BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Luo H, Cha R, Li J, Hao W, Zhang Y, Zhou F. Advances in tissue engineering of nanocellulose-based scaffolds: A review. Carbohydr Polym 2019;224:115144. [PMID: 31472870 DOI: 10.1016/j.carbpol.2019.115144] [Cited by in Crossref: 97] [Cited by in F6Publishing: 101] [Article Influence: 32.3] [Reference Citation Analysis]
Number Citing Articles
1 Kundu S, Mitra D, Das M. Biomedical Applications of Biocomposites Derived From Cellulose. Handbook of Bioplastics and Biocomposites Engineering Applications 2023. [DOI: 10.1002/9781119160182.ch13] [Reference Citation Analysis]
2 Devra V. Microbial cell factories for green synthesis metal sulfide nanoparticle: A sustainable approach for biomedical and agroecosystem applications. Fungal Cell Factories for Sustainable Nanomaterials Productions and Agricultural Applications 2023. [DOI: 10.1016/b978-0-323-99922-9.00022-2] [Reference Citation Analysis]
3 Si Y, Lin Q, Zhou F, Qing J, Luo H, Zhang C, Zhang J, Cha R. The interaction between nanocellulose and microorganisms for new degradable packaging: A review. Carbohydrate Polymers 2022;295:119899. [DOI: 10.1016/j.carbpol.2022.119899] [Reference Citation Analysis]
4 Su J, Zhang L, Wan C, Deng Z, Wei S, Yong K, Wu Y. Dual-network self-healing hydrogels composed of graphene oxide@nanocellulose and poly(AAm-co-AAc). Carbohydrate Polymers 2022;296:119905. [DOI: 10.1016/j.carbpol.2022.119905] [Reference Citation Analysis]
5 He X, Lu Q. Design and fabrication strategies of cellulose nanocrystal-based hydrogel and its highlighted application using 3D printing: A review. Carbohydrate Polymers 2022. [DOI: 10.1016/j.carbpol.2022.120351] [Reference Citation Analysis]
6 Revati R, Majid MA, Ridzuan M, Mamat N, Cheng E, Alshahrani HA. In vitro biodegradation, cytotoxicity, and biocompatibility of polylactic acid/napier cellulose nanofiber scaffold composites. International Journal of Biological Macromolecules 2022. [DOI: 10.1016/j.ijbiomac.2022.11.041] [Reference Citation Analysis]
7 Eldeeb AE, Salah S, Elkasabgy NA. Biomaterials for Tissue Engineering Applications and Current Updates in the Field: A Comprehensive Review. AAPS PharmSciTech 2022;23:267. [PMID: 36163568 DOI: 10.1208/s12249-022-02419-1] [Reference Citation Analysis]
8 Li Z, Liu L, Chen Y. Direct 3D printing of thermosensitive AOP127-oxidized dextran hydrogel with dual dynamic crosslinking and high toughness. Carbohydrate Polymers 2022;291:119616. [DOI: 10.1016/j.carbpol.2022.119616] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Althomali RH, Alamry KA, Hussein MA, Tay GS. Versatile Applications Of Biopolymer Nanocomposites: A review. ChemistrySelect 2022;7. [DOI: 10.1002/slct.202200843] [Reference Citation Analysis]
10 Chen C, Xi Y, Weng Y. Recent Advances in Cellulose-Based Hydrogels for Tissue Engineering Applications. Polymers 2022;14:3335. [DOI: 10.3390/polym14163335] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
11 Ndlovu SP, Fonkui TY, Ndinteh DT, Aderibigbe BA. Dissolvable wound dressing loaded with silver nanoparticles together with ampicillin and ciprofloxacin. Ther Deliv 2022. [PMID: 35924677 DOI: 10.4155/tde-2021-0087] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
12 Unni R, Varghese R, Bharat Dalvi Y, Augustine R, M.s L, R R, Kumar Bhaskaran Nair H, Hasan A, A A, Mathew TJ. Characterization and In vitro biocompatibility analysis of nanocellulose scaffold for tissue engineering application. J Polym Res 2022;29. [DOI: 10.1007/s10965-022-03072-9] [Reference Citation Analysis]
13 Randhawa A, Dutta SD, Ganguly K, Patil TV, Patel DK, Lim K. A Review of Properties of Nanocellulose, Its Synthesis, and Potential in Biomedical Applications. Applied Sciences 2022;12:7090. [DOI: 10.3390/app12147090] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
