1 |
Gokul D, Catton E, Cheng KY, Mathew M. Electrochemical Biosensor to Detect Implant-Derived Metal Ions: A Mice Model. J Bio Tribo Corros 2023;9:28. [DOI: 10.1007/s40735-023-00743-y] [Reference Citation Analysis]
|
2 |
Pellé J, Longo M, Le Poul N, Hellio C, Rioual S, Lescop B. Electrochemical monitoring of the Pseudomonas aeruginosa growth and the formation of a biofilm in TSB media. Bioelectrochemistry 2023;150:108344. [PMID: 36509018 DOI: 10.1016/j.bioelechem.2022.108344] [Reference Citation Analysis]
|
3 |
Movahed V, Arshadi L, Ghanavati M, Nejad EM, Mohagheghzadeh Z, Rezaei M. Simultaneous electrochemical detection of antioxidants Hydroquinone, Mono-Tert-butyl hydroquinone and catechol in food and polymer samples using ZnO@MnO2-rGO nanocomposite as sensing layer. Food Chemistry 2023;403:134286. [DOI: 10.1016/j.foodchem.2022.134286] [Reference Citation Analysis]
|
4 |
Zamani M, Klapperich CM, Furst AL. Recent advances in gold electrode fabrication for low-resource setting biosensing. Lab Chip 2023;23:1410-9. [PMID: 36602146 DOI: 10.1039/d2lc00552b] [Reference Citation Analysis]
|
5 |
Ashrafi AM, Bytešníková Z, Cané C, Richtera L, Vallejos S. New trends in methyl salicylate sensing and their implications in agriculture. Biosens Bioelectron 2023;223:115008. [PMID: 36577177 DOI: 10.1016/j.bios.2022.115008] [Reference Citation Analysis]
|
6 |
Huang P, Xiong Y, Ge Y, Wen Y, Zeng X, Zhang J, Wang P, Wang Z, Chen S. Magnetic Fe(3)O(4) nanoparticles decorated phosphorus-doped biochar-attapulgite/bismuth film electrode for smartphone-operated wireless portable sensing of ultra-trace multiple heavy metal ions. Mikrochim Acta 2023;190:94. [PMID: 36806986 DOI: 10.1007/s00604-023-05672-8] [Reference Citation Analysis]
|
7 |
Yoo M, Bhuiyan NH, Uddin MJ, Shim JS. An IoT-based smart optical platform for colorimetric analyzing multiple samples of biomarkers. Sensors and Actuators A: Physical 2023. [DOI: 10.1016/j.sna.2023.114228] [Reference Citation Analysis]
|
8 |
Cerdeira Ferreira LM, Vicentini FC. Nanomaterials in the Human Food Chain. Agricultural and Environmental Nanotechnology 2023. [DOI: 10.1007/978-981-19-5454-2_19] [Reference Citation Analysis]
|
9 |
Wang Y, Chen J, Di C, Hu Y, Munyemana JC, Shu Y, Wang J, Qiu H. A novel colorimetric and red-emitting fluorescent probe based on benzopyrylium derivatives for selective detection and imaging of SO2 derivatives in cells and zebrafish. Dyes and Pigments 2023. [DOI: 10.1016/j.dyepig.2023.111129] [Reference Citation Analysis]
|
10 |
Đurđić S, Vlahović F, Markićević M, Mutić J, Manojlović D, Stanković V, Švorc Ľ, Stanković D. Application of Screen Printed Diamond Electrode, Coupled with “Point-of-Care” Platform, for Nanomolar Quantification of Phytonutrient Pterostilbene in Dietary Supplements: An Experimental Study Supported by Theory. Chemosensors 2022;11:15. [DOI: 10.3390/chemosensors11010015] [Reference Citation Analysis]
|
11 |
Zambry NS, Ahmad Najib M, Awang MS, Selvam K, Khalid MF, Bustami Y, Hamzah HH, Ozsoz M, Abd Manaf A, Aziah I. Aptamer-Based Electrochemical Biosensors for the Detection of Salmonella: A Scoping Review. Diagnostics (Basel) 2022;12. [PMID: 36553193 DOI: 10.3390/diagnostics12123186] [Reference Citation Analysis]
|
12 |
Shu Y, Su T, Lu Q, Shang Z, Feng J, Jin D, Zhu A, Xu Q, Hu X. Paper-based electrochemical immunosensor device via Ni-Co MOF nanosheet as a peroxidase mimic for the label-free detection of alpha-fetoprotein. Sensors and Actuators B: Chemical 2022;373:132736. [DOI: 10.1016/j.snb.2022.132736] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
13 |
Choudhari U, Jagtap S, Ramgir N, Debnath AK, Muthe KP. Screen-printed electrochemical sensors for environmental monitoring of heavy metal ion detection. Reviews in Chemical Engineering 2022;0. [DOI: 10.1515/revce-2022-0002] [Reference Citation Analysis]
|
14 |
Wan M, Jimu A, Yang H, Zhou J, Dai X, Zheng Y, Ou J, Yang Y, Liu J, Wang L. MXene quantum dots enhanced 3D-printed electrochemical sensor for the highly sensitive detection of dopamine. Microchemical Journal 2022. [DOI: 10.1016/j.microc.2022.108180] [Reference Citation Analysis]
