BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yang Y, Liu Y, Chen S, Cheong KL, Teng B. Carboxymethyl β-cyclodextrin grafted carboxymethyl chitosan hydrogel-based microparticles for oral insulin delivery. Carbohydr Polym 2020;246:116617. [PMID: 32747257 DOI: 10.1016/j.carbpol.2020.116617] [Cited by in Crossref: 44] [Cited by in F6Publishing: 35] [Article Influence: 14.7] [Reference Citation Analysis]
Number Citing Articles
1 Geng Y, Xue H, Zhang Z, Panayi AC, Knoedler S, Zhou W, Mi B, Liu G. Recent advances in carboxymethyl chitosan-based materials for biomedical applications. Carbohydr Polym 2023;305:120555. [PMID: 36737218 DOI: 10.1016/j.carbpol.2023.120555] [Reference Citation Analysis]
2 Wang S, Wei Y, Wang Y, Cheng Y. Cyclodextrin regulated natural polysaccharide hydrogels for biomedical applications-a review. Carbohydrate Polymers 2023. [DOI: 10.1016/j.carbpol.2023.120760] [Reference Citation Analysis]
3 Cheng M, Cui Y, Guo Y, Zhao P, Wang J, Zhang R, Wang X. Design of carboxymethyl chitosan-reinforced pH-responsive hydrogels for on-demand release of carvacrol and simulation of release kinetics. Food Chemistry 2023;405:134856. [DOI: 10.1016/j.foodchem.2022.134856] [Reference Citation Analysis]
4 Yang Y, Zhou R, Wang Y, Zhang Y, Yu J, Gu Z. Recent Advances in Oral and Transdermal Protein Delivery Systems. Angew Chem Int Ed Engl 2023;62:e202214795. [PMID: 36478123 DOI: 10.1002/anie.202214795] [Reference Citation Analysis]
5 Elsayed A, Al-Remawi M, Jaber N, Abu-Salah KM. Advances in buccal and oral delivery of insulin. Int J Pharm 2023;633:122623. [PMID: 36681204 DOI: 10.1016/j.ijpharm.2023.122623] [Reference Citation Analysis]
6 Özakar E, Sevinç-Özakar R, Yılmaz B. Preparation, Characterization, and Evaluation of Cytotoxicity of Fast Dissolving Hydrogel Based Oral Thin Films Containing Pregabalin and Methylcobalamin. Gels 2023;9. [PMID: 36826317 DOI: 10.3390/gels9020147] [Reference Citation Analysis]
7 Min Y, Han R, Li G, Wang X, Chen S, Xie M, Zhao Z. The pH‐Sensitive Optical Fiber Integrated CMCS‐PA@Fe Hydrogels for Photothermal Therapy and Real‐Time Monitoring of Infected Wounds. Adv Funct Materials 2023. [DOI: 10.1002/adfm.202212803] [Reference Citation Analysis]
8 Elbadawy HA, El-Dissouky A, Hussein SM, El-Kewaey SR, Elfeky SA, El-Ghannam G. A novel terpolymer nanocomposite (carboxymethyl β-cyclodextrin-nano chitosan-glutaraldehyde) for the potential removal of a textile dye acid red 37 from water. Front Chem 2023;11:1115377. [PMID: 36817174 DOI: 10.3389/fchem.2023.1115377] [Reference Citation Analysis]
9 Lin Y, Chen S, Liu Y, Guo F, Miao Q, Huang H. A composite hydrogel scaffold based on collagen and carboxymethyl chitosan for cartilage regeneration through one-step chemical crosslinking. Int J Biol Macromol 2023;226:706-15. [PMID: 36526059 DOI: 10.1016/j.ijbiomac.2022.12.083] [Reference Citation Analysis]
10 Yang W, Xue Y, Cui X, Tang H, Li H. Targeted delivery of doxorubicin to liver used a novel biotinylated β-cyclodextrin grafted pullulan nanocarrier. Colloids and Surfaces B: Biointerfaces 2022;220:112934. [DOI: 10.1016/j.colsurfb.2022.112934] [Reference Citation Analysis]
11 Sanjanwala D, Londhe V, Trivedi R, Bonde S, Sawarkar S, Kale V, Patravale V. Polysaccharide-based hydrogels for drug delivery and wound management: a review. Expert Opin Drug Deliv 2022;19:1664-95. [PMID: 36440488 DOI: 10.1080/17425247.2022.2152791] [Reference Citation Analysis]