14 Shi Y, Jiao H, Sun J, Lu X, Yu S, Cheng L, Wang Q, Liu H, Biranje S, Wang J, Liu J. Functionalization of nanocellulose applied with biological molecules for biomedical application: A review. Carbohydrate Polymers 2022;285:119208. [DOI: 10.1016/j.carbpol.2022.119208] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
15 Teixeira MA, Antunes JC, Seabra CL, Fertuzinhos A, Tohidi SD, Reis S, Amorim MTP, Ferreira DP, Felgueiras HP. Antibacterial and hemostatic capacities of cellulose nanocrystalline-reinforced poly(vinyl alcohol) electrospun mats doped with Tiger 17 and pexiganan peptides for prospective wound healing applications. Biomaterials Advances 2022;137:212830. [DOI: 10.1016/j.bioadv.2022.212830] [Reference Citation Analysis]
16 Jacob S, R R, Antony S, Madhavan A, Sindhu R, Kumar Awasthi M, Kuddus M, Pillai S, Varjani S, Pandey A, Binod P. Nanocellulose in tissue engineering and bioremediation: mechanism of action. Bioengineered 2022;13:12823-33. [PMID: 35609323 DOI: 10.1080/21655979.2022.2074739] [Reference Citation Analysis]
17 Abdelhamid HN, Mathew AP. Cellulose-Based Nanomaterials Advance Biomedicine: A Review. Int J Mol Sci 2022;23:5405. [PMID: 35628218 DOI: 10.3390/ijms23105405] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
18 Patel DK, Ganguly K, Hexiu J, Dutta SD, Patil TV, Lim K. Functionalized chitosan/spherical nanocellulose-based hydrogel with superior antibacterial efficiency for wound healing. Carbohydrate Polymers 2022;284:119202. [DOI: 10.1016/j.carbpol.2022.119202] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
19 Aghazadeh MR, Delfanian S, Aghakhani P, Homaeigohar S, Alipour A, Shahsavarani H. Recent Advances in Development of Natural Cellulosic Non-Woven Scaffolds for Tissue Engineering. Polymers 2022;14:1531. [DOI: 10.3390/polym14081531] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Alimohammadzadeh R, Rafi AA, Goclik L, Tai C, Cordova A. Direct organocatalytic thioglycolic acid esterification of cellulose nanocrystals: a simple entry to click chemistry on the surface of nanocellulose. Carbohydrate Polymer Technologies and Applications 2022. [DOI: 10.1016/j.carpta.2022.100205] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
21 Unni R, Reshmy R, Latha MS, Philip E, Sindhu R, Binod P, Pandey A, Awasthi MK. Enhancement of mechanical and thermal properties of Ixora coccinea L. plant root derived nanocellulose using polyethylene glycol-glutaraldehyde system. Chemosphere 2022;:134324. [PMID: 35307393 DOI: 10.1016/j.chemosphere.2022.134324] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Mackin RT, Fontenot KR, Edwards JV, Prevost NT, Jordan JH, Easson MW, Condon BD, French AD. Detection of Human Neutrophil Elastase by Fluorescent Peptide Sensors Conjugated to TEMPO-Oxidized Nanofibrillated Cellulose. IJMS 2022;23:3101. [DOI: 10.3390/ijms23063101] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
23 Eichhorn SJ, Etale A, Wang J, Berglund LA, Li Y, Cai Y, Chen C, Cranston ED, Johns MA, Fang Z, Li G, Hu L, Khandelwal M, Lee K, Oksman K, Pinitsoontorn S, Quero F, Sebastian A, Titirici MM, Xu Z, Vignolini S, Frka-petesic B. Current international research into cellulose as a functional nanomaterial for advanced applications. J Mater Sci. [DOI: 10.1007/s10853-022-06903-8] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
24 Almashhadani AQ, Leh CP, Chan S, Lee CY, Goh CF. Nanocrystalline cellulose isolation via acid hydrolysis from non-woody biomass: Importance of hydrolysis parameters. Carbohydrate Polymers 2022. [DOI: 10.1016/j.carbpol.2022.119285] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
25 García Betancourt ML, Osorio-aguilar D. Physicochemical Characterization of Nanocellulose: Composite, Crystallinity, Morphology. Handbook of Nanocelluloses 2022. [DOI: 10.1007/978-3-030-89621-8_9] [Reference Citation Analysis]
