1 |
Shi X, Ma L, Li Y, Shi Z, Wei Q, Ma G, Zhang W, Guo Y, Wu P, Hu Z. Double Hydrogen‐bonding Reinforced High‐Performance Supramolecular Hydrogel Thermocell for Self‐powered Sensing Remote‐Controlled by Light. Adv Funct Materials 2023. [DOI: 10.1002/adfm.202211720] [Reference Citation Analysis]
|
2 |
Feng X, Li Y, Zhang M, Li Y, Gong Y, Liu M, Bai Y, Wu C. Sulfur Encapsulation and Sulfur Doping Synergistically Enhance Sodium Ion Storage in Microporous Carbon Anodes. ACS Appl Mater Interfaces 2022. [DOI: 10.1021/acsami.2c15694] [Reference Citation Analysis]
|
3 |
Reinoso DM, Frechero MA. Strategies for rational design of polymer-based solid electrolytes for advanced lithium energy storage applications. Energy Storage Materials 2022;52:430-64. [DOI: 10.1016/j.ensm.2022.08.019] [Reference Citation Analysis]
|
4 |
Pan J, Wang N, Fan HJ. Gel Polymer Electrolytes Design for Na-Ion Batteries. Small Methods 2022;:e2201032. [PMID: 36228103 DOI: 10.1002/smtd.202201032] [Reference Citation Analysis]
|
5 |
Aziam H, Larhrib B, Hakim C, Sabi N, Ben Youcef H, Saadoune I. Solid-state electrolytes for beyond lithium-ion batteries: A review. Renewable and Sustainable Energy Reviews 2022;167:112694. [DOI: 10.1016/j.rser.2022.112694] [Reference Citation Analysis]
|
6 |
Zhou B, Yang C, Wu F, Deng T, Guo S, Zhu G, Jiang Y, Wang Z. Cyclotriphosphazene-based flame-retardant polymer electrolytes for high performance sodium metal batteries. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.138385] [Reference Citation Analysis]
|
7 |
Liu M, Wang Y, Wu F, Bai Y, Li Y, Gong Y, Feng X, Li Y, Wang X, Wu C. Advances in Carbon Materials for Sodium and Potassium Storage. Adv Funct Materials. [DOI: 10.1002/adfm.202203117] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
|
8 |
Chen H, Yu L, Cao X, Yang Q, Liu Y, Wei Y, Zeng J, Zhong L, Qiu Y. The multicomponent synergistic effect of a hierarchical Li0.485La0.505TiO3 solid-state electrolyte for dendrite-free lithium-metal batteries. Nanoscale 2022;14:7768-77. [PMID: 35603980 DOI: 10.1039/d2nr01143c] [Reference Citation Analysis]
|
9 |
Fang Z, Zhao M, Peng Y, Guan S. Combining Organic Plastic Salts with a Bicontinuous Electrospun PVDF-HFP/Li7La3Zr2O12 Membrane: LiF-Rich Solid-Electrolyte Interphase Enabling Stable Solid-State Lithium Metal Batteries. ACS Appl Mater Interfaces 2022;14:18922-34. [PMID: 35436406 DOI: 10.1021/acsami.2c02952] [Reference Citation Analysis]
|
10 |
Zhang K, Wu F, Wang X, Weng S, Yang X, Zhao H, Guo R, Sun Y, Zhao W, Song T, Wang X, Bai Y, Wu C. 8.5 µ m‐Thick Flexible‐Rigid Hybrid Solid–Electrolyte/Lithium Integration for Air‐Stable and Interface‐Compatible All‐Solid‐State Lithium Metal Batteries. Advanced Energy Materials. [DOI: 10.1002/aenm.202200368] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
|
11 |
Han X, Bai Y, Zhao R, Li Y, Wu F, Wu C. Electrolytes for Rechargeable Aluminum Batteries. Progress in Materials Science 2022. [DOI: 10.1016/j.pmatsci.2022.100960] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
|
12 |
Parveen S, Sehrawat P, Hashmi SA. Diglyme-Incorporated Gelled Polymer: An Efficient Quasi-Solid-State Electrolyte for Sodium-Ion Batteries. ACS Appl Energy Mater 2022;5:930-41. [DOI: 10.1021/acsaem.1c03326] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
13 |
Wang R, Liu F, Duan J, Ren Y, Li M, Cao J. Enhanced Electrochemical Performance of Al- and Nb-Codoped LLZO Ceramic Powder and Its Composite Solid Electrolyte. ACS Appl Energy Mater 2021;4:13912-21. [DOI: 10.1021/acsaem.1c02644] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
14 |
Feng X, Bai Y, Zheng L, Liu M, Li Y, Zhao R, Li Y, Wu C. Effect of Different Nitrogen Configurations on Sodium Storage Properties of Carbon Anodes for Sodium Ion Batteries. ACS Appl Mater Interfaces 2021;13:56285-95. [PMID: 34784164 DOI: 10.1021/acsami.1c18464] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
|
15 |
Menisha M, Senavirathna S, Vignarooban K, Iqbal N, Pitawala H, Kannan A. Synthesis, electrochemical and optical studies of poly(ethylene oxide) based gel-polymer electrolytes for sodium-ion secondary batteries. Solid State Ionics 2021;371:115755. [DOI: 10.1016/j.ssi.2021.115755] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
16 |
Zhang K, Wu F, Wang X, Zheng L, Yang X, Zhao H, Sun Y, Zhao W, Bai Y, Wu C. An Ion‐Dipole‐Reinforced Polyether Electrolyte with Ion‐Solvation Cages Enabling High–Voltage‐Tolerant and Ion‐Conductive Solid‐State Lithium Metal Batteries. Adv Funct Materials 2022;32:2107764. [DOI: 10.1002/adfm.202107764] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