12 Zhong X, Yuan Q, Wang Q, Hu C, Guo K, Ouyang J, Chen M. Maleic Anhydride-β-Cyclodextrin Functionalized Magnetic Nanoparticles for the Removal of Uranium (VI) from Wastewater. Crystals 2022;12:1731. [DOI: 10.3390/cryst12121731] [Reference Citation Analysis]
13 Bucak CD. Porous alginate hydrogel beads cross-linked with citric acid containing tannic acid: structural analysis, antimicrobial properties and release behavior. Cellulose 2022. [DOI: 10.1007/s10570-022-04947-2] [Reference Citation Analysis]
14 El-dakroury WA, Zewail MB, Amin MM. Design, optimization, and in-vivo performance of glipizide-loaded O-carboxymethyl chitosan nanoparticles in insulin resistant/type 2 diabetic rat model. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2022.104040] [Reference Citation Analysis]
15 Kumar R, Islam T, Nurunnabi M. Mucoadhesive carriers for oral drug delivery. J Control Release 2022;351:504-59. [PMID: 36116580 DOI: 10.1016/j.jconrel.2022.09.024] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
16 Xu M, Qin H, Zheng Y, Chen J, Liang X, Huang J, Luo W, Yang R, Guan YQ. Construction of a double-responsive modified guar gum nanoparticles and its application in oral insulin administration. Colloids Surf B Biointerfaces 2022;220:112858. [PMID: 36174491 DOI: 10.1016/j.colsurfb.2022.112858] [Reference Citation Analysis]
17 Peng H, Qiao L, Shan G, Gao M, Zhang R, Yi X, He X. Stepwise responsive carboxymethyl chitosan-based nanoplatform for effective drug-resistant breast cancer suppression. Carbohydrate Polymers 2022;291:119554. [DOI: 10.1016/j.carbpol.2022.119554] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
18 Mengyuan H, Changlin W, Tong X, Ping D, Xiaojun Y, Huaying S, Congying L, Peng G, Zhufeng C. Modification and preparation of four natural hydrogels and their application in biopharmaceutical delivery. Polym Bull . [DOI: 10.1007/s00289-022-04412-x] [Reference Citation Analysis]
19 Qiu A, Wang Y, Zhang G, Wang H. Natural Polysaccharide-Based Nanodrug Delivery Systems for Treatment of Diabetes. Polymers (Basel) 2022;14:3217. [PMID: 35956731 DOI: 10.3390/polym14153217] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
20 Deng Z, Li J, Chen Y, Huang C, Zhong N, Hu Y. Microparticle‐hydrogel hybrids for sustained release of dual bioactive compounds. Polymers for Advanced Techs. [DOI: 10.1002/pat.5770] [Reference Citation Analysis]
21 Jing C, Chen S, Bhatia SS, Li B, Liang H, Liu C, Liang Z, Liu J, Li H, Liu Z, Tan H, Zhao L. Bone-targeted polymeric nanoparticles as alendronate carriers for potential osteoporosis treatment. Polymer Testing 2022;110:107584. [DOI: 10.1016/j.polymertesting.2022.107584] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
22 Iyer G, Dyawanapelly S, Jain R, Dandekar P. An overview of oral insulin delivery strategies (OIDS). Int J Biol Macromol 2022;208:565-85. [PMID: 35346680 DOI: 10.1016/j.ijbiomac.2022.03.144] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
23 Lu R, Zhou Y, Ma J, Wang Y, Miao X. Strategies and Mechanism in Reversing Intestinal Drug Efflux in Oral Drug Delivery. Pharmaceutics 2022;14:1131. [DOI: 10.3390/pharmaceutics14061131] [Reference Citation Analysis]