26 García-betancourt M, Osorio-aguilar D. Physicochemical Characterization of Nanocellulose: Composite, Crystallinity, Morphology. Handbook of Nanocelluloses 2022. [DOI: 10.1007/978-3-030-62976-2_9-1] [Reference Citation Analysis]
27 Goli-malekabadi Z, Pournaghmeh S. Nanocellulose for Vascular Grafts and Blood Vessel Tissue Engineering. Handbook of Nanocelluloses 2022. [DOI: 10.1007/978-3-030-89621-8_38] [Reference Citation Analysis]
28 Repetto E, Ramirez CR, Manzano VE, García NL, D'accorso NB. Cellulose and starch nanoparticles: Function and surface modifications for biomedical application. Polysaccharide Nanoparticles 2022. [DOI: 10.1016/b978-0-12-822351-2.00023-1] [Reference Citation Analysis]
29 Singh A, Kumari K, Kundu PP. Nanocellulose Biocomposites for Bone Tissue Engineering. Handbook of Nanocelluloses 2022. [DOI: 10.1007/978-3-030-89621-8_39] [Reference Citation Analysis]
30 Kadir NHA, Mohammad M, Alam M, Torkashvand M, Silvaragi TGB, Gururuloo SL. Utilization of nanocellulose fibers, nanocrystalline cellulose and bacterial cellulose in biomedical and pharmaceutical applications. Nanotechnology in Paper and Wood Engineering 2022. [DOI: 10.1016/b978-0-323-85835-9.00025-8] [Reference Citation Analysis]
31 Mahendiran B, Muthusamy S, Sampath S, Jaisankar SN, Krishnakumar GS. Nanocelluloses for Tissue Engineering Application. Handbook of Nanocelluloses 2022. [DOI: 10.1007/978-3-030-89621-8_37] [Reference Citation Analysis]
32 Singh A, Kumari K, Kundu PP. Nanocellulose Biocomposites for Bone Tissue Engineering. Handbook of Nanocelluloses 2022. [DOI: 10.1007/978-3-030-62976-2_39-1] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Fareez IM, Zaki RM, Hawa JA. Nanocellulose nanocomposites for biomedical applications. Industrial Applications of Nanocellulose and Its Nanocomposites 2022. [DOI: 10.1016/b978-0-323-89909-3.00010-9] [Reference Citation Analysis]
34 Aljabali AAA, Obeid MA, Rezigue MM, Alqudah A, Charbe NB, Chellappan DK, Mishra V, Pardhi DM, Dureja H, Gupta G, Prasher P, Dua K, Barhoum A, Tambuwala MM. Nanocelluloses as a Novel Vehicle for Controlled Drug Delivery. Handbook of Nanocelluloses 2022. [DOI: 10.1007/978-3-030-89621-8_36] [Reference Citation Analysis]
35 Jajal D, Shah S. Application of nanobiomaterials in soft tissue engineering. Nanotechnology in Medicine and Biology 2022. [DOI: 10.1016/b978-0-12-819469-0.00006-x] [Reference Citation Analysis]
36 Eshgh NA, Meftahi A, Khajavi R, Aljabali AAA, Barhoum A. Nanocelluloses for Tissue Engineering and Biomedical Scaffolds. Handbook of Nanocelluloses 2022. [DOI: 10.1007/978-3-030-89621-8_43] [Reference Citation Analysis]
37 Firmanda A, Syamsu K, Sari YW, Cabral J, Pletzer D, Mahadik B, Fisher J, Fahma F. 3D printed cellulose based product applications. Mater Chem Front 2022;6:254-79. [DOI: 10.1039/d1qm00390a] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
38 Schussler O, Falcoz PE, Chachques JC, Alifano M, Lecarpentier Y. Possible Treatment of Myocardial Infarct Based on Tissue Engineering Using a Cellularized Solid Collagen Scaffold Functionalized with Arg-Glyc-Asp (RGD) Peptide. Int J Mol Sci 2021;22:12563. [PMID: 34830447 DOI: 10.3390/ijms222212563] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
39 Fan F, Zhu M, Fang K, Cao E, Yang Y, Xie J, Deng Z, Chen Y, Cao X. Extraction and characterization of cellulose nanowhiskers from TEMPO oxidized sisal fibers. Cellulose 2022;29:213-22. [DOI: 10.1007/s10570-021-04305-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
