BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Xie P, Liu P. pH-responsive surface charge reversal carboxymethyl chitosan-based drug delivery system for pH and reduction dual-responsive triggered DOX release. Carbohydrate Polymers 2020;236:116093. [DOI: 10.1016/j.carbpol.2020.116093] [Cited by in Crossref: 32] [Cited by in F6Publishing: 36] [Article Influence: 16.0] [Reference Citation Analysis]
Number Citing Articles
1 Chen L, Hong W, Duan S, Li Y, Wang J, Zhu J. Graphene quantum dots mediated magnetic chitosan drug delivery nanosystems for targeting synergistic photothermal-chemotherapy of hepatocellular carcinoma. Cancer Biol Ther 2022;23:281-93. [PMID: 35323086 DOI: 10.1080/15384047.2022.2054249] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
2 Hu X, Ha E, Ai F, Huang X, Yan L, He S, Ruan S, Hu J. Stimulus-responsive inorganic semiconductor nanomaterials for tumor-specific theranostics. Coordination Chemistry Reviews 2022;473:214821. [DOI: 10.1016/j.ccr.2022.214821] [Reference Citation Analysis]
3 Ranote S, Musioł M, Kowalczuk M, Joshi V, Chauhan GS, Kumar R, Chauhan S, Kumar K. Functionalized Moringa oleifera Gum as pH-Responsive Nanogel for Doxorubicin Delivery: Synthesis, Kinetic Modelling and In Vitro Cytotoxicity Study. Polymers 2022;14:4697. [DOI: 10.3390/polym14214697] [Reference Citation Analysis]
4 Akkaya B, Akkaya R, Celikkaya SI, Sariaydin N, Raheem KY. Doxorubucin loaded pH-responsive chitosan-poly(acrylamide-maleic acid) composite hydrogel for anticancer targeting. Journal of Molecular Structure 2022. [DOI: 10.1016/j.molstruc.2022.134536] [Reference Citation Analysis]
5 Fan B, Liu L, Zheng Y, Xing Y, Shen W, Li Q, Wang R, Liang G. Novel pH-responsive and mucoadhesive chitosan-based nanoparticles for oral delivery of low molecular weight heparin with enhanced bioavailability and anticoagulant effect. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2022.103955] [Reference Citation Analysis]
6 Wu S, Liu C, Bai S, Lu Z, Liu G. Broadening the Horizons of RNA Delivery Strategies in Cancer Therapy. Bioengineering 2022;9:576. [DOI: 10.3390/bioengineering9100576] [Reference Citation Analysis]
7 Peng H, Qiao L, Shan G, Gao M, Zhang R, Yi X, He X. Stepwise responsive carboxymethyl chitosan-based nanoplatform for effective drug-resistant breast cancer suppression. Carbohydrate Polymers 2022;291:119554. [DOI: 10.1016/j.carbpol.2022.119554] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Moghadam A, Kariminia S, Mobarakeh MS. Novel pH-responsive polyvinyl alcohol/Arabic gum /magnesium oxide nanobiocomposite for oral colon targeted drug delivery. Journal of Drug Delivery Science and Technology 2022;74:103544. [DOI: 10.1016/j.jddst.2022.103544] [Reference Citation Analysis]
9 Lu DQ, Liu D, Liu J, Li WX, Ai Y, Wang J, Guan D. Facile synthesis of chitosan-based nanogels through photo-crosslinking for doxorubicin delivery. Int J Biol Macromol 2022;218:335-45. [PMID: 35870629 DOI: 10.1016/j.ijbiomac.2022.07.112] [Reference Citation Analysis]
10 Silva AS, Diaz de Tuesta JL, Sayuri Berberich T, Delezuk Inglez S, Bertão AR, Çaha I, Deepak FL, Bañobre-López M, Gomes HT. Doxorubicin delivery performance of superparamagnetic carbon multi-core shell nanoparticles: pH dependence, stability and kinetic insight. Nanoscale 2022;14:7220-32. [PMID: 35510700 DOI: 10.1039/d1nr08550f] [Reference Citation Analysis]
11 Mills JA, Liu F, Jarrett TR, Fletcher NL, Thurecht KJ. Nanoparticle based medicines: approaches for evading and manipulating the mononuclear phagocyte system and potential for clinical translation. Biomater Sci 2022. [PMID: 35419582 DOI: 10.1039/d2bm00181k] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
