BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Liu C, Han Y, Zhang J, Kankala RK, Wang S, Chen A. Rerouting engineered metal-dependent shapes of mesoporous silica nanocontainers to biodegradable Janus-type (sphero-ellipsoid) nanoreactors for chemodynamic therapy. Chemical Engineering Journal 2019;370:1188-99. [DOI: 10.1016/j.cej.2019.03.272] [Cited by in Crossref: 70] [Cited by in F6Publishing: 72] [Article Influence: 23.3] [Reference Citation Analysis]
Number Citing Articles
1 Li Y, Ma C, Yu T, Cai Q. Cocoon-shaped hollow mesoporous silica ellipsoids controlled by interfacial destabilization growth kinetics. Materials Research Letters 2023;11:117-25. [DOI: 10.1080/21663831.2022.2126736] [Reference Citation Analysis]
2 Lu J, Yang Y, Xu Q, Lin Y, Feng S, Mao Y, Wang D, Wang S, Zhao Q. Recent advances in multi-configurable nanomaterials for improved chemodynamic therapy. Coordination Chemistry Reviews 2023;474:214861. [DOI: 10.1016/j.ccr.2022.214861] [Reference Citation Analysis]
3 Youden B, Jiang R, Carrier AJ, Servos MR, Zhang X. A Nanomedicine Structure–Activity Framework for Research, Development, and Regulation of Future Cancer Therapies. ACS Nano 2022. [DOI: 10.1021/acsnano.2c06337] [Reference Citation Analysis]
4 Dong Z, Yang C, Wang Z, Zhong Z, Wong M, Li H. Tumor microenvironment-responsive Zn/Cu nanoparticles for enhanced chemodynamic therapy. Smart Materials in Medicine 2022. [DOI: 10.1016/j.smaim.2022.11.002] [Reference Citation Analysis]
5 Wu L, Pan H, Huang W, Wang M, Hu Z, Zhang F. Self-assembled degradable iron-doped mesoporous silica nanoparticles for the smart delivery of prochloraz to improve plant protection and reduce environmental impact. Environmental Technology & Innovation 2022;28:102890. [DOI: 10.1016/j.eti.2022.102890] [Reference Citation Analysis]
6 Hu H, Xu Q, Mo Z, Hu X, He Q, Zhang Z, Xu Z. New anti-cancer explorations based on metal ions. J Nanobiotechnol 2022;20. [DOI: 10.1186/s12951-022-01661-w] [Reference Citation Analysis]
7 Liu C, Fu C, Shi Y, Zhong J, Tang H, Zhang J, Kumar Kankala R, Wang S, Chen A. Dual-responsive nanomotors for deep tumor penetration and subcellular arrangement. Materials & Design 2022;222:111039. [DOI: 10.1016/j.matdes.2022.111039] [Reference Citation Analysis]
8 Tan X, Liao D, Rao C, Zhou L, Tan Z, Pan Y, Singh A, Kumar A, Liu J, Li B. Recent advances in nano-architectonics of metal-organic frameworks for chemodynamic therapy. Journal of Solid State Chemistry 2022;314:123352. [DOI: 10.1016/j.jssc.2022.123352] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 7.0] [Reference Citation Analysis]
9 Zhao W, Wang W, Meng F, Du Y, Ji Q, Quan H. One-pot synthesis of bimetallic Fe/Co incorporated silica hollow spheres with superior peroxidase-like activity. Chinese Chemical Letters 2022. [DOI: 10.1016/j.cclet.2022.107858] [Reference Citation Analysis]
10 Rahimi H, Abdollahzade A, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. Targeted delivery of doxorubicin to tumor cells using engineered circular bivalent aptamer. Journal of Drug Delivery Science and Technology 2022;75:103692. [DOI: 10.1016/j.jddst.2022.103692] [Reference Citation Analysis]
