BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zheng H, Ma B, Shi Y, Dai Q, Li D, Ren E, Zhu J, Liu J, Chen H, Yin Z, Chu C, Wang X, Liu G. Tumor microenvironment-triggered MoS2@GA-Fe nanoreactor: A self-rolling enhanced chemodynamic therapy and hydrogen sulfide treatment for hepatocellular carcinoma. Chemical Engineering Journal 2021;406:126888. [DOI: 10.1016/j.cej.2020.126888] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 25.0] [Reference Citation Analysis]
Number Citing Articles
1 Zhang H, Mao Z, Kang Y, Zhang W, Mei L, Ji X. Redox regulation and its emerging roles in cancer treatment. Coordination Chemistry Reviews 2023;475:214897. [DOI: 10.1016/j.ccr.2022.214897] [Reference Citation Analysis]
2 Wang Z, Rong F, Li Z, Li W, Kaur K, Wang Y. Tailoring gas-releasing nanoplatforms for wound treatment: An emerging approach. Chemical Engineering Journal 2023;452:139297. [DOI: 10.1016/j.cej.2022.139297] [Reference Citation Analysis]
3 Zhao Y, Wang S, Chen A, Kankala RK. Nanoarchitectured assembly and surface of two-dimensional (2D) transition metal dichalcogenides (TMDCs) for cancer therapy. Coordination Chemistry Reviews 2022;472:214765. [DOI: 10.1016/j.ccr.2022.214765] [Reference Citation Analysis]
4 Fan X, Fei W, Zhang M, Yang S, Zhao M, Zheng C. Nanotherapeutics for hydrogen sulfide-involved treatment: An emerging approach for cancer therapy. Nanotechnology Reviews 2022;11:2320-48. [DOI: 10.1515/ntrev-2022-0130] [Reference Citation Analysis]
5 Gao Y, Qiu W, Liang M, Ma X, Ye M, Xue P, Kang Y, Deng J, Xu Z. Active targeting redox-responsive mannosylated prodrug nanocolloids promote tumor recognition and cell internalization for enhanced colon cancer chemotherapy. Acta Biomater 2022:S1742-7061(22)00322-1. [PMID: 35640802 DOI: 10.1016/j.actbio.2022.05.046] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Yang Z, Chen H. Recent deveolpment of multifunctional responsive gas-releasing nanoplatforms for tumor therapeutic application. Nano Res . [DOI: 10.1007/s12274-022-4473-5] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
7 Zhang R, Liu T, Li W, Ma Z, Pei P, Zhang W, Yang K, Tao Y. Tumor microenvironment-responsive BSA nanocarriers for combined chemo/chemodynamic cancer therapy. J Nanobiotechnology 2022;20:223. [PMID: 35549949 DOI: 10.1186/s12951-022-01442-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Li CQ, Ma MW, Zhang B, Chen W, Yin ZY, Xie XT, Hou XL, Zhao YD, Liu B. A self-assembled nanoplatform based on Ag2S quantum dots and tellurium nanorods for combined chemo-photothermal therapy guided by H2O2-activated near-infrared-II fluorescence imaging. Acta Biomater 2022;140:547-60. [PMID: 34923095 DOI: 10.1016/j.actbio.2021.12.013] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
9 Chen D, Gao Y, Xiao Y, Wan S, Wu Z, Wang S, Ma X, Xu Z, Sun Z. Engineered nanogels simultaneously implement HDAC inhibition and chemotherapy to boost antitumor immunity via pyroptosis. Applied Materials Today 2022;26:101363. [DOI: 10.1016/j.apmt.2022.101363] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
10 He Y, Younis MR, Jiang C, He G, He J, Zhang Y, Liu H, Huang P, Lin J. Photoregulated plasmon enhanced controllable hydrogen sulfide delivery for photothermal augmented gas therapy. Applied Materials Today 2022;26:101313. [DOI: 10.1016/j.apmt.2021.101313] [Reference Citation Analysis]