|
17 |
Seo J, Lee G, Hur J, Sung M, Seo J, Kim D. Mechanically Interlocked Polymer Electrolyte with Built‐In Fast Molecular Shuttles for All‐Solid‐State Lithium Batteries. Adv Energy Mater 2021;11:2102583. [DOI: 10.1002/aenm.202102583] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
|
18 |
Dong R, Zheng L, Bai Y, Ni Q, Li Y, Wu F, Ren H, Wu C. Elucidating the Mechanism of Fast Na Storage Kinetics in Ether Electrolytes for Hard Carbon Anodes. Adv Mater 2021;33:e2008810. [PMID: 34331349 DOI: 10.1002/adma.202008810] [Cited by in Crossref: 43] [Cited by in F6Publishing: 48] [Article Influence: 21.5] [Reference Citation Analysis]
|
19 |
Li Y, Liu M, Feng X, Li Y, Wu F, Bai Y, Wu C. How Can the Electrode Influence the Formation of the Solid Electrolyte Interface? ACS Energy Lett 2021;6:3307-20. [DOI: 10.1021/acsenergylett.1c01359] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 10.5] [Reference Citation Analysis]
|
20 |
Zhao C, Guo J, Gu Z, Wang X, Zhao X, Li W, Yu H, Wu X. Flexible quasi-solid-state sodium-ion full battery with ultralong cycle life, high energy density and high-rate capability. Nano Res 2022;15:925-32. [DOI: 10.1007/s12274-021-3577-7] [Cited by in Crossref: 40] [Cited by in F6Publishing: 26] [Article Influence: 20.0] [Reference Citation Analysis]
|
21 |
Wang Y, Akin M, Qiao X, Yan Z, Zhou X. Greatly enhanced energy density of all‐solid‐state rechargeable battery operating in high humidity environments. Int J Energy Res 2021;45:16794-805. [DOI: 10.1002/er.6928] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
22 |
Zhang Q, Lu Y, Guo W, Shao Y, Liu L, Lu J, Rong X, Han X, Li H, Chen L, Hu Y. Hunting Sodium Dendrites in NASICON-Based Solid-State Electrolytes. Energy Material Advances 2021;2021:1-10. [DOI: 10.34133/2021/9870879] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
|
23 |
Wu F, Liu M, Li Y, Feng X, Zhang K, Bai Y, Wang X, Wu C. High-Mass-Loading Electrodes for Advanced Secondary Batteries and Supercapacitors. Electrochem Energ Rev 2021;4:382-446. [DOI: 10.1007/s41918-020-00093-0] [Cited by in Crossref: 66] [Cited by in F6Publishing: 84] [Article Influence: 33.0] [Reference Citation Analysis]
|
24 |
Li Z, Liu P, Zhu K, Zhang Z, Si Y, Wang Y, Jiao L. Solid-State Electrolytes for Sodium Metal Batteries. Energy Fuels 2021;35:9063-79. [DOI: 10.1021/acs.energyfuels.1c00347] [Cited by in Crossref: 19] [Cited by in F6Publishing: 23] [Article Influence: 9.5] [Reference Citation Analysis]
|
25 |
Dong R, Wu F, Bai Y, Wu C. Sodium Storage Mechanism and Optimization Strategies for Hard Carbon Anode of Sodium Ion Batteries. Acta Chimica Sinica 2021;79:1461. [DOI: 10.6023/a21060284] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
26 |
Gao W, Du G, Qi Y, Yang Q, Du W, Xu M. Na 2 TiV ( PO 4 ) 3 @C composite with excellent Na‐storage performance based on a solid‐state polymer electrolyte membrane. Int J Energy Res 2021;45:8008-17. [DOI: 10.1002/er.6303] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
|
27 |
Wu F, Zhang K, Liu Y, Gao H, Bai Y, Wang X, Wu C. Polymer electrolytes and interfaces toward solid-state batteries: Recent advances and prospects. Energy Storage Materials 2020;33:26-54. [DOI: 10.1016/j.ensm.2020.08.002] [Cited by in Crossref: 50] [Cited by in F6Publishing: 55] [Article Influence: 16.7] [Reference Citation Analysis]
|
28 |
Chen G, Zhang K, Liu Y, Ye L, Gao Y, Lin W, Xu H, Wang X, Bai Y, Wu C. Flame-retardant gel polymer electrolyte and interface for quasi-solid-state sodium ion batteries. Chemical Engineering Journal 2020;401:126065. [DOI: 10.1016/j.cej.2020.126065] [Cited by in Crossref: 42] [Cited by in F6Publishing: 44] [Article Influence: 14.0] [Reference Citation Analysis]
|
29 |
Li X, Chen W, Qian Q, Huang H, Chen Y, Wang Z, Chen Q, Yang J, Li J, Mai Y. Electrospinning‐Based Strategies for Battery Materials. Adv Energy Mater 2021;11:2000845. [DOI: 10.1002/aenm.202000845] [Cited by in Crossref: 83] [Cited by in F6Publishing: 88] [Article Influence: 27.7] [Reference Citation Analysis]
|
30 |
Gao Y, Chen G, Wang X, Yang H, Wang Z, Lin W, Xu H, Bai Y, Wu C. PY13FSI-Infiltrated SBA-15 as Nonflammable and High Ion-Conductive Ionogel Electrolytes for Quasi-Solid-State Sodium-Ion Batteries. ACS Appl Mater Interfaces 2020;12:22981-91. [PMID: 32323970 DOI: 10.1021/acsami.0c04878] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 6.7] [Reference Citation Analysis]
|