BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Farjadian F, Roointan A, Mohammadi-samani S, Hosseini M. Mesoporous silica nanoparticles: Synthesis, pharmaceutical applications, biodistribution, and biosafety assessment. Chemical Engineering Journal 2019;359:684-705. [DOI: 10.1016/j.cej.2018.11.156] [Cited by in Crossref: 98] [Cited by in F6Publishing: 63] [Article Influence: 32.7] [Reference Citation Analysis]
Number Citing Articles
1 Gebretatios AG, Kadiri Kanakka Pillantakath AR, Witoon T, Lim J, Banat F, Cheng CK. Rice husk waste into various template-engineered mesoporous silica materials for different applications: A comprehensive review on recent developments. Chemosphere 2023;310:136843. [DOI: 10.1016/j.chemosphere.2022.136843] [Reference Citation Analysis]
2 Yadav S, Choudhary N, Ranjan Dash M, Ranjan Paital A. High surface area dendritic silica pairing with anthraquinone derivative: A promising single platform for dual applications of detection and remediation of nitroaromatics and copper ion. Chemical Engineering Journal 2022;450:138042. [DOI: 10.1016/j.cej.2022.138042] [Reference Citation Analysis]
3 Yamaguchi A, Ishii A, Kamijo T. Influence of ionic strength and temperature on adsorption of tetrakis-N-methylpyridyl porphyrin onto mesoporous silica. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022;655:130262. [DOI: 10.1016/j.colsurfa.2022.130262] [Reference Citation Analysis]
4 Qiao Y, Li Y, Ye Y, Yu Y, Wang W, Yao K, Zhou M. Gallium-Based Nanoplatform for Combating Multidrug-Resistant Pseudomonas aeruginosa and Postoperative Inflammation in Endophthalmitis Secondary to Cataract Surgery. ACS Appl Mater Interfaces 2022. [DOI: 10.1021/acsami.2c15834] [Reference Citation Analysis]
5 Liao J, Wang H, Liu N, Yang H. Functionally modified halloysite nanotubes for personalized bioapplications. Advances in Colloid and Interface Science 2022. [DOI: 10.1016/j.cis.2022.102812] [Reference Citation Analysis]
6 Zarkesh K, Heidari R, Iranpour P, Azarpira N, Ahmadi F, Mohammadi-samani S, Farjadian F. Theranostic Hyaluronan Coated EDTA Modified Magnetic Mesoporous Silica Nanoparticles for Targeted Delivery of Cisplatin. Journal of Drug Delivery Science and Technology 2022;77:103903. [DOI: 10.1016/j.jddst.2022.103903] [Reference Citation Analysis]
7 Li Y, Deng G, Hu X, Li C, Wang X, Zhu Q, Zheng K, Xiong W, Wu H. Recent advances in mesoporous silica nanoparticle-based targeted drug-delivery systems for cancer therapy. Nanomedicine (Lond) 2022. [PMID: 36250937 DOI: 10.2217/nnm-2022-0023] [Reference Citation Analysis]
8 Kim H, Kim ST, Park DB, Cho H, Asadujjaman M, Jee J. Triphenylphosphonium Modified Mesoporous Silica Nanoparticle for Enhanced Algicidal Efficacy of Cyclohexyl-(3,4-dichlorobenzyl) Amine. IJMS 2022;23:11901. [DOI: 10.3390/ijms231911901] [Reference Citation Analysis]
9 Li Z, Guo J, Qi G, Zhang M, Hao L. pH-Responsive Drug Delivery and Imaging Study of Hybrid Mesoporous Silica Nanoparticles. Molecules 2022;27:6519. [PMID: 36235055 DOI: 10.3390/molecules27196519] [Reference Citation Analysis]
10 Nandeshwarappa B, Chandrashekharappa S, S. Katagi M, Sadashiv S, Shilpa G, Ningegowda R, J. Patil S. Introductory Chapter: Polyimides - Importance and Its Applications. Polyimides 2022. [DOI: 10.5772/intechopen.106519] [Reference Citation Analysis]
11 Ghasemi S, Ahmadi L, Farjadian F. Thermo-responsive PNIPAAm-b-PLA amphiphilic block copolymer micelle as nanoplatform for docetaxel drug release. J Mater Sci. [DOI: 10.1007/s10853-022-07711-w] [Reference Citation Analysis]
12 Farjadian F, Ghasemi S, Akbarian M, Hoseini-ghahfarokhi M, Moghoofei M, Doroudian M. Physically stimulus-responsive nanoparticles for therapy and diagnosis. Front Chem 2022;10:952675. [DOI: 10.3389/fchem.2022.952675] [Reference Citation Analysis]