24 Boon-In S, Theerasilp M, Crespy D. Marrying the incompatible for better: Incorporation of hydrophobic payloads in superhydrophilic hydrogels. J Colloid Interface Sci 2022;622:75-86. [PMID: 35489103 DOI: 10.1016/j.jcis.2022.04.029] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Wang S, Wang H, Yue J, Lu Y, Jia T, Chen J. Highly sensitive and selective fluorescent sensor for Ag+ detection using β-cyclodextrin/chitosan polymer-coated S QDs based on an aggregation-induced quenching mechanism. Cellulose. [DOI: 10.1007/s10570-022-04524-7] [Reference Citation Analysis]
26 Ali F, Khan I, Chen J, Akhtar K, Bakhsh EM, Khan SB. Emerging Fabrication Strategies of Hydrogels and Its Applications. Gels 2022;8:205. [DOI: 10.3390/gels8040205] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
27 Liu S, Yang Q, Zhang J, Yang M, Wang Y, Sun T, Ma C, Abd El-Aty AM. Enhanced stability of stilbene-glycoside-loaded nanoparticles coated with carboxymethyl chitosan and chitosan hydrochloride. Food Chem 2022;372:131343. [PMID: 34656910 DOI: 10.1016/j.foodchem.2021.131343] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
28 Ortiz JA, Sepúlveda FA, Panadero-Medianero C, Murgas P, Ahumada M, Palza H, Matsuhiro B, Zapata PA. Cytocompatible drug delivery hydrogels based on carboxymethylagarose/chitosan pH-responsive polyelectrolyte complexes. Int J Biol Macromol 2022;199:96-107. [PMID: 34973264 DOI: 10.1016/j.ijbiomac.2021.12.093] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
29 Ustinova TM, Vengerovich N, Glinko DK. Applications of chitosan as a polymer carrier for increasing the drugs’ bioavailability. Pharmacy Formulas 2022. [DOI: 10.17816/phf100734] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
30 Jing H, Huang X, Du X, Mo L, Ma C, Wang H. Facile synthesis of pH-responsive sodium alginate/carboxymethyl chitosan hydrogel beads promoted by hydrogen bond. Carbohydr Polym 2022;278:118993. [PMID: 34973796 DOI: 10.1016/j.carbpol.2021.118993] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 23.0] [Reference Citation Analysis]
31 Sabbagh F, Muhamad II, Niazmand R, Dikshit PK, Kim BS. Recent progress in polymeric non-invasive insulin delivery. Int J Biol Macromol 2022;203:222-43. [PMID: 35101478 DOI: 10.1016/j.ijbiomac.2022.01.134] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 11.0] [Reference Citation Analysis]
32 Nayak AK, Hasnain MS, Behera A, Dhara AK, Pal D. Biological macromolecules in drug delivery. Biological Macromolecules 2022. [DOI: 10.1016/b978-0-323-85759-8.00015-4] [Reference Citation Analysis]
33 Rodríguez-rodríguez R, Espinosa-andrews H, García-carvajal ZY. Stimuli-Responsive Hydrogels in Drug Delivery. Functional Biomaterials 2022. [DOI: 10.1007/978-981-16-7152-4_3] [Reference Citation Analysis]
34 Liu J, Tian B, Liu Y, Wan JB. Cyclodextrin-Containing Hydrogels: A Review of Preparation Method, Drug Delivery, and Degradation Behavior. Int J Mol Sci 2021;22:13516. [PMID: 34948312 DOI: 10.3390/ijms222413516] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
35 Mansoor S, Kondiah PPD, Choonara YE. Advanced Hydrogels for the Controlled Delivery of Insulin. Pharmaceutics 2021;13:2113. [PMID: 34959394 DOI: 10.3390/pharmaceutics13122113] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