12 Liu Z, Zhou D, Liao L. pH/Redox/Lysozyme-Sensitive Hybrid Nanocarriers With Transformable Size for Multistage Drug Delivery. Front Bioeng Biotechnol 2022;10:882308. [DOI: 10.3389/fbioe.2022.882308] [Reference Citation Analysis]
13 Fu T, Shen J, Meng Y, Wang J, Wang S, Zhang Y, Wang T, Zhang X. Automatic Detoxification Medicine Delivery by Thermo-Sensitive Poly(ethylene glycol)-Based Nanogels. Polymers (Basel) 2022;14:892. [PMID: 35267715 DOI: 10.3390/polym14050892] [Reference Citation Analysis]
14 Yan M, Shi J, Tang S, Zhou G, Zeng J, Zhang Y, Zhang H, Yu Y, Guo J. Dynamically United Double Network Structure Based on Polydopamine to Enhance pH‐Sensitive Seaweed‐Based Film for Medicine. ChemistrySelect 2022;7. [DOI: 10.1002/slct.202102682] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Zhang P, Chen D, Li L, Sun K. Charge reversal nano-systems for tumor therapy. J Nanobiotechnology 2022;20:31. [PMID: 35012546 DOI: 10.1186/s12951-021-01221-8] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
16 Xie P, Liu P. Chitosan-based DDSs for pH/hypoxia dual-triggered DOX delivery: Facile morphology modulation for higher in vitro cytotoxicity. Carbohydr Polym 2022;275:118760. [PMID: 34742449 DOI: 10.1016/j.carbpol.2021.118760] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
17 Raikwar S, Jain A, Saraf S, Tiwari A, Panda PK, Jain SK. Environmental stimuli-sensitive chitosan nanocarriers in therapeutics. Chitosan in Biomedical Applications 2022. [DOI: 10.1016/b978-0-12-821058-1.00007-1] [Reference Citation Analysis]
18 Raghavender Suresh R, Sankarlinkam S, Karuppusami SR, Pandiyan N, Bharathirengan S, Subbiah DK, Srinivasan S, Kulandaisamy AJ, Nesakumar N. Biomedical Applications of Nanoparticles. Handbook of Research on Green Synthesis and Applications of Nanomaterials 2022. [DOI: 10.4018/978-1-7998-8936-6.ch013] [Reference Citation Analysis]
19 Jiang X, Zhao Y, Wang C, Sun R, Tang Y. Effects of physico-chemical properties of ions-doped hydroxyapatite on adsorption and release performance of doxorubicin as a model anticancer drug. Materials Chemistry and Physics 2022;276:125440. [DOI: 10.1016/j.matchemphys.2021.125440] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
20 Ravi Kiran AVVV, Kusuma Kumari G, Krishnamurthy PT, Khaydarov RR. Tumor microenvironment and nanotherapeutics: intruding the tumor fort. Biomater Sci 2021;9:7667-704. [PMID: 34673853 DOI: 10.1039/d1bm01127h] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
21 Sumitha NS, Prakash P, Nair BN, Sailaja GS. Degradation-Dependent Controlled Delivery of Doxorubicin by Glyoxal Cross-Linked Magnetic and Porous Chitosan Microspheres. ACS Omega 2021;6:21472-84. [PMID: 34471750 DOI: 10.1021/acsomega.1c02303] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
22 Zhang X, Zhang M, Wu M, Yang L, Liu R, Zhang R, Zhao T, Song C, Liu G, Zhu Q. Precise Controlled Target Molecule Release through Light-Triggered Charge Reversal Bridged Polysilsesquioxane Nanoparticles. Polymers (Basel) 2021;13:2392. [PMID: 34371994 DOI: 10.3390/polym13152392] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Zhu X, Yu Z, Feng L, Deng L, Fang Z, Liu Z, Li Y, Wu X, Qin L, Guo R, Zheng Y. Chitosan-based nanoparticle co-delivery of docetaxel and curcumin ameliorates anti-tumor chemoimmunotherapy in lung cancer. Carbohydr Polym 2021;268:118237. [PMID: 34127219 DOI: 10.1016/j.carbpol.2021.118237] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 17.0] [Reference Citation Analysis]