13 Naqvi S, Khanadeev VA, Khlebtsov BN, Khlebtsov NG, Deore MS, Packirisamy G. Albumin-Based Nanocarriers for the Simultaneous Delivery of Antioxidant Gene and Phytochemical to Combat Oxidative Stress. Front Cell Dev Biol 2022;10:846175. [DOI: 10.3389/fcell.2022.846175] [Reference Citation Analysis]
14 Ahmadi F, Sodagar-Taleghani A, Ebrahimnejad P, Pouya Hadipour Moghaddam S, Ebrahimnejad F, Asare-Addo K, Nokhodchi A. A review on the latest developments of mesoporous silica nanoparticles as a promising platform for diagnosis and treatment of cancer. Int J Pharm 2022;625:122099. [PMID: 35961417 DOI: 10.1016/j.ijpharm.2022.122099] [Reference Citation Analysis]
15 Xu R, Liu K, Wang X, Zhang C, Zhang Y, Yang J. In situ release of IL-2/IL-12 from SiO2-engineered dendritic cells for synergistic immunotherapy. Nanoscale 2022. [PMID: 35876611 DOI: 10.1039/d2nr02012b] [Reference Citation Analysis]
16 Kumari S, Choudhary PK, Shukla R, Sahebkar A, Kesharwani P. Recent advances in nanotechnology based combination drug therapy for skin cancer. Journal of Biomaterials Science, Polymer Edition 2022;33:1435-1468. [DOI: 10.1080/09205063.2022.2054399] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
17 Prasad R, Conde J. Bioinspired soft nanovesicles for site‐selective cancer imaging and targeted therapies. WIREs Nanomed Nanobiotechnol 2022;14. [DOI: 10.1002/wnan.1792] [Reference Citation Analysis]
18 Choudante PC, Nethi SK, Díaz-García D, Prashar S, Misra S, Gómez-Ruiz S, Patra CR. Tin-loaded mesoporous silica nanoparticles: Antineoplastic properties and genotoxicity assessment. Biomater Adv 2022;137:212819. [PMID: 35929256 DOI: 10.1016/j.bioadv.2022.212819] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Farjadian F, Behzad-Behbahani A, Mohammadi-Samani S, Ghasemi S. In vitro DNA plasmid condensation and transfection through pH-responsive nanohydrogel. Prog Biomater 2022. [PMID: 35532846 DOI: 10.1007/s40204-022-00187-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 García-uriostegui L, Meléndez-ortíz HI, Camacho-villegas T, Lugo-fabres P, Toriz G. Synthesis and characterization of mesoporous silica-g-poly(hydroxyethylmethacrylate) nanohybrid particles as a drug delivery system. Materials Chemistry and Physics 2022;283:126048. [DOI: 10.1016/j.matchemphys.2022.126048] [Reference Citation Analysis]
21 Long H, Tian W, Jiang S, Zhao J, Zhou J, He Q, Tang Z, Shen W, Wang J. A dual drug delivery platform based on thermo-responsive polymeric micelle capped mesoporous silica nanoparticles for cancer therapy. Microporous and Mesoporous Materials 2022. [DOI: 10.1016/j.micromeso.2022.111943] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
22 Sreeharsha N, Philip M, Krishna SS, Viswanad V, Sahu RK, Shiroorkar PN, Aasif AH, Fattepur S, Asdaq SMB, Nair AB, Attimarad M, Venugopala KN. Multifunctional Mesoporous Silica Nanoparticles for Oral Drug Delivery. Coatings 2022;12:358. [DOI: 10.3390/coatings12030358] [Reference Citation Analysis]
23 Almehizia AA, Al-omar MA, Naglah AM, Bhat MA, Al-shakliah NS. Facile synthesis and characterization of ZnO nanoparticles for studying their biological activities and photocatalytic degradation properties toward methylene blue dye. Alexandria Engineering Journal 2022;61:2386-95. [DOI: 10.1016/j.aej.2021.06.102] [Cited by in Crossref: 11] [Cited by in F6Publishing: 16] [Article Influence: 11.0] [Reference Citation Analysis]
24 Zhu M, Tang J, Shi T, Ma X, Wang Y, Wu X, Li H, Hua R. Uptake, translocation and metabolism of imidacloprid loaded within fluorescent mesoporous silica nanoparticles in tomato (Solanum lycopersicum). Ecotoxicology and Environmental Safety 2022;232:113243. [DOI: 10.1016/j.ecoenv.2022.113243] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
