with Immune Infiltrates in Clear-Cell Renal Cell Carcinoma. CIMB 2022;44:2472-89. [DOI: 10.3390/cimb44060169] [Reference Citation Analysis]
614 Patel D, Menon D, Bernfeld E, Mroz V, Kalan S, Loayza D, Foster DA. Aspartate Rescues S-phase Arrest Caused by Suppression of Glutamine Utilization in KRas-driven Cancer Cells. J Biol Chem 2016;291:9322-9. [PMID: 26921316 DOI: 10.1074/jbc.M115.710145] [Cited by in Crossref: 39] [Cited by in F6Publishing: 27] [Article Influence: 6.5] [Reference Citation Analysis]
615 Kľučková K, Thakker A, Vettore L, Escribano-Gonzalez C, Hindshaw RL, Tearle JLE, Goncalves J, Kaul B, Lavery GG, Favier J, Tennant DA. Succinate dehydrogenase deficiency in a chromaffin cell model retains metabolic fitness through the maintenance of mitochondrial NADH oxidoreductase function. FASEB J 2020;34:303-15. [PMID: 31914648 DOI: 10.1096/fj.201901456R] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
616 Porto V, Buceta D, Domínguez B, Carneiro C, Borrajo E, Fraile M, Davila‐ferreira N, Arias IR, Blanco JM, Blanco MC, Devida JM, Giovanetti LJ, Requejo FG, Hernández‐garrido JC, Calvino JJ, López‐haro M, Barone G, James AM, García‐caballero T, González‐castaño DM, Treder M, Huber W, Vidal A, Murphy MP, López‐quintela MA, Domínguez F. Silver Clusters of Five Atoms as Highly Selective Antitumoral Agents Through Irreversible Oxidation of Thiols. Adv Funct Materials. [DOI: 10.1002/adfm.202113028] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
617 Mei X, Guo Y, Xie Z, Zhong Y, Wu X, Xu D, Li Y, Liu N, Zhu ZJ. RIPK1 regulates starvation resistance by modulating aspartate catabolism. Nat Commun 2021;12:6144. [PMID: 34686667 DOI: 10.1038/s41467-021-26423-4] [Reference Citation Analysis]