24 Lin Z, Cheng X. Synthesis and properties of pH sensitive carboxymethylated hydroxypropyl chitosan nanocarriers for delivery of doxorubicin. Journal of Macromolecular Science, Part A 2021;58:600-9. [DOI: 10.1080/10601325.2021.1920332] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Chen M, Li L, Xia L, Jiang S, Kong Y, Chen X, Wang H. The kinetics and release behaviour of curcumin loaded pH-responsive PLGA/chitosan fibers with antitumor activity against HT-29 cells. Carbohydr Polym 2021;265:118077. [PMID: 33966841 DOI: 10.1016/j.carbpol.2021.118077] [Cited by in Crossref: 12] [Cited by in F6Publishing: 16] [Article Influence: 12.0] [Reference Citation Analysis]
26 Zhou J, Ma S, Zhang Y, He Y, Mao H, Yang J, Zhang H, Luo K, Gong Q, Gu Z. Bacterium-mimicking sequentially targeted therapeutic nanocomplexes based on O-carboxymethyl chitosan and their cooperative therapy by dual-modality light manipulation. Carbohydr Polym 2021;264:118030. [PMID: 33910720 DOI: 10.1016/j.carbpol.2021.118030] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
27 Jaiswal S, Dutta P, Kumar S, Chawla R. Chitosan modified by organo-functionalities as an efficient nanoplatform for anti-cancer drug delivery process. Journal of Drug Delivery Science and Technology 2021;62:102407. [DOI: 10.1016/j.jddst.2021.102407] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
28 Yao W, Xu Z, Sun J, Luo J, Wei Y, Zou J. Deoxycholic acid-functionalised nanoparticles for oral delivery of rhein. Eur J Pharm Sci 2021;159:105713. [PMID: 33453389 DOI: 10.1016/j.ejps.2021.105713] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 9.0] [Reference Citation Analysis]
29 Wang J, Liu LG, Jiao WQ, Yang H, Liu J, Liu D. Phenylboronic acid-conjugated chitosan nanoparticles for high loading and efficient delivery of curcumin. Carbohydr Polym 2021;256:117497. [PMID: 33483024 DOI: 10.1016/j.carbpol.2020.117497] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 17.0] [Reference Citation Analysis]
30 Saravanakumar K, Mariadoss AVA, Sathiyaseelan A, Venkatachalam K, Hu X, Wang M. pH-sensitive release of fungal metabolites from chitosan nanoparticles for effective cytotoxicity in prostate cancer (PC3) cells. Process Biochemistry 2021;102:165-72. [DOI: 10.1016/j.procbio.2020.12.005] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
31 Wang J, Zhang Z, Ai Y, Liu F, Chen MM, Liu D. Lactobionic acid-modified thymine-chitosan nanoparticles as potential carriers for methotrexate delivery. Carbohydr Res 2021;501:108275. [PMID: 33657498 DOI: 10.1016/j.carres.2021.108275] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
32 Colmenarez Lobo CA, Fascio ML, D’accorso NB. Thiolated biopolymers in drug delivery and biomedical applications. Tailor-Made and Functionalized Biopolymer Systems 2021. [DOI: 10.1016/b978-0-12-821437-4.00007-4] [Reference Citation Analysis]
33 Shi J, Li J, Xu Z, Chen L, Luo R, Zhang C, Gao F, Zhang J, Fu C. Celastrol: A Review of Useful Strategies Overcoming its Limitation in Anticancer Application. Front Pharmacol 2020;11:558741. [PMID: 33364939 DOI: 10.3389/fphar.2020.558741] [Cited by in Crossref: 37] [Cited by in F6Publishing: 40] [Article Influence: 18.5] [Reference Citation Analysis]
34 Di J, Gao X, Du Y, Zhang H, Gao J, Zheng A. Size, shape, charge and “stealthy” surface: Carrier properties affect the drug circulation time in vivo. Asian Journal of Pharmaceutical Sciences 2020. [DOI: 10.1016/j.ajps.2020.07.005] [Cited by in Crossref: 31] [Cited by in F6Publishing: 36] [Article Influence: 15.5] [Reference Citation Analysis]
35 Wang L, Du J, Han X, Dou J, Shen J, Yuan J. Self-crosslinked keratin nanoparticles for pH and GSH dual responsive drug carriers. J Biomater Sci Polym Ed 2020;31:1994-2006. [PMID: 32589511 DOI: 10.1080/09205063.2020.1788371] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]