11 Ahmadi F, Sodagar-Taleghani A, Ebrahimnejad P, Pouya Hadipour Moghaddam S, Ebrahimnejad F, Asare-Addo K, Nokhodchi A. A review on the latest developments of mesoporous silica nanoparticles as a promising platform for diagnosis and treatment of cancer. Int J Pharm 2022;625:122099. [PMID: 35961417 DOI: 10.1016/j.ijpharm.2022.122099] [Reference Citation Analysis]
12 Hassanzadeh P, Atyabi F, Dinarvand R. Nanobionics: From plant empowering to the infectious disease treatment. J Control Release 2022;349:890-901. [PMID: 35901860 DOI: 10.1016/j.jconrel.2022.07.028] [Reference Citation Analysis]
13 Xia H, Li B, Zhao Y, Han Y, Wang S, Chen A, Kankala RK. Nanoarchitectured manganese dioxide (MnO2)-based assemblies for biomedicine. Coordination Chemistry Reviews 2022;464:214540. [DOI: 10.1016/j.ccr.2022.214540] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
14 Zhang X, Zhu Y, Fan L, Ling J, Yang LY, Wang N, Ouyang XK. Delivery of curcumin by fucoidan-coated mesoporous silica nanoparticles: Fabrication, characterization, and in vitro release performance. Int J Biol Macromol 2022;211:368-79. [PMID: 35577185 DOI: 10.1016/j.ijbiomac.2022.05.086] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
15 Han Y, Liu C, Chen B, Fu C, Kankala RK, Wang S, Chen A. Orchestrated tumor apoptosis (Cu2+) and bone tissue calcification (Ca2+) by hierarchical Copper/Calcium-ensembled bioactive silica for osteosarcoma therapy. Chemical Engineering Journal 2022;435:134820. [DOI: 10.1016/j.cej.2022.134820] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Kankala RK, Han Y, Xia H, Wang S, Chen A. Nanoarchitectured prototypes of mesoporous silica nanoparticles for innovative biomedical applications. J Nanobiotechnol 2022;20. [DOI: 10.1186/s12951-022-01315-x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 12.0] [Reference Citation Analysis]
17 Li X, Chen L, Cui D, Jiang W, Han L, Niu N. Preparation and application of Janus nanoparticles: Recent development and prospects. Coordination Chemistry Reviews 2022;454:214318. [DOI: 10.1016/j.ccr.2021.214318] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
18 Zhou S, Zhong Q, Wang Y, Hu P, Zhong W, Huang C, Yu Z, Ding C, Liu H, Fu J. Chemically engineered mesoporous silica nanoparticles-based intelligent delivery systems for theranostic applications in multiple cancerous/non-cancerous diseases. Coordination Chemistry Reviews 2022;452:214309. [DOI: 10.1016/j.ccr.2021.214309] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 27.0] [Reference Citation Analysis]
19 Liu Y, Pelster T, Lee T, Wang Y, Luo G. Study on the three-stage growth of silica nanoparticles prepared by the drop-by-drop precipitation method. Powder Technology 2022;397:117115. [DOI: 10.1016/j.powtec.2022.117115] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Sun Q, Wang Z, Liu B, He F, Gai S, Yang P, Yang D, Li C, Lin J. Recent advances on endogenous/exogenous stimuli-triggered nanoplatforms for enhanced chemodynamic therapy. Coordination Chemistry Reviews 2022;451:214267. [DOI: 10.1016/j.ccr.2021.214267] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 23.0] [Reference Citation Analysis]
21 Ding Y, Dai Y, Wu M, Li L. Glutathione-mediated nanomedicines for cancer diagnosis and therapy. Chemical Engineering Journal 2021;426:128880. [DOI: 10.1016/j.cej.2021.128880] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 17.0] [Reference Citation Analysis]