25 Morais RP, Hochheim S, de Oliveira CC, Riegel-Vidotti IC, Marino CEB. Skin interaction, permeation, and toxicity of silica nanoparticles: Challenges and recent therapeutic and cosmetic advances. Int J Pharm 2022;614:121439. [PMID: 34990742 DOI: 10.1016/j.ijpharm.2021.121439] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
26 Zhou S, Zhong Q, Wang Y, Hu P, Zhong W, Huang C, Yu Z, Ding C, Liu H, Fu J. Chemically engineered mesoporous silica nanoparticles-based intelligent delivery systems for theranostic applications in multiple cancerous/non-cancerous diseases. Coordination Chemistry Reviews 2022;452:214309. [DOI: 10.1016/j.ccr.2021.214309] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 27.0] [Reference Citation Analysis]
27 Nandhini N, Sathiavelu M. Nanoremediation of pollutants: A conspectus of heavy metals degradation by nanomaterials. Cost Effective Technologies for Solid Waste and Wastewater Treatment 2022. [DOI: 10.1016/b978-0-12-822933-0.00002-4] [Reference Citation Analysis]
28 Rajesh Kumar T, Anitha S, Sangavi P, Srinithi R, Langeswaran K, Sangeetha R. Applications of Nanomedicine in Animal Models of Cancer. Handbook of Animal Models and its Uses in Cancer Research 2022. [DOI: 10.1007/978-981-19-1282-5_59-1] [Reference Citation Analysis]
29 Garcia-carrasco M, Parra-aguilar IF, Gutiérrez-grijalva EP, Licea-claverie A, Basilio Heredia J. Nano-formulations in drug delivery. Food, Medical, and Environmental Applications of Nanomaterials 2022. [DOI: 10.1016/b978-0-12-822858-6.00017-0] [Reference Citation Analysis]
30 Krishnaswamy K, Pandian P. A Novel Carbon Quantum Dots and its Applications in Drug Delivery System – A Review. Pharmacophore. Pharmacophore 2022;13:62-71. [DOI: 10.51847/xvyp9hw9fg] [Reference Citation Analysis]
31 Kannan K. Using Smart Mesoporous Silica in Designing Drug Delivery Systems. Handbook of Smart Materials, Technologies, and Devices 2022. [DOI: 10.1007/978-3-030-84205-5_111] [Reference Citation Analysis]
32 Dias LS, Alves AK. Silica Nanoparticles: Morphology and Applications. Technological Applications of Nanomaterials 2022. [DOI: 10.1007/978-3-030-86901-4_5] [Reference Citation Analysis]
33 Akbarian M, Gholinejad M, Mohammadi-samani S, Farjadian F. Theranostic mesoporous silica nanoparticles made of multi-nuclear gold or carbon quantum dots particles serving as pH responsive drug delivery system. Microporous and Mesoporous Materials 2022;329:111512. [DOI: 10.1016/j.micromeso.2021.111512] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
34 Huang H, Zhu S, Han Y, Liu D, Liu S, Lu D, Wang R, Lin Q. Cascade catalytic platform modified intraocular lens for high-efficient posterior capsule opacification prevention. Chemical Engineering Journal 2022;427:131553. [DOI: 10.1016/j.cej.2021.131553] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
35 Mobed A, Hasanzadeh M. Sensitive recognition of Shiga toxin using biosensor technology: An efficient platform towards bioanalysis of pathogenic bacterial. Microchemical Journal 2022;172:106900. [DOI: 10.1016/j.microc.2021.106900] [Reference Citation Analysis]
36 Varshney S, Nigam A, Pawar SJ, Mishra N. An overview on biomedical applications of versatile silica nanoparticles, synthesized via several chemical and biological routes: A review. Phosphorus, Sulfur, and Silicon and the Related Elements 2022;197:72-88. [DOI: 10.1080/10426507.2021.2017434] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
37 Goscianska J, Freund R, Wuttke S. Nanoscience versus Viruses: The SARS‐CoV‐2 Case. Adv Funct Materials 2022;32:2107826. [DOI: 10.1002/adfm.202107826] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
38 Wang Z, Sun R, Wang P, Wang W. Unit-cell wide SBA-15 type mesoporous silica nanoparticles. Microporous and Mesoporous Materials 2021;328:111491. [DOI: 10.1016/j.micromeso.2021.111491] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