40 Mommer S, Gehlen D, Akagi T, Akashi M, Keul H, Möller M. Thiolactone-Functional Pullulan for In Situ Forming Biogels. Biomacromolecules 2021;22:4262-73. [PMID: 34546742 DOI: 10.1021/acs.biomac.1c00807] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Kumar A, Han SS. Efficacy of Bacterial Nanocellulose in Hard Tissue Regeneration: A Review. Materials (Basel) 2021;14:4777. [PMID: 34500866 DOI: 10.3390/ma14174777] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
42 Fürtauer S, Hassan M, Elsherbiny A, Gabal SA, Mehanny S, Abushammala H. Current Status of Cellulosic and Nanocellulosic Materials for Oil Spill Cleanup. Polymers (Basel) 2021;13:2739. [PMID: 34451277 DOI: 10.3390/polym13162739] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 9.0] [Reference Citation Analysis]
43 Zhai X, Xiang Y, Tian Y, Wang A, Li Z, Wang W, Hou H. Extraction and characterization of cellulose nanocrystals from cotton fiber by enzymatic hydrolysis‐assisted high‐pressure homogenization. J Vinyl Addit Technol 2021;27:781-94. [DOI: 10.1002/vnl.21849] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
44 Nicu R, Ciolacu F, Ciolacu DE. Advanced Functional Materials Based on Nanocellulose for Pharmaceutical/Medical Applications. Pharmaceutics 2021;13:1125. [PMID: 34452086 DOI: 10.3390/pharmaceutics13081125] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 13.0] [Reference Citation Analysis]
45 Luo H, Lan H, Cha R, Yu X, Gao P, Zhang P, Zhang C, Han L, Jiang X. Dialdehyde Nanocrystalline Cellulose as Antibiotic Substitutes against Multidrug-Resistant Bacteria. ACS Appl Mater Interfaces 2021;13:33802-11. [PMID: 34282616 DOI: 10.1021/acsami.1c06308] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
46 Wei Z, Wu C, Li R, Yu D, Ding Q. Nanocellulose based hydrogel or aerogel scaffolds for tissue engineering. Cellulose 2021;28:7497-520. [DOI: 10.1007/s10570-021-04021-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
47 Cayabyab SR, Celorico JR, Custodio CL, Basilia BA. Characterization of Cellulose Acetate Based Scaffolds Derived from Kapok Fiber (<i>Ceiba pentandra </i>(L) Gaertn). KEM 2021;891:77-82. [DOI: 10.4028/www.scientific.net/kem.891.77] [Reference Citation Analysis]
48 Rosén T, Hsiao BS, Söderberg LD. Elucidating the Opportunities and Challenges for Nanocellulose Spinning. Adv Mater 2021;33:e2001238. [PMID: 32830341 DOI: 10.1002/adma.202001238] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 20.0] [Reference Citation Analysis]
49 Zha F, Chen W, Hao L, Wu C, Lu M, Zhang L, Yu D. Electrospun cellulose-based conductive polymer nanofibrous mats: composite scaffolds and their influence on cell behavior with electrical stimulation for nerve tissue engineering. Soft Matter 2020;16:6591-8. [PMID: 32597437 DOI: 10.1039/d0sm00593b] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 17.0] [Reference Citation Analysis]
50 Si Y, Luo H, Zhou F, Bai X, Han L, Sun H, Cha R. Advances in polysaccharide nanocrystals as pharmaceutical excipients. Carbohydrate Polymers 2021;262:117922. [DOI: 10.1016/j.carbpol.2021.117922] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 10.0] [Reference Citation Analysis]
51 Yap JX, Leo C, Mohd Yasin NH, Derek C. Sustainable cultivation of Navicula incerta using cellulose-based scaffold incorporated with nanoparticles in air-liquid interface cultivation system. Chemosphere 2021;273:129657. [DOI: 10.1016/j.chemosphere.2021.129657] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
52 Mallakpour S, Tukhani M, Hussain CM. Recent advancements in 3D bioprinting technology of carboxymethyl cellulose-based hydrogels: Utilization in tissue engineering. Adv Colloid Interface Sci 2021;292:102415. [PMID: 33892215 DOI: 10.1016/j.cis.2021.102415] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 18.0] [Reference Citation Analysis]
53 Amato G, Saleh T, Carpino G, Gaudio E, Alvaro D, Cardinale V. Cell Therapy and Bioengineering in Experimental Liver Regenerative Medicine: In Vivo Injury Models and Grafting Strategies. Curr Transpl Rep 2021;8:76-89. [DOI: 10.1007/s40472-021-00325-2] [Reference Citation Analysis]