22 Jia C, Guo Y, Wu FG. Chemodynamic Therapy via Fenton and Fenton-Like Nanomaterials: Strategies and Recent Advances. Small 2021;:e2103868. [PMID: 34729913 DOI: 10.1002/smll.202103868] [Cited by in Crossref: 35] [Cited by in F6Publishing: 43] [Article Influence: 35.0] [Reference Citation Analysis]
23 Qiao L, Chen M, Li S, Hu J, Gong C, Zhang Z, Cao X. A peptide-based subunit candidate vaccine against SARS-CoV-2 delivered by biodegradable mesoporous silica nanoparticles induced high humoral and cellular immunity in mice. Biomater Sci 2021;9:7287-96. [PMID: 34612299 DOI: 10.1039/d1bm01060c] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
24 Wang X, Zhong X, Li J, Liu Z, Cheng L. Inorganic nanomaterials with rapid clearance for biomedical applications. Chem Soc Rev 2021;50:8669-742. [PMID: 34156040 DOI: 10.1039/d0cs00461h] [Cited by in Crossref: 92] [Cited by in F6Publishing: 111] [Article Influence: 92.0] [Reference Citation Analysis]
25 Gowsalya K, Yasothamani V, Vivek R. Emerging indocyanine green-integrated nanocarriers for multimodal cancer therapy: a review. Nanoscale Adv 2021;3:3332-52. [PMID: 36133722 DOI: 10.1039/d1na00059d] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
26 Lu Q, Liu Y, Tao S, Cao X, Li H, Wang X, Feng J, Ouyang P, Chen K. Metal-surfactant hybridize living cells to form micro-urchin with high catalytic activity. Chemical Engineering Journal 2021;413:127452. [DOI: 10.1016/j.cej.2020.127452] [Reference Citation Analysis]
27 Mo J, Xu Y, Zhu L, Wei W, Zhao J. A Cysteine-Mediated Synthesis of Red Phosphorus Nanosheets. Angew Chem Int Ed Engl 2021;60:12524-31. [PMID: 33599016 DOI: 10.1002/anie.202101486] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
28 Mo J, Xu Y, Zhu L, Wei W, Zhao J. A Cysteine‐Mediated Synthesis of Red Phosphorus Nanosheets. Angew Chem 2021;133:12632-12639. [DOI: 10.1002/ange.202101486] [Reference Citation Analysis]
29 Xu J, Yan X, Ge X, Zhang M, Dang X, Yang Y, Xu F, Luo Y, Li G. Novel multi-stimuli responsive functionalized PEG-based co-delivery nanovehicles toward sustainable treatments of multidrug resistant tumor. J Mater Chem B 2021;9:1297-314. [PMID: 33443252 DOI: 10.1039/d0tb02192j] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
30 Xu PY, Zheng X, Kankala RK, Wang SB, Chen AZ. Advances in Indocyanine Green-Based Codelivery Nanoplatforms for Combinatorial Therapy. ACS Biomater Sci Eng 2021;7:939-62. [PMID: 33539071 DOI: 10.1021/acsbiomaterials.0c01644] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
31 Lu Y, Jia D, Ma X, Liang M, Hou S, Qiu W, Gao Y, Xue P, Kang Y, Xu Z. Reduction-Responsive Chemo-Capsule-Based Prodrug Nanogel for Synergistic Treatment of Tumor Chemotherapy. ACS Appl Mater Interfaces 2021;13:8940-51. [PMID: 33565847 DOI: 10.1021/acsami.0c21710] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 14.0] [Reference Citation Analysis]
32 Ni N, Su Y, Wei Y, Ma Y, Zhao L, Sun X. Tuning Nanosiliceous Framework for Enhanced Cancer Theranostic Applications. Adv Therap 2021;4:2000218. [DOI: 10.1002/adtp.202000218] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
33 Tang Z, Zhao P, Wang H, Liu Y, Bu W. Biomedicine Meets Fenton Chemistry. Chem Rev 2021;121:1981-2019. [DOI: 10.1021/acs.chemrev.0c00977] [Cited by in Crossref: 150] [Cited by in F6Publishing: 172] [Article Influence: 150.0] [Reference Citation Analysis]