11 Ding H, Chang J, He F, Gai S, Yang P. Hydrogen Sulfide: An Emerging Precision Strategy for Gas Therapy. Adv Healthc Mater 2022;11:e2101984. [PMID: 34788499 DOI: 10.1002/adhm.202101984] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
12 Yao X, Yang B, Xu J, He Q, Yang W. Novel gas‐based nanomedicines for cancer therapy. VIEW 2022;3:20200185. [DOI: 10.1002/viw.20200185] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
13 Liu C, Li C, Jiang S, Zhang C, Tian Y. pH-responsive hollow Fe–gallic acid coordination polymer for multimodal synergistic-therapy and MRI of cancer. Nanoscale Adv 2021;4:173-81. [DOI: 10.1039/d1na00721a] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
14 Wang B, Chen K, Zhang Q, Gu L, Luo Q, Li Z, Gong Q, Zhang H, Gu Z, Luo K. ROS-responsive amphiphilic block copolymer-drug conjugate: Design, synthesis and potential as an efficient drug delivery system via a positive feedback strategy. Chemical Engineering Journal 2021;425:131453. [DOI: 10.1016/j.cej.2021.131453] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
15 Zhou Y, Fan S, Feng L, Huang X, Chen X. Manipulating Intratumoral Fenton Chemistry for Enhanced Chemodynamic and Chemodynamic-Synergized Multimodal Therapy. Adv Mater 2021;33:e2104223. [PMID: 34580933 DOI: 10.1002/adma.202104223] [Cited by in Crossref: 38] [Cited by in F6Publishing: 47] [Article Influence: 38.0] [Reference Citation Analysis]
16 Jia C, Guo Y, Wu FG. Chemodynamic Therapy via Fenton and Fenton-Like Nanomaterials: Strategies and Recent Advances. Small 2021;:e2103868. [PMID: 34729913 DOI: 10.1002/smll.202103868] [Cited by in Crossref: 35] [Cited by in F6Publishing: 43] [Article Influence: 35.0] [Reference Citation Analysis]
17 Cui X, Li M, Wei F, Tang X, Xu W, Li M, Han X. Biomimetic light-activatable graphene-based nanoarchitecture for synergistic chemophotothermal therapy. Chemical Engineering Journal 2021;420:127710. [DOI: 10.1016/j.cej.2020.127710] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
18 Wang HY, Su ZC, He XW, Li WY, Zhang YK. H2O2 self-supplying degradable epitope imprinted polymers for targeted fluorescence imaging and chemodynamic therapy. Nanoscale 2021;13:12553-64. [PMID: 34477614 DOI: 10.1039/d1nr02524d] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
19 Wang B, Li H, Li Z, Luo Q, Gu Z, Zhang H, Gong Q, Luo K. Amphiphilic block polymer-gadolinium conjugates: Design, synthesis and application as efficient and safe nanoscale magnetic resonance imaging contrast agents. Chemical Engineering Journal 2021;416:129170. [DOI: 10.1016/j.cej.2021.129170] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
20 Li Q, Dong Z, Chen M, Feng L. Phenolic molecules constructed nanomedicine for innovative cancer treatment. Coordination Chemistry Reviews 2021;439:213912. [DOI: 10.1016/j.ccr.2021.213912] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
21 Yu Y, Lu L, Yang Q, Zupanic A, Xu Q, Jiang L. Using MoS 2 Nanomaterials to Generate or Remove Reactive Oxygen Species: A Review. ACS Appl Nano Mater 2021;4:7523-37. [DOI: 10.1021/acsanm.1c00751] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 11.0] [Reference Citation Analysis]
22 Pidamaimaiti G, Huang X, Pang K, Su Z, Wang F. A microenvironment-mediated Cu 2 O–MoS 2 nanoplatform with enhanced Fenton-like reaction activity for tumor chemodynamic/photothermal therapy. New J Chem 2021;45:10296-302. [DOI: 10.1039/d1nj01272j] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 9.0] [Reference Citation Analysis]