54 Khan S, Siddique R, Huanfei D, Shereen MA, Nabi G, Bai Q, Manan S, Xue M, Ullah MW, Bowen H. Perspective Applications and Associated Challenges of Using Nanocellulose in Treating Bone-Related Diseases. Front Bioeng Biotechnol 2021;9:616555. [PMID: 34026739 DOI: 10.3389/fbioe.2021.616555] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 14.0] [Reference Citation Analysis]
55 Haniffa MACM, Munawar K, Chee CY, Pramanik S, Halilu A, Illias HA, Rizwan M, Senthilnithy R, Mahanama KRR, Tripathy A, Azman MF. Cellulose supported magnetic nanohybrids: Synthesis, physicomagnetic properties and biomedical applications-A review. Carbohydr Polym 2021;267:118136. [PMID: 34119125 DOI: 10.1016/j.carbpol.2021.118136] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
56 Revin VV, Dolganov AV, Liyaskina EV, Nazarova NB, Balandina AV, Devyataeva AA, Revin VD. Characterizing Bacterial Cellulose Produced byKomagataeibacter sucrofermentans H-110 on Molasses Medium and Obtaining a Biocomposite Based on It for the Adsorption of Fluoride. Polymers (Basel) 2021;13:1422. [PMID: 33925017 DOI: 10.3390/polym13091422] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
57 Wang H, Du H, Liu K, Liu H, Xu T, Zhang S, Chen X, Zhang R, Li H, Xie H, Zhang X, Si C. Sustainable preparation of bifunctional cellulose nanocrystals via mixed H2SO4/formic acid hydrolysis. Carbohydr Polym 2021;266:118107. [PMID: 34044925 DOI: 10.1016/j.carbpol.2021.118107] [Cited by in Crossref: 44] [Cited by in F6Publishing: 44] [Article Influence: 44.0] [Reference Citation Analysis]
58 Ghosh S, Ahmad R, Zeyaullah M, Khare SK. Microbial Nano-Factories: Synthesis and Biomedical Applications. Front Chem 2021;9:626834. [PMID: 33937188 DOI: 10.3389/fchem.2021.626834] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 20.0] [Reference Citation Analysis]
59 Piras CC, Smith DK. Multicomponent polysaccharide alginate-based bioinks. J Mater Chem B 2020;8:8171-88. [PMID: 32776063 DOI: 10.1039/d0tb01005g] [Cited by in Crossref: 51] [Cited by in F6Publishing: 52] [Article Influence: 51.0] [Reference Citation Analysis]
60 Kim J, Jang J, Cho DW. Controlling Cancer Cell Behavior by Improving the Stiffness of Gastric Tissue-Decellularized ECM Bioink With Cellulose Nanoparticles. Front Bioeng Biotechnol 2021;9:605819. [PMID: 33816446 DOI: 10.3389/fbioe.2021.605819] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
61 Saydé T, El Hamoui O, Alies B, Gaudin K, Lespes G, Battu S. Biomaterials for Three-Dimensional Cell Culture: From Applications in Oncology to Nanotechnology. Nanomaterials (Basel) 2021;11:481. [PMID: 33668665 DOI: 10.3390/nano11020481] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 18.0] [Reference Citation Analysis]
62 Temirel M, Hawxhurst C, Tasoglu S. Shape Fidelity of 3D-Bioprinted Biodegradable Patches. Micromachines (Basel) 2021;12:195. [PMID: 33668565 DOI: 10.3390/mi12020195] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
63 Ahmad H. Celluloses as support materials for antibacterial agents: a review. Cellulose 2021;28:2715-61. [DOI: 10.1007/s10570-021-03703-2] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 12.0] [Reference Citation Analysis]
64 Litowczenko J, Woźniak-Budych MJ, Staszak K, Wieszczycka K, Jurga S, Tylkowski B. Milestones and current achievements in development of multifunctional bioscaffolds for medical application. Bioact Mater 2021;6:2412-38. [PMID: 33553825 DOI: 10.1016/j.bioactmat.2021.01.007] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 25.0] [Reference Citation Analysis]
65 Seddiqi H, Oliaei E, Honarkar H, Jin J, Geonzon LC, Bacabac RG, Klein-nulend J. Cellulose and its derivatives: towards biomedical applications. Cellulose 2021;28:1893-931. [DOI: 10.1007/s10570-020-03674-w] [Cited by in Crossref: 91] [Cited by in F6Publishing: 60] [Article Influence: 91.0] [Reference Citation Analysis]