34 Jia C, Zhang M, He XW, Li WY, Zhang YK. Preparation of responsive "dual-lock" nanoparticles and their application in collaborative therapy based on CuS coordination. J Mater Chem B 2021;9:1049-58. [PMID: 33399610 DOI: 10.1039/d0tb02490b] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
35 Tan L, He C. Advances in inorganic-based colloidal nanovehicles functionalized for nitric oxide delivery. Colloids Surf B Biointerfaces 2021;199:111508. [PMID: 33340932 DOI: 10.1016/j.colsurfb.2020.111508] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
36 Wang X, Zhong X, Liu Z, Cheng L. Recent progress of chemodynamic therapy-induced combination cancer therapy. Nano Today 2020;35:100946. [DOI: 10.1016/j.nantod.2020.100946] [Cited by in Crossref: 176] [Cited by in F6Publishing: 199] [Article Influence: 88.0] [Reference Citation Analysis]
37 Meng X, Zhang X, Liu M, Cai B, He N, Wang Z. Fenton reaction-based nanomedicine in cancer chemodynamic and synergistic therapy. Applied Materials Today 2020;21:100864. [DOI: 10.1016/j.apmt.2020.100864] [Cited by in Crossref: 41] [Cited by in F6Publishing: 44] [Article Influence: 20.5] [Reference Citation Analysis]
38 Hao YN, Zhang WX, Gao YR, Wei YN, Shu Y, Wang JH. State-of-the-art advances of copper-based nanostructures in the enhancement of chemodynamic therapy. J Mater Chem B 2021;9:250-66. [PMID: 33237121 DOI: 10.1039/d0tb02360d] [Cited by in Crossref: 40] [Cited by in F6Publishing: 50] [Article Influence: 20.0] [Reference Citation Analysis]
39 Wang Y, Kankala RK, Zhang J, Hao L, Zhu K, Wang S, Zhang YS, Chen A. Modeling Endothelialized Hepatic Tumor Microtissues for Drug Screening. Adv Sci (Weinh) 2020;7:2002002. [PMID: 33173735 DOI: 10.1002/advs.202002002] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
40 Tang HX, Liu CG, Zhang JT, Zheng X, Yang DY, Kankala RK, Wang SB, Chen AZ. Biodegradable Quantum Composites for Synergistic Photothermal Therapy and Copper-Enhanced Chemotherapy. ACS Appl Mater Interfaces 2020;12:47289-98. [PMID: 32975929 DOI: 10.1021/acsami.0c14636] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 10.5] [Reference Citation Analysis]
41 Zhou Z, Zhang R, Jia G, Wang Y, Luo Y, Xu F, Chen Y. Controlled release of DOX mediated by glutathione and pH dual-responsive hollow mesoporous silicon coated with polydopamine graft poly(poly(ethylene glycol) methacrylate) nanoparticles for cancer therapy. Journal of the Taiwan Institute of Chemical Engineers 2020;115:60-70. [DOI: 10.1016/j.jtice.2020.10.023] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
42 Noureddine A, Maestas-Olguin A, Saada EA, LaBauve AE, Agola JO, Baty KE, Howard T, Sabo JK, Espinoza CRS, Doudna JA, Schoeniger JS, Butler KS, Negrete OA, Brinker CJ, Serda RE. Engineering of monosized lipid-coated mesoporous silica nanoparticles for CRISPR delivery. Acta Biomater 2020;114:358-68. [PMID: 32702530 DOI: 10.1016/j.actbio.2020.07.027] [Cited by in Crossref: 30] [Cited by in F6Publishing: 22] [Article Influence: 15.0] [Reference Citation Analysis]
43 Liu CG, Tang HX, Zheng X, Yang DY, Zhang Y, Zhang JT, Kankala RK, Wang SB, Liu G, Chen AZ. Near-Infrared-Activated Lysosome Pathway Death Induced by ROS Generated from Layered Double Hydroxide-Copper Sulfide Nanocomposites. ACS Appl Mater Interfaces 2020;12:40673-83. [PMID: 32786245 DOI: 10.1021/acsami.0c11739] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 14.5] [Reference Citation Analysis]