36 Ren Z, Ke T, Ling Q, Zhao L, Gu H. Rapid self-healing and self-adhesive chitosan-based hydrogels by host-guest interaction and dynamic covalent bond as flexible sensor. Carbohydr Polym 2021;273:118533. [PMID: 34560946 DOI: 10.1016/j.carbpol.2021.118533] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
37 Cui H, Wang Y, Li C, Chen X, Lin L. Antibacterial efficacy of Satureja montana L. essential oil encapsulated in methyl-β-cyclodextrin/soy soluble polysaccharide hydrogel and its assessment as meat preservative. LWT 2021;152:112427. [DOI: 10.1016/j.lwt.2021.112427] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
38 Li W, Wei H, Liu Y, Li S, Wang G, Guo T, Han H. An in situ reactive spray-drying strategy for facile preparation of starch-chitosan based hydrogel microspheres for water treatment application. Chemical Engineering and Processing - Process Intensification 2021;168:108548. [DOI: 10.1016/j.cep.2021.108548] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
39 Chen Y, Song H, Huang K, Guan X. Novel porous starch/alginate hydrogels for controlled insulin release with dual response to pH and amylase. Food Funct 2021;12:9165-77. [PMID: 34606530 DOI: 10.1039/d1fo01411k] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
40 Hu Y, Qiao Y, Xie Z, Li L, Qu M, Liu W, Peng G. Water-Soluble Polymer Assists Multisize Three-Dimensional Microspheres as a High-Performance Si Anode for Lithium-Ion Batteries. ACS Appl Energy Mater 2021;4:9673-81. [DOI: 10.1021/acsaem.1c01791] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
41 Chuysinuan P, Chunshom N, Kotcharat P, Thanyacharoen T, Techasakul S, Ummartyotin S. The Encapsulation of Green Tea Extract in Cyclodextrin and Loading into Chitosan-Based Composites: Controlled-Release Behavior and Antioxidant Properties. J Polym Environ 2021;29:2628-2638. [DOI: 10.1007/s10924-021-02058-w] [Reference Citation Analysis]
42 Jing C, Li B, Tan H, Zhang C, Liang H, Na H, Chen S, Liu C, Zhao L. Alendronate-Decorated Nanoparticles as Bone-Targeted Alendronate Carriers for Potential Osteoporosis Treatment. ACS Appl Bio Mater 2021;4:4907-16. [PMID: 35007039 DOI: 10.1021/acsabm.1c00199] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
43 Nie T, Wang W, Liu X, Wang Y, Li K, Song X, Zhang J, Yu L, He Z. Sustained Release Systems for Delivery of Therapeutic Peptide/Protein. Biomacromolecules 2021;22:2299-324. [PMID: 33957752 DOI: 10.1021/acs.biomac.1c00160] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
44 Zhang Y, Luo Q, Ding K, Liu SG, Shi X. A smartphone-integrated colorimetric sensor of total volatile basic nitrogen (TVB-N) based on Au@MnO2 core-shell nanocomposites incorporated into hydrogel and its application in fish spoilage monitoring. Sensors and Actuators B: Chemical 2021;335:129708. [DOI: 10.1016/j.snb.2021.129708] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 9.0] [Reference Citation Analysis]
45 Wu X, Hua Y, Wei T, Ma C, Wang Z, Zhang L, Wang J. Effect and mechanism of actionin vitroof cyclodextrin derivative nanoparticles loaded with tyroserleutide on hepatoma. Nanotechnology 2021;32. [PMID: 33789260 DOI: 10.1088/1361-6528/abf3f2] [Reference Citation Analysis]
46 Dhiman P, Bhatia M. Microwave assisted quaternized cyclodextrin grafted chitosan (QCD-g-CH) nanoparticles entrapping ciprofloxacin. J Polym Res 2021;28. [DOI: 10.1007/s10965-021-02535-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