66 Sujeeun LY, Goonoo N, Ramphul H, Chummun I, Gimié F, Baichoo S, Bhaw-Luximon A. Correlating in vitro performance with physico-chemical characteristics of nanofibrous scaffolds for skin tissue engineering using supervised machine learning algorithms. R Soc Open Sci 2020;7:201293. [PMID: 33489277 DOI: 10.1098/rsos.201293] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
67 Eshgh NA, Meftahi A, Khajavi R, Aljabali AAA, Barhoum A. Nanocelluloses for Tissue Engineering and Biomedical Scaffolds. Handbook of Nanocelluloses 2021. [DOI: 10.1007/978-3-030-62976-2_43-1] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
68 Yu S, Sun J, Shi Y, Wang Q, Wu J, Liu J. Nanocellulose from various biomass wastes: Its preparation and potential usages towards the high value-added products. Environmental Science and Ecotechnology 2021;5:100077. [DOI: 10.1016/j.ese.2020.100077] [Cited by in Crossref: 35] [Cited by in F6Publishing: 22] [Article Influence: 35.0] [Reference Citation Analysis]
69 Sunasee R. Nanocellulose: Preparation, Functionalization and Applications. Comprehensive Glycoscience. Elsevier; 2021. pp. 506-37. [DOI: 10.1016/b978-0-12-409547-2.14946-7] [Cited by in Crossref: 6] [Article Influence: 6.0] [Reference Citation Analysis]
70 Aljabali AAA, Obeid MA, Rezigue MM, Alqudah A, Charbe NB, Chellappan DK, Mishra V, Pardhi DM, Dureja H, Gupta G, Prasher P, Dua K, Barhoum A, Tambuwala MM. Nanocelluloses as a Novel Vehicle for Controlled Drug Delivery. Handbook of Nanocelluloses 2021. [DOI: 10.1007/978-3-030-62976-2_36-1] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
71 Ee LY, Yau Li SF. Recent advances in 3D printing of nanocellulose: structure, preparation, and application prospects. Nanoscale Adv 2021;3:1167-208. [DOI: 10.1039/d0na00408a] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 18.0] [Reference Citation Analysis]
72 Kuhnt T, Camarero-espinosa S. Additive manufacturing of nanocellulose based scaffolds for tissue engineering: Beyond a reinforcement filler. Carbohydrate Polymers 2021;252:117159. [DOI: 10.1016/j.carbpol.2020.117159] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 15.0] [Reference Citation Analysis]
73 Mahendiran B, Muthusamy S, Sampath S, Jaisankar SN, Krishnakumar GS. Nanocelluloses for Tissue Engineering Application. Handbook of Nanocelluloses 2021. [DOI: 10.1007/978-3-030-62976-2_37-1] [Reference Citation Analysis]
74 He Y, Hou H, Wang S, Lin R, Wang L, Yu L, Qiu X. From waste of marine culture to natural patch in cardiac tissue engineering. Bioact Mater 2021;6:2000-10. [PMID: 33426372 DOI: 10.1016/j.bioactmat.2020.12.011] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
75 Revin VV, Nazarova NB, Tsareva EE, Liyaskina EV, Revin VD, Pestov NA. Production of Bacterial Cellulose Aerogels With Improved Physico-Mechanical Properties and Antibacterial Effect. Front Bioeng Biotechnol 2020;8:603407. [PMID: 33344435 DOI: 10.3389/fbioe.2020.603407] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
76 Du H, Parit M, Wu M, Che X, Wang Y, Zhang M, Wang R, Zhang X, Jiang Z, Li B. Sustainable valorization of paper mill sludge into cellulose nanofibrils and cellulose nanopaper. Journal of Hazardous Materials 2020;400:123106. [DOI: 10.1016/j.jhazmat.2020.123106] [Cited by in Crossref: 67] [Cited by in F6Publishing: 69] [Article Influence: 33.5] [Reference Citation Analysis]
77 Khan S, Chockalingam S, Kundu PP, Packirisamy G. Fabrication of bimodal porous scaffold with enhanced mechanical properties using silanized sisal fibers for potential application in bone tissue engineering. Materials Today Communications 2020;25:101260. [DOI: 10.1016/j.mtcomm.2020.101260] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