44 Zhao Y, Chen B, Kankala RK, Wang S, Chen A. Recent Advances in Combination of Copper Chalcogenide-Based Photothermal and Reactive Oxygen Species-Related Therapies. ACS Biomater Sci Eng 2020;6:4799-815. [DOI: 10.1021/acsbiomaterials.0c00830] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
45 Pan Y, Xu P, Chen B, Fu C, Kankala RK, Chen A, Wang S. Supercritical antisolvent process-assisted fabrication of chrysin-polyvinylpyrrolidone sub-microparticles for improved anticancer efficiency. The Journal of Supercritical Fluids 2020;162:104847. [DOI: 10.1016/j.supflu.2020.104847] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
46 He H, Du L, Guo H, An Y, Lu L, Chen Y, Wang Y, Zhong H, Shen J, Wu J, Shuai X. Redox Responsive Metal Organic Framework Nanoparticles Induces Ferroptosis for Cancer Therapy. Small 2020;16:2001251. [DOI: 10.1002/smll.202001251] [Cited by in Crossref: 45] [Cited by in F6Publishing: 48] [Article Influence: 22.5] [Reference Citation Analysis]
47 Tang H, Cai Y, Liu C, Zhang J, Kankala RK, Wang S, Chen A. Sub-micronization of disulfiram and disulfiram-copper complexes by Rapid expansion of supercritical solution toward augmented anticancer effect. Journal of CO2 Utilization 2020;39:101187. [DOI: 10.1016/j.jcou.2020.101187] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
48 Xu P, Fu C, Kankala RK, Wang S, Chen A. Supercritical carbon dioxide-assisted nanonization of dihydromyricetin for anticancer and bacterial biofilm inhibition efficacies. The Journal of Supercritical Fluids 2020;161:104840. [DOI: 10.1016/j.supflu.2020.104840] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
49 Chen B, Kankala RK, Zhang Y, Xiang S, Tang H, Wang Q, Yang D, Wang S, Zhang YS, Liu G, Chen A. Gambogic acid augments black phosphorus quantum dots (BPQDs)-based synergistic chemo-photothermal therapy through downregulating heat shock protein expression. Chemical Engineering Journal 2020;390:124312. [DOI: 10.1016/j.cej.2020.124312] [Cited by in Crossref: 56] [Cited by in F6Publishing: 57] [Article Influence: 28.0] [Reference Citation Analysis]
50 Kankala RK, Han YH, Na J, Lee CH, Sun Z, Wang SB, Kimura T, Ok YS, Yamauchi Y, Chen AZ, Wu KC. Nanoarchitectured Structure and Surface Biofunctionality of Mesoporous Silica Nanoparticles. Adv Mater 2020;32:e1907035. [PMID: 32319133 DOI: 10.1002/adma.201907035] [Cited by in Crossref: 178] [Cited by in F6Publishing: 187] [Article Influence: 89.0] [Reference Citation Analysis]
51 ZhuGe DL, Wang LF, Chen R, Li XZ, Huang ZW, Yao Q, Chen B, Zhao YZ, Xu HL, Yuan JD. Cross-linked nanoparticles of silk fibroin with proanthocyanidins as a promising vehicle of indocyanine green for photo-thermal therapy of glioma. Artif Cells Nanomed Biotechnol 2019;47:4293-304. [PMID: 31810396 DOI: 10.1080/21691401.2019.1699819] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
52 Kankala RK, Liu C, Yang D, Wang S, Chen A. Ultrasmall platinum nanoparticles enable deep tumor penetration and synergistic therapeutic abilities through free radical species-assisted catalysis to combat cancer multidrug resistance. Chemical Engineering Journal 2020;383:123138. [DOI: 10.1016/j.cej.2019.123138] [Cited by in Crossref: 76] [Cited by in F6Publishing: 78] [Article Influence: 38.0] [Reference Citation Analysis]