|
15 |
Jin J, Mao J, Wu W, Jiang Y, Ma W, Yu P, Mao L. Highly Efficient Electrosynthesis of Nitric Oxide for Biomedical Applications. Angew Chem Int Ed 2022;61. [DOI: 10.1002/anie.202210980] [Reference Citation Analysis]
|
16 |
Xiong Y, Wu X, Zeng Z, Huang S, Chen T. High Precision Temperature Measurement for Microfluidic Chip Applications. J Shanghai Jiaotong Univ (Sci ) 2022;27:699-705. [DOI: 10.1007/s12204-021-2370-9] [Reference Citation Analysis]
|
17 |
Clarindo Lopes L, Lima D, Hayat M, Li Y, Kumar A, Kuss S. Electrochemical Quantification of Tobramycin Retention in Pseudomonas aeruginosa as Antimicrobial Susceptibility Indicator. Anal Chem 2022. [PMID: 36067413 DOI: 10.1021/acs.analchem.2c02287] [Reference Citation Analysis]
|
18 |
Wang Y, Zhao P, Zhang S, Zhu K, Shangguan X, Liu L, Zhang S. Application of Janus Particles in Point-of-Care Testing. Biosensors 2022;12:689. [DOI: 10.3390/bios12090689] [Reference Citation Analysis]
|
19 |
Porto LS, Ferreira LF, Pio Dos Santos WT, Pereira AC. Determination of organophosphorus compounds in water and food samples using a non-enzymatic electrochemical sensor based on silver nanoparticles and carbon nanotubes nanocomposite coupled with batch injection analysis. Talanta 2022;246:123477. [PMID: 35462247 DOI: 10.1016/j.talanta.2022.123477] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
|
20 |
Li L, Liu X, Su B, Zhang H, Li R, Liu Z, Chen Q, Huang T, Cao H. An innovative electrochemical immunosensor based on nanobody heptamer and AuNPs@ZIF-8 nanocomposites as support for the detection of alpha fetoprotein in serum. Microchemical Journal 2022;179:107463. [DOI: 10.1016/j.microc.2022.107463] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
|
21 |
Zeng Y, Li Q, Wang W, Wen Y, Ji K, Liu X, He P, Campos Janegitz B, Tang K. The fabrication of a flexible and portable sensor based on home-made laser-induced porous graphene electrode for the rapid detection of sulfonamides. Microchemical Journal 2022. [DOI: 10.1016/j.microc.2022.107898] [Reference Citation Analysis]
|
22 |
Ferreira NS, Carneiro LP, Viezzer C, Almeida MJ, Marques AC, Pinto AM, Fortunato E, Sales MGF. Passive direct methanol fuel cells acting as fully autonomous electrochemical biosensors: Application to sarcosine detection. Journal of Electroanalytical Chemistry 2022. [DOI: 10.1016/j.jelechem.2022.116710] [Reference Citation Analysis]
|
23 |
Zhao Y, Song X, Fu L. An Electrochemical-Based Point-of-Care Testing Methodology for Uric Acid Measurement. Journal of Analytical Methods in Chemistry 2022;2022:1-6. [DOI: 10.1155/2022/8555842] [Reference Citation Analysis]
|
24 |
Martins F, Torrinha Á, Delerue-matos C, Morais S. Life Cycle Assessment and Life Cycle Cost of an Innovative Carbon Paper Sensor for 17α-Ethinylestradiol and Comparison with the Classical Chromatographic Method. Sustainability 2022;14:8896. [DOI: 10.3390/su14148896] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
25 |
Nogueira Pedroza Dias Mello HJ, Mulato M. Impedimetric and Capacitive Transducer Platform for Chemical Sensors Based on Electrodeposited Polyaniline Thin Films. J Phys Chem C. [DOI: 10.1021/acs.jpcc.2c02736] [Reference Citation Analysis]
|
26 |
Moldovan R, Vereshchagina E, Milenko K, Iacob BC, Bodoki AE, Falamas A, Tosa N, Muntean CM, Farcău C, Bodoki E. Review on combining surface-enhanced Raman spectroscopy and electrochemistry for analytical applications. Anal Chim Acta 2022;1209:339250. [PMID: 35569862 DOI: 10.1016/j.aca.2021.339250] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
|
27 |
dos Santos DM, Cardoso RM, Migliorini FL, Facure MH, Mercante LA, Mattoso LH, Correa DS. Advances in 3D printed sensors for food analysis. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116672] [Reference Citation Analysis]
|
28 |
Glasco DL, Sheelam A, Ho NHB, Mamaril AM, King M, Bell JG. Editors’ Choice—Review—3D Printing: An Innovative Trend in Analytical Sensing. ECS Sens Plus 2022;1:010602. [DOI: 10.1149/2754-2726/ac5c7a] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 34.0] [Reference Citation Analysis]