39 Shafiee M, Abolmaali S, Abedanzadeh M, Abedi M, Tamaddon A. Synthesis of Pore-Size-Tunable Mesoporous Silica Nanoparticles by Simultaneous Sol-Gel and Radical Polymerization to Enhance Silibinin Dissolution. Iran J Med Sci 2021;46:475-86. [PMID: 34840388 DOI: 10.30476/ijms.2020.86173.1595] [Reference Citation Analysis]
40 Sierosławska A, Borówka A, Rymuszka A, Żukociński G, Sobczak K. Mesoporous silica nanoparticles containing copper or silver synthesized with a new metal source: Determination of their structure parameters and cytotoxic and irritating effects. Toxicol Appl Pharmacol 2021;429:115685. [PMID: 34428444 DOI: 10.1016/j.taap.2021.115685] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Li H, Chen X, Shen D, Wu F, Pleixats R, Pan J. Functionalized silica nanoparticles: classification, synthetic approaches and recent advances in adsorption applications. Nanoscale 2021;13:15998-6016. [PMID: 34546275 DOI: 10.1039/d1nr04048k] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 16.0] [Reference Citation Analysis]
42 Tehrani Fateh S, Moradi L, Kohan E, Hamblin MR, Shiralizadeh Dezfuli A. Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications. Beilstein J Nanotechnol 2021;12:808-62. [PMID: 34476167 DOI: 10.3762/bjnano.12.64] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
43 Wang Y, Zhang B, Ding X, Du X. Dendritic mesoporous organosilica nanoparticles (DMONs): Chemical composition, structural architecture, and promising applications. Nano Today 2021;39:101231. [DOI: 10.1016/j.nantod.2021.101231] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 13.0] [Reference Citation Analysis]
44 Chen X, He C, Sheng T, Wang Z, Xu W, Dai F, Zhang S. A magnesium-based coordination container as a multi-drugs co-loaded system for boosting anti-inflammatory therapy in joints. Chemical Engineering Journal 2021;415:128939. [DOI: 10.1016/j.cej.2021.128939] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
45 Rezaeian M, Afjoul H, Shamloo A, Maleki A, Afjoul N. Green synthesis of silica nanoparticles from olive residue and investigation of their anticancer potential. Nanomedicine (Lond) 2021;16:1581-93. [PMID: 34169748 DOI: 10.2217/nnm-2021-0040] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 9.0] [Reference Citation Analysis]
46 Rabiee N, Khatami M, Jamalipour Soufi G, Fatahi Y, Iravani S, Varma RS. Diatoms with Invaluable Applications in Nanotechnology, Biotechnology, and Biomedicine: Recent Advances. ACS Biomater Sci Eng 2021;7:3053-68. [PMID: 34152742 DOI: 10.1021/acsbiomaterials.1c00475] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 38.0] [Reference Citation Analysis]
47 Tonbul H, Sahin A, Tavukcuoglu E, Ultav G, Akbas S, Aktas Y, Esendaglı G, Capan Y. Folic acid decoration of mesoporous silica nanoparticles to increase cellular uptake and cytotoxic activity of doxorubicin in human breast cancer cells. Journal of Drug Delivery Science and Technology 2021;63:102535. [DOI: 10.1016/j.jddst.2021.102535] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
48 Esfahani MKM, Islam N, Cabot PJ, Izake EL. Development of Thiabendazole-Loaded Mesoporous Silica Nanoparticles for Cancer Therapy. ACS Biomater Sci Eng 2021. [PMID: 34056895 DOI: 10.1021/acsbiomaterials.1c00066] [Cited by in Crossref: 9] [Cited by in F6Publishing: 13] [Article Influence: 9.0] [Reference Citation Analysis]
49 Wu YH, Ma YL, Sun YG, Ji WX, Lin F, Yang YP, Ma LJ, Zhu CH, Xu YJ, Miao Q. Effects of acid ionization on the formation mechanism of bimodal mesoporous Al-MCM-41s from coal gasification fine residue and evaluation of adsorption capabilities. J Hazard Mater 2021;417:126052. [PMID: 34000702 DOI: 10.1016/j.jhazmat.2021.126052] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
50 Shafiei N, Nasrollahzadeh M, Iravani S. Green Synthesis of Silica and Silicon Nanoparticles and Their Biomedical and Catalytic Applications. Comments on Inorganic Chemistry 2021;41:317-72. [DOI: 10.1080/02603594.2021.1904912] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