47 Zhang Y, Yu L, Zhu J, Gong R. Preparation of folate and carboxymethyl-β-cyclodextrin grafted trimethyl chitosan nanoparticles as co-carrier of doxorubicin and siRNA. Reactive and Functional Polymers 2021;161:104867. [DOI: 10.1016/j.reactfunctpolym.2021.104867] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
48 Boroumand H, Badie F, Mazaheri S, Seyedi ZS, Nahand JS, Nejati M, Baghi HB, Abbasi-Kolli M, Badehnoosh B, Ghandali M, Hamblin MR, Mirzaei H. Chitosan-Based Nanoparticles Against Viral Infections. Front Cell Infect Microbiol 2021;11:643953. [PMID: 33816349 DOI: 10.3389/fcimb.2021.643953] [Cited by in Crossref: 26] [Cited by in F6Publishing: 32] [Article Influence: 13.0] [Reference Citation Analysis]
49 Li S, Liang N, Yan P, Kawashima Y, Sun S. Inclusion complex based on N-acetyl-L-cysteine and arginine modified hydroxypropyl-β-cyclodextrin for oral insulin delivery. Carbohydrate Polymers 2021;252:117202. [DOI: 10.1016/j.carbpol.2020.117202] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
50 Meneguin AB, Silvestre ALP, Sposito L, de Souza MPC, Sábio RM, Araújo VHS, Cury BSF, Chorilli M. The role of polysaccharides from natural resources to design oral insulin micro- and nanoparticles intended for the treatment of Diabetes mellitus: A review. Carbohydr Polym 2021;256:117504. [PMID: 33483027 DOI: 10.1016/j.carbpol.2020.117504] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 5.3] [Reference Citation Analysis]
51 Tsirigotis-Maniecka M, Szyk-Warszyńska L, Lamch Ł, Weżgowiec J, Warszyński P, Wilk KA. Benefits of pH-responsive polyelectrolyte coatings for carboxymethyl cellulose-based microparticles in the controlled release of esculin. Mater Sci Eng C Mater Biol Appl 2021;118:111397. [PMID: 33255002 DOI: 10.1016/j.msec.2020.111397] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
52 Ma L, Su W, Ran Y, Ma X, Yi Z, Chen G, Chen X, Deng Z, Tong Q, Wang X, Li X. Synthesis and characterization of injectable self-healing hydrogels based on oxidized alginate-hybrid-hydroxyapatite nanoparticles and carboxymethyl chitosan. International Journal of Biological Macromolecules 2020;165:1164-74. [DOI: 10.1016/j.ijbiomac.2020.10.004] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 7.7] [Reference Citation Analysis]
53 Yang Y, Chen S, Liu Y, Huang Y, Cheong KL, Teng B, Liu W. Long-term treatment of polysaccharides-based hydrogel microparticles as oral insulin delivery in streptozotocin-induced type 2 diabetic mice. Biomed Pharmacother 2021;133:110941. [PMID: 33232923 DOI: 10.1016/j.biopha.2020.110941] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
54 Seyam S, Nordin NA, Alfatama M. Recent Progress of Chitosan and Chitosan Derivatives-Based Nanoparticles: Pharmaceutical Perspectives of Oral Insulin Delivery. Pharmaceuticals (Basel) 2020;13:E307. [PMID: 33066443 DOI: 10.3390/ph13100307] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 8.3] [Reference Citation Analysis]
55 Kumar D, Gihar S, Shrivash MK, Kumar P, Kundu PP. A review on the synthesis of graft copolymers of chitosan and their potential applications. Int J Biol Macromol 2020;163:2097-112. [PMID: 32949625 DOI: 10.1016/j.ijbiomac.2020.09.060] [Cited by in Crossref: 52] [Cited by in F6Publishing: 57] [Article Influence: 17.3] [Reference Citation Analysis]