|
29 |
Zhao Y, Yavari K, Wang Y, Pi K, Van Cappellen P, Liu J. Deployment of functional DNA-based biosensors for environmental water analysis. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116639] [Reference Citation Analysis]
|
30 |
Semeniak D, Cruz DF, Chilkoti A, Mikkelsen MH. Plasmonic Fluorescence Enhancement in Diagnostics for Clinical Tests at Point-of-Care: A Review of Recent Technologies. Adv Mater 2022;:e2107986. [PMID: 35332957 DOI: 10.1002/adma.202107986] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 10.0] [Reference Citation Analysis]
|
31 |
Kollipara PS, Mahendra R, Li J, Zheng Y. Bubble‐pen lithography: Fundamentals and applications. Aggregate. [DOI: 10.1002/agt2.189] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
32 |
Saberi Z, Rezaei B, Kazemifard N. Aptamer-Based Miniaturized Technology for Drug Analysis. Biosensing and Micro-Nano Devices 2022. [DOI: 10.1007/978-981-16-8333-6_14] [Reference Citation Analysis]
|
33 |
Colombo RNP. Biosensors in Point-of-Care: Molecular Analysis, Strategies and Perspectives to Health Care. Advances in Bioelectrochemistry Volume 3 2022. [DOI: 10.1007/978-3-030-97921-8_7] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
34 |
Park H, Park Y, Lakshminarayana S, Jung H, Kim M, Lee KH, Jung S. Portable All-in-One Electroanalytical Device for Point of Care. IEEE Access 2022;10:68700-10. [DOI: 10.1109/access.2022.3186678] [Reference Citation Analysis]
|
35 |
Faustino LC, Cunha JPC, Andrade APS, Bezerra EFS, Luz RAS, Gerôncio ETS. Miniaturized Electrochemical (Bio)sensing Devices Going Wearable. Advances in Bioelectrochemistry Volume 3 2022. [DOI: 10.1007/978-3-030-97921-8_3] [Reference Citation Analysis]
|
36 |
Ahmadi M, Amouzegar Z, Khalili S, Asadi S, Aghajani S, Aryanrad P, Afkhami A, Madrakian T, Thomas S, Nguyen TA. Miniaturization—An introduction to miniaturized analytical devices. Micro- and Nanotechnology Enabled Applications for Portable Miniaturized Analytical Systems 2022. [DOI: 10.1016/b978-0-12-823727-4.00002-x] [Reference Citation Analysis]
|
37 |
Ensafi AA, Saberi Z, Kazemifard N. Functionalized nanomaterial-based medical sensors for point-of-care applications: An overview. Functionalized Nanomaterial-Based Electrochemical Sensors 2022. [DOI: 10.1016/b978-0-12-823788-5.00018-1] [Reference Citation Analysis]
|
38 |
Al Mamun M, Wahab YA, Hossain MM, Hashem A, Johan MR. Electrochemical biosensors with Aptamer recognition layer for the diagnosis of pathogenic bacteria: Barriers to commercialization and remediation. TrAC Trends in Analytical Chemistry 2021;145:116458. [DOI: 10.1016/j.trac.2021.116458] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
|
39 |
Mohan JM, Amreen K, Javed A, Dubey SK, Goel S. Emerging trends in miniaturized and microfluidic electrochemical sensing platforms. Current Opinion in Electrochemistry 2021. [DOI: 10.1016/j.coelec.2021.100930] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
40 |
Surucu O, Öztürk E, Kuralay F. Nucleic Acid Integrated Technologies for Electrochemical Point‐of‐Care Diagnostics: A Comprehensive Review. Electroanalysis 2022;34:148-60. [DOI: 10.1002/elan.202100309] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
41 |
Han Z, Li H, Zhu Q, Yuan R, He H. An intriguing electrochemical impedance aptasensor based on a porous organic framework supported silver nanoparticles for ultrasensitively detecting theophylline. Chinese Chemical Letters 2021;32:2865-8. [DOI: 10.1016/j.cclet.2021.02.013] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 5.5] [Reference Citation Analysis]
|
42 |
García-miranda Ferrari A, Rowley-neale SJ, Banks CE. Screen-printed electrodes: Transitioning the laboratory in-to-the field. Talanta Open 2021;3:100032. [DOI: 10.1016/j.talo.2021.100032] [Cited by in Crossref: 41] [Cited by in F6Publishing: 45] [Article Influence: 20.5] [Reference Citation Analysis]
|
43 |
Naseri M, Ziora ZM, Simon GP, Batchelor W. ASSURED‐compliant point‐of‐care diagnostics for the detection of human viral infections. Rev Med Virol. [DOI: 10.1002/rmv.2263] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