51 Al-Nadaf AH, Dahabiyeh LA, Jawarneh S, Bardaweel S, Mahmoud NN. Folic acid-hydrophilic polymer coated mesoporous silica nanoparticles target doxorubicin delivery. Pharm Dev Technol 2021;26:582-91. [PMID: 33729906 DOI: 10.1080/10837450.2021.1904258] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
52 Zhang Q, Yang Y, Yildirimer L, Xu T, Zhao X. Advanced technology-driven therapeutic interventions for prevention of tendon adhesion: Design, intrinsic and extrinsic factor considerations. Acta Biomater 2021;124:15-32. [PMID: 33508510 DOI: 10.1016/j.actbio.2021.01.027] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 7.0] [Reference Citation Analysis]
53 Entezar-almahdi E, Heidari R, Ghasemi S, Mohammadi-samani S, Farjadian F. Integrin receptor mediated pH-responsive nano-hydrogel based on histidine-modified poly(aminoethyl methacrylamide) as targeted cisplatin delivery system. Journal of Drug Delivery Science and Technology 2021;62:102402. [DOI: 10.1016/j.jddst.2021.102402] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 12.0] [Reference Citation Analysis]
54 Sun R, Qiao P, Wang Z, Wang W. Monodispersed large-mesopore mesoporous silica nanoparticles enabled by sulfuric acid assisted hydrothermal process. Microporous and Mesoporous Materials 2021;317:111023. [DOI: 10.1016/j.micromeso.2021.111023] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
55 Hosseinpour S, Walsh LJ, Xu C. Biomedical application of mesoporous silica nanoparticles as delivery systems: a biological safety perspective. J Mater Chem B 2020;8:9863-76. [PMID: 33047764 DOI: 10.1039/d0tb01868f] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 20.0] [Reference Citation Analysis]
56 Cao J, Zaremba OT, Lei Q, Ploetz E, Wuttke S, Zhu W. Artificial Bioaugmentation of Biomacromolecules and Living Organisms for Biomedical Applications. ACS Nano 2021;15:3900-26. [PMID: 33656324 DOI: 10.1021/acsnano.0c10144] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 14.0] [Reference Citation Analysis]
57 Chen H, Liu H, Wang R, Jiang X, Zhu M. Size-controllable synthesis of dendritic porous silica as reinforcing fillers for dental composites. Dent Mater 2021;37:961-71. [PMID: 33714621 DOI: 10.1016/j.dental.2021.02.015] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
58 Psochia E, Papadopoulos L, Gkiliopoulos DJ, Francone A, Grigora M, Tzetzis D, de Castro JV, Neves NM, Triantafyllidis KS, Torres CMS, Kehagias N, Bikiaris DN. Bottom-Up Development of Nanoimprinted PLLA Composite Films with Enhanced Antibacterial Properties for Smart Packaging Applications. Macromol 2021;1:49-63. [DOI: 10.3390/macromol1010005] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
59 Liu Y, Yao Y, Fu J, Hu W, Feng J, Wan J, Yu C. Large-scale synthesis of fractal silica nanoparticles: understanding the impact of solvents. Microporous and Mesoporous Materials 2021;316:110976. [DOI: 10.1016/j.micromeso.2021.110976] [Reference Citation Analysis]
60 Verma N, Sharma S, Vishwakarma GS, Pandya A. Plant Stimulant to Nanotoxicity: Recent Advancements and Opportunities. CNTP 2021;1:67-77. [DOI: 10.2174/2665980801999200607174608] [Reference Citation Analysis]
61 Farzanfar J, Farjadian F, Roointan A, Mohammadi-samani S, Tayebi L. Assessment of pH Responsive Delivery of Methotrexate Based on PHEMA-st-PEG-DA Nanohydrogels. Macromol Res 2021;29:54-61. [DOI: 10.1007/s13233-021-9007-6] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 12.0] [Reference Citation Analysis]
62 Sábio RM, Meneguin AB, Martins dos Santos A, Monteiro AS, Chorilli M. Exploiting mesoporous silica nanoparticles as versatile drug carriers for several routes of administration. Microporous and Mesoporous Materials 2021;312:110774. [DOI: 10.1016/j.micromeso.2020.110774] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 21.0] [Reference Citation Analysis]