78 Shen Y, Wang L, Liu F, Liu H, Li D, Liu Q, Deng B. Solvent Vapor Strengthened Polyimide Nanofiber-Based Aerogels with High Resilience and Controllable Porous Structure. ACS Appl Mater Interfaces 2020;12:53104-14. [PMID: 33176100 DOI: 10.1021/acsami.0c15751] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
79 Khan M, Shah LA, Khan MA, Khattak NS, Zhao H. Synthesis of an un-modified gum arabic and acrylic acid based physically cross-linked hydrogels with high mechanical, self-sustainable and self-healable performance. Materials Science and Engineering: C 2020;116:111278. [DOI: 10.1016/j.msec.2020.111278] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
80 He M, Wang Q, Xie L, Wu H, Zhao W, Tian W. Hierarchically multi-functionalized graded membrane with enhanced bone regeneration and self-defensive antibacterial characteristics for guided bone regeneration. Chemical Engineering Journal 2020;398:125542. [DOI: 10.1016/j.cej.2020.125542] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 9.5] [Reference Citation Analysis]
81 Stanisz M, Klapiszewski Ł, Jesionowski T. Recent advances in the fabrication and application of biopolymer-based micro- and nanostructures: A comprehensive review. Chemical Engineering Journal 2020;397:125409. [DOI: 10.1016/j.cej.2020.125409] [Cited by in Crossref: 45] [Cited by in F6Publishing: 31] [Article Influence: 22.5] [Reference Citation Analysis]
82 Joy J, George E, Haritha P, Thomas S, Anas S. An overview of boron nitride based polymer nanocomposites. Journal of Polymer Science 2020;58:3115-41. [DOI: 10.1002/pol.20200507] [Cited by in Crossref: 30] [Cited by in F6Publishing: 34] [Article Influence: 15.0] [Reference Citation Analysis]
83 Frazier T, Alarcon A, Wu X, Mohiuddin OA, Motherwell JM, Carlsson AH, Christy RJ, Edwards JV, Mackin RT, Prevost N, Gloster E, Zhang Q, Wang G, Hayes DJ, Gimble JM. Clinical Translational Potential in Skin Wound Regeneration for Adipose-Derived, Blood-Derived, and Cellulose Materials: Cells, Exosomes, and Hydrogels. Biomolecules 2020;10:E1373. [PMID: 32992554 DOI: 10.3390/biom10101373] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
84 Bédard P, Gauvin S, Ferland K, Caneparo C, Pellerin È, Chabaud S, Bolduc S. Innovative Human Three-Dimensional Tissue-Engineered Models as an Alternative to Animal Testing. Bioengineering (Basel) 2020;7:E115. [PMID: 32957528 DOI: 10.3390/bioengineering7030115] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 18.0] [Reference Citation Analysis]
85 Wang M, Yu T, Tan L, Li W, Wei W, Jiang M, Liu D, Zhou Z. An eco-friendly approach to preparing cellulose nanocrystals by precisely controlling the dissolution of natural cellulose in TBAH/H2O solvent. Cellulose 2020;27:9311-24. [DOI: 10.1007/s10570-020-03418-w] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
86 Campodoni E, Montanari M, Dozio SM, Heggset EB, Panseri S, Montesi M, Tampieri A, Syverud K, Sandri M. Blending Gelatin and Cellulose Nanofibrils: Biocomposites with Tunable Degradability and Mechanical Behavior. Nanomaterials (Basel) 2020;10:E1219. [PMID: 32580479 DOI: 10.3390/nano10061219] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
87 Zhang S, Tanioka A, Okamoto M, Haraoka Y, Hayashi N, Matsumoto H. High-Quality Nanofibrous Nonwoven Air Filters: Additive Effect of Water-Jet Nanofibrillated Celluloses on Their Performance. ACS Appl Polym Mater 2020;2:2830-8. [DOI: 10.1021/acsapm.0c00374] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
88 Hao W, Wang M, Zhou F, Luo H, Xie X, Luo F, Cha R. A review on nanocellulose as a lightweight filler of polyolefin composites. Carbohydr Polym 2020;243:116466. [PMID: 32532395 DOI: 10.1016/j.carbpol.2020.116466] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 17.0] [Reference Citation Analysis]