44 |
Wei T, Xu Q, Zou C, He Z, Tang Y, Gao T, Han M, Dai Z. A boronate-modified renewable nanointerface for ultrasensitive electrochemical assay of cellulase activity. Chinese Chemical Letters 2021;32:1470-1474. [DOI: 10.1016/j.cclet.2020.10.003] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
45 |
Kokulnathan T, Ahmed F, Chen SM, Chen TW, Hasan PMZ, Bilgrami AL, Darwesh R. Rational Confinement of Yttrium Vanadate within Three-Dimensional Graphene Aerogel: Electrochemical Analysis of Monoamine Neurotransmitter (Dopamine). ACS Appl Mater Interfaces 2021;13:10987-95. [PMID: 33624494 DOI: 10.1021/acsami.0c22781] [Cited by in Crossref: 28] [Cited by in F6Publishing: 36] [Article Influence: 14.0] [Reference Citation Analysis]
|
46 |
Yu Y, Peng J, Pan M, Ming Y, Li Y, Yuan L, Liu Q, Han R, Hao Y, Yang Y, Hu D, Li H, Qian Z. A Nonenzymatic Hydrogen Peroxide Electrochemical Sensing and Application in Cancer Diagnosis. Small Methods 2021;5:2001212. [DOI: 10.1002/smtd.202001212] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
|
47 |
Li G, Wen D. Sensing nanomaterials of wearable glucose sensors. Chinese Chemical Letters 2021;32:221-8. [DOI: 10.1016/j.cclet.2020.10.028] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
|
48 |
Trajcheva A, Politakos N, Pérez BT, Joseph Y, Blazevska Gilev J, Tomovska R. QCM nanocomposite gas sensors – Expanding the application of waterborne polymer composites based on graphene nanoribbon. Polymer 2021;213:123335. [DOI: 10.1016/j.polymer.2020.123335] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
|
49 |
Sibug-torres SM, Go LP, Enriquez EP. Fabrication of a 3D-Printed Porous Junction for Ag|AgCl|gel-KCl Reference Electrode. Chemosensors 2020;8:130. [DOI: 10.3390/chemosensors8040130] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|
50 |
Kulkarni MB, Goel S. Microfluidic devices for synthesizing nanomaterials—a review. Nano Express 2020;1:032004. [DOI: 10.1088/2632-959x/abcca6] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
|
51 |
Farzin MA, Abdoos H. A critical review on quantum dots: From synthesis toward applications in electrochemical biosensors for determination of disease-related biomolecules. Talanta 2021;224:121828. [PMID: 33379046 DOI: 10.1016/j.talanta.2020.121828] [Cited by in Crossref: 39] [Cited by in F6Publishing: 27] [Article Influence: 13.0] [Reference Citation Analysis]
|
52 |
Sow WT, Ye F, Zhang C, Li H. Smart materials for point-of-care testing: From sample extraction to analyte sensing and readout signal generator. Biosens Bioelectron 2020;170:112682. [PMID: 33035898 DOI: 10.1016/j.bios.2020.112682] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
|
53 |
Wang L, Song J, Wang X, Qi H, Gao Q, Zhang C. Monitoring casein kinase II at subcellular level via bio-bar-code-based electrochemiluminescence biosensing method. Chinese Chemical Letters 2020;31:2520-4. [DOI: 10.1016/j.cclet.2020.06.032] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
54 |
Lin X, Lian X, Luo B, Huang X. A highly sensitive and stable electrochemical HBV DNA biosensor based on ErGO-supported Cu-MOF. Inorganic Chemistry Communications 2020;119:108095. [DOI: 10.1016/j.inoche.2020.108095] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
|
55 |
Saatçi E. Newly developed diagnostic methods for SARS-CoV-2 detection. Turkish Journal of Biochemistry 2020;0. [DOI: 10.1515/tjb-2020-0218] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
56 |
Gevaerd A, Silva BMD, Oliveira PR, Marcolino Júnior LH, Bergamini MF. A carbon fiber ultramicroelectrode as a simple tool to direct antioxidant estimation based on caffeic acid oxidation. Anal Methods 2020;12:3608-16. [PMID: 32701089 DOI: 10.1039/d0ay01050b] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
|
57 |
Bounegru AV, Apetrei C. Carbonaceous Nanomaterials Employed in the Development of Electrochemical Sensors Based on Screen-Printing Technique—A Review. Catalysts 2020;10:680. [DOI: 10.3390/catal10060680] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 8.7] [Reference Citation Analysis]
|