63 Paroha S, Verma J, Dubey RD, Dewangan RP, Molugulu N, Bapat RA, Sahoo PK, Kesharwani P. Recent advances and prospects in gemcitabine drug delivery systems. International Journal of Pharmaceutics 2021;592:120043. [DOI: 10.1016/j.ijpharm.2020.120043] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 24.0] [Reference Citation Analysis]
64 Kannan K. Using Smart Mesoporous Silica in Designing Drug Delivery Systems. Handbook of Smart Materials, Technologies, and Devices 2021. [DOI: 10.1007/978-3-030-58675-1_111-1] [Reference Citation Analysis]
65 Nguyen TNT, Le NTT, Nguyen NH, Ly BTK, Nguyen TD, Nguyen DH. Aminated hollow mesoporous silica nanoparticles as an enhanced loading and sustained releasing carrier for doxorubicin delivery. Microporous and Mesoporous Materials 2020;309:110543. [DOI: 10.1016/j.micromeso.2020.110543] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
66 Gottuso A, Köckritz A, Saladino ML, Armetta F, De Pasquale C, Nasillo G, Parrino F. Catalytic and photocatalytic epoxidation of limonene: Using mesoporous silica nanoparticles as functional support for a Janus-like approach. Journal of Catalysis 2020;391:202-11. [DOI: 10.1016/j.jcat.2020.08.025] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
67 Vivo-Llorca G, Candela-Noguera V, Alfonso M, García-Fernández A, Orzáez M, Sancenón F, Martínez-Máñez R. MUC1 Aptamer-Capped Mesoporous Silica Nanoparticles for Navitoclax Resistance Overcoming in Triple-Negative Breast Cancer. Chemistry 2020;26:16318-27. [PMID: 32735063 DOI: 10.1002/chem.202001579] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
68 Ghaferi M, Koohi Moftakhari Esfahani M, Raza A, Al Harthi S, Ebrahimi Shahmabadi H, Alavi SE. Mesoporous silica nanoparticles: synthesis methods and their therapeutic use-recent advances. J Drug Target 2021;29:131-54. [PMID: 32815741 DOI: 10.1080/1061186X.2020.1812614] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 12.0] [Reference Citation Analysis]
69 Schneid ADC, Silveira CP, Galdino FE, Ferreira LF, Bouchmella K, Cardoso MB. Colloidal Stability and Redispersibility of Mesoporous Silica Nanoparticles in Biological Media. Langmuir 2020;36:11442-9. [DOI: 10.1021/acs.langmuir.0c01571] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
70 Farjadian F, Abbaspour S, Sadatlu MAA, Mirkiani S, Ghasemi A, Hoseini‐ghahfarokhi M, Mozaffari N, Karimi M, Hamblin MR. Recent Developments in Graphene and Graphene Oxide: Properties, Synthesis, and Modifications: A Review. ChemistrySelect 2020;5:10200-19. [DOI: 10.1002/slct.202002501] [Cited by in Crossref: 47] [Cited by in F6Publishing: 47] [Article Influence: 23.5] [Reference Citation Analysis]
71 Song Y, Zhu P, Xu Z, Chen J. Dual-Responsive Dual-Drug-Loaded Bioinspired Polydopamine Nanospheres as an Efficient Therapeutic Nanoplatform against Drug-Resistant Cancer Cells. ACS Appl Bio Mater 2020;3:5730-40. [DOI: 10.1021/acsabm.0c00512] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
72 Mužík J, Lizoňová D, Zadražil A, Štěpánek F. Drug amorphisation by fluid bed hot-melt impregnation of mesoporous silica carriers. Chemical Engineering Journal 2020;392:123754. [DOI: 10.1016/j.cej.2019.123754] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
73 Feng J, Chen W, Shen Y, Chen Q, Yang J, Zhang M, Yang W, Yuan S. Fabrication of abamectin-loaded mesoporous silica nanoparticles by emulsion-solvent evaporation to improve photolysis stability and extend insecticidal activity. Nanotechnology 2020;31:345705. [DOI: 10.1088/1361-6528/ab91f0] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
74 Al-nadaf AH, Dahabiyeh LA, Bardaweel S, Mahmoud NN, Jawarneh S. Functionalized mesoporous silica nanoparticles by lactose and hydrophilic polymer as a hepatocellular carcinoma drug delivery system. Journal of Drug Delivery Science and Technology 2020;56:101504. [DOI: 10.1016/j.jddst.2020.101504] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