53 Varaprasad K, López M, Núñez D, Jayaramudu T, Sadiku ER, Karthikeyan C, Oyarzúnc P. Antibiotic copper oxide-curcumin nanomaterials for antibacterial applications. Journal of Molecular Liquids 2020;300:112353. [DOI: 10.1016/j.molliq.2019.112353] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 19.5] [Reference Citation Analysis]
54 Yang S, Fan J, Lin S, Wang Y, Liu C. Novel pH-responsive biodegradable organosilica nanoparticles as drug delivery system for cancer therapy. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2020;585:124133. [DOI: 10.1016/j.colsurfa.2019.124133] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
55 Chen Q, Yang D, Yu L, Jing X, Chen Y. Catalytic chemistry of iron-free Fenton nanocatalysts for versatile radical nanotherapeutics. Mater Horiz 2020;7:317-37. [DOI: 10.1039/c9mh01565e] [Cited by in Crossref: 46] [Cited by in F6Publishing: 48] [Article Influence: 23.0] [Reference Citation Analysis]
56 Mao C, Zheng J, Matsagar BM, Kankala RK, Ahamad T, Yang Y, Wu KC, Zhang X. Highly-efficient Ru/Al–SBA-15 catalysts with strong Lewis acid sites for the water-assisted hydrogenation of p -phthalic acid. Catal Sci Technol 2020;10:2443-51. [DOI: 10.1039/d0cy00047g] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
57 Ren C, Cheng Y, Li W, Liu P, Yang L, Lu Q, Xu M, Tan F, Li J, Li N. Ultra-small Bi 2 S 3 nanodot-doped reversible Fe( ii / iii )-based hollow mesoporous Prussian blue nanocubes for amplified tumor oxidative stress-augmented photo-/radiotherapy. Biomater Sci 2020;8:1981-95. [DOI: 10.1039/c9bm02014d] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
58 Li X, Gao F, Dong Y, Li X. Strategies to Regulate the Degradability of Mesoporous Silica-based Nanoparticles for Biomedical Applications. NANO 2019;14:1930008. [DOI: 10.1142/s1793292019300081] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
59 Kankala RK, Zhang H, Liu C, Kanubaddi KR, Lee C, Wang S, Cui W, Santos HA, Lin K, Chen A. Metal Species–Encapsulated Mesoporous Silica Nanoparticles: Current Advancements and Latest Breakthroughs. Adv Funct Mater 2019;29:1902652. [DOI: 10.1002/adfm.201902652] [Cited by in Crossref: 64] [Cited by in F6Publishing: 67] [Article Influence: 21.3] [Reference Citation Analysis]
60 Xiang S, Chen B, Kankala RK, Wang S, Chen A. Solubility measurement and RESOLV-assisted nanonization of gambogic acid in supercritical carbon dioxide for cancer therapy. The Journal of Supercritical Fluids 2019;150:147-55. [DOI: 10.1016/j.supflu.2019.04.008] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 7.0] [Reference Citation Analysis]
61 Kang ZW, Kankala RK, Chen BQ, Fu CP, Wang SB, Chen AZ. Supercritical Fluid-Assisted Fabrication of Manganese (III) Oxide Hollow Nanozymes Mediated by Polymer Nanoreactors for Efficient Glucose Sensing Characteristics. ACS Appl Mater Interfaces 2019;11:28781-90. [PMID: 31252501 DOI: 10.1021/acsami.9b05688] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
62 He W, Yin X, Xie L, Liu Z, Li J, Zou S, Chen J. Enhancing osseointegration of titanium implants through large-grit sandblasting combined with micro-arc oxidation surface modification. J Mater Sci: Mater Med 2019;30. [DOI: 10.1007/s10856-019-6276-0] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 7.3] [Reference Citation Analysis]