89 Trache D, Tarchoun AF, Derradji M, Hamidon TS, Masruchin N, Brosse N, Hussin MH. Nanocellulose: From Fundamentals to Advanced Applications. Front Chem 2020;8:392. [PMID: 32435633 DOI: 10.3389/fchem.2020.00392] [Cited by in Crossref: 251] [Cited by in F6Publishing: 267] [Article Influence: 125.5] [Reference Citation Analysis]
90 Ventura C, Pinto F, Lourenço AF, Ferreira PJT, Louro H, Silva MJ. On the toxicity of cellulose nanocrystals and nanofibrils in animal and cellular models. Cellulose 2020;27:5509-44. [DOI: 10.1007/s10570-020-03176-9] [Cited by in Crossref: 43] [Cited by in F6Publishing: 29] [Article Influence: 21.5] [Reference Citation Analysis]
91 Liu W, Du H, Zhang M, Liu K, Liu H, Xie H, Zhang X, Si C. Bacterial Cellulose-Based Composite Scaffolds for Biomedical Applications: A Review. ACS Sustainable Chem Eng 2020;8:7536-62. [DOI: 10.1021/acssuschemeng.0c00125] [Cited by in Crossref: 178] [Cited by in F6Publishing: 188] [Article Influence: 89.0] [Reference Citation Analysis]
92 Donnaloja F, Jacchetti E, Soncini M, Raimondi MT. Natural and Synthetic Polymers for Bone Scaffolds Optimization. Polymers (Basel) 2020;12:E905. [PMID: 32295115 DOI: 10.3390/polym12040905] [Cited by in Crossref: 84] [Cited by in F6Publishing: 89] [Article Influence: 42.0] [Reference Citation Analysis]
93 Ganguly K, Patel DK, Dutta SD, Shin WC, Lim KT. Stimuli-responsive self-assembly of cellulose nanocrystals (CNCs): Structures, functions, and biomedical applications. Int J Biol Macromol 2020;155:456-69. [PMID: 32222290 DOI: 10.1016/j.ijbiomac.2020.03.171] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 11.0] [Reference Citation Analysis]
94 Teixeira MA, Paiva MC, Amorim MTP, Felgueiras AHP. Electrospun Nanocomposites Containing Cellulose and Its Derivatives Modified with Specialized Biomolecules for an Enhanced Wound Healing. Nanomaterials (Basel) 2020;10:E557. [PMID: 32204521 DOI: 10.3390/nano10030557] [Cited by in Crossref: 62] [Cited by in F6Publishing: 63] [Article Influence: 31.0] [Reference Citation Analysis]
95 Sinitsyna OV, Kalinina NO, Mcgeachy K, Whale E, Hepworth D, Love AJ, Taliansky ME, Yaminsky IV. Interaction between nanocellulose and tobacco mosaic virus-like particles: an atomic force microscopy study. Cellulose 2020;27:2381-7. [DOI: 10.1007/s10570-020-02978-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
96 Miao C, Du H, Parit M, Jiang Z, Tippur HV, Zhang X, Liu Z, Li J, Wang R. Superior crack initiation and growth characteristics of cellulose nanopapers. Cellulose 2020;27:3181-95. [DOI: 10.1007/s10570-020-03015-x] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 9.5] [Reference Citation Analysis]
97 Fiorati A, Contessi Negrini N, Baschenis E, Altomare L, Faré S, Giacometti Schieroni A, Piovani D, Mendichi R, Ferro M, Castiglione F, Mele A, Punta C, Melone L. TEMPO-Nanocellulose/Ca2+ Hydrogels: Ibuprofen Drug Diffusion and In Vitro Cytocompatibility. Materials (Basel) 2020;13:E183. [PMID: 31906423 DOI: 10.3390/ma13010183] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 11.5] [Reference Citation Analysis]
98 Moohan J, Stewart SA, Espinosa E, Rosal A, Rodríguez A, Larrañeta E, Donnelly RF, Domínguez-robles J. Cellulose Nanofibers and Other Biopolymers for Biomedical Applications. A Review. Applied Sciences 2020;10:65. [DOI: 10.3390/app10010065] [Cited by in Crossref: 67] [Cited by in F6Publishing: 69] [Article Influence: 22.3] [Reference Citation Analysis]
99 Di Somma M, Schaafsma W, Grillo E, Vliora M, Dakou E, Corsini M, Ravelli C, Ronca R, Sakellariou P, Vanparijs J, Castro B, Mitola S. Natural Histogel-Based Bio-Scaffolds for Sustaining Angiogenesis in Beige Adipose Tissue. Cells 2019;8:E1457. [PMID: 31752157 DOI: 10.3390/cells8111457] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]