75 Añón E, Costero AM, Amorós P, El Haskouri J, Martínez‐mánez R, Parra M, Gil S, Gaviña P, Terencio MC, Alfonso M. Peptide‐Capped Mesoporous Nanoparticles: Toward a more Efficient Internalization of Alendronate. ChemistrySelect 2020;5:3618-3625. [DOI: 10.1002/slct.202000417] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
76 Akbarian M, Tayebi L, Mohammadi-samani S, Farjadian F. Mechanistic Assessment of Functionalized Mesoporous Silica-Mediated Insulin Fibrillation. J Phys Chem B 2020. [DOI: 10.1021/acs.jpcb.9b10980] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
77 Farjadian F, Ghasemi S, Andami Z, Tamami B. Thermo-responsive nanocarrier based on poly(N-isopropylacrylamide) serving as a smart doxorubicin delivery system. Iran Polym J 2020;29:197-207. [DOI: 10.1007/s13726-020-00785-w] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
78 Vandghanooni S, Barar J, Eskandani M, Omidi Y. Aptamer-conjugated mesoporous silica nanoparticles for simultaneous imaging and therapy of cancer. TrAC Trends in Analytical Chemistry 2020;123:115759. [DOI: 10.1016/j.trac.2019.115759] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 10.5] [Reference Citation Analysis]
79 Shi Z, Zhou Y, Fan T, Lin Y, Zhang H, Mei L. Inorganic nano-carriers based smart drug delivery systems for tumor therapy. Smart Materials in Medicine 2020;1:32-47. [DOI: 10.1016/j.smaim.2020.05.002] [Cited by in Crossref: 99] [Cited by in F6Publishing: 109] [Article Influence: 49.5] [Reference Citation Analysis]
80 Gessner I, Klimpel A, Klußmann M, Neundorf I, Mathur S. Interdependence of charge and secondary structure on cellular uptake of cell penetrating peptide functionalized silica nanoparticles. Nanoscale Adv 2020;2:453-62. [DOI: 10.1039/c9na00693a] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 8.5] [Reference Citation Analysis]
81 Zhang J, Rosenholm JM. Molecular and nanoscale engineering of porous silica particles for drug delivery. Nanoengineered Biomaterials for Advanced Drug Delivery 2020. [DOI: 10.1016/b978-0-08-102985-5.00017-6] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
82 Akbarian M, Yousefi R, Farjadian F, Uversky VN. Insulin fibrillation: toward strategies for attenuating the process. Chem Commun 2020;56:11354-73. [DOI: 10.1039/d0cc05171c] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 13.0] [Reference Citation Analysis]
83 Elbialy NS, Aboushoushah SF, Sofi BF, Noorwali A. Multifunctional curcumin-loaded mesoporous silica nanoparticles for cancer chemoprevention and therapy. Microporous and Mesoporous Materials 2020;291:109540. [DOI: 10.1016/j.micromeso.2019.06.002] [Cited by in Crossref: 45] [Cited by in F6Publishing: 47] [Article Influence: 22.5] [Reference Citation Analysis]
84 Kankala RK, Zhang H, Liu C, Kanubaddi KR, Lee C, Wang S, Cui W, Santos HA, Lin K, Chen A. Metal Species–Encapsulated Mesoporous Silica Nanoparticles: Current Advancements and Latest Breakthroughs. Adv Funct Mater 2019;29:1902652. [DOI: 10.1002/adfm.201902652] [Cited by in Crossref: 64] [Cited by in F6Publishing: 67] [Article Influence: 21.3] [Reference Citation Analysis]
85 Vivero-escoto JL, Vadarevu H, Juneja R, Schrum LW, Benbow JH. Nanoparticle mediated silencing of tenascin C in hepatic stellate cells: effect on inflammatory gene expression and cell migration. J Mater Chem B 2019;7:7396-405. [DOI: 10.1039/c9tb01845j] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
86 Mukhopadhyay S, Veroniaina H, Chimombe T, Han L, Zhenghong W, Xiaole Q. Synthesis and compatibility evaluation of versatile mesoporous silica nanoparticles with red blood cells: an overview. RSC Adv 2019;9:35566-78. [DOI: 10.1039/c9ra06127d] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]