BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Xie P, Du P, Li J, Liu P. Stimuli-responsive hybrid cluster bombs of PEGylated chitosan encapsulated DOX-loaded superparamagnetic nanoparticles enabling tumor-specific disassembly for on-demand drug delivery and enhanced MR imaging. Carbohydrate Polymers 2019;205:377-84. [DOI: 10.1016/j.carbpol.2018.10.076] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 10.3] [Reference Citation Analysis]
Number Citing Articles
1 Shariatinia Z. Functionalized chitosan in drug delivery. Tailor-Made Polysaccharides in Drug Delivery 2023. [DOI: 10.1016/b978-0-12-821286-8.00001-x] [Reference Citation Analysis]
2 Ashrafizadeh M, Hushmandi K, Mirzaei S, Bokaie S, Bigham A, Makvandi P, Rabiee N, Thakur VK, Kumar AP, Sharifi E, Varma RS, Aref AR, Wojnilowicz M, Zarrabi A, Karimi‐maleh H, Voelcker NH, Mostafavi E, Orive G. Chitosan‐based nanoscale systems for doxorubicin delivery: Exploring biomedical application in cancer therapy. Bioengineering & Transla Med. [DOI: 10.1002/btm2.10325] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
3 Rahmani E, Pourmadadi M, Ghorbanian SA, Yazdian F, Rashedi H, Navaee M. Preparation of a pH‐responsive chitosan‐montmorillonite‐nitrogen‐doped carbon quantum dots nanocarrier for attenuating doxorubicin limitations in cancer therapy. Engineering in Life Sciences. [DOI: 10.1002/elsc.202200016] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
4 Gao F, Yu B, Cong H, Shen Y. Delivery process and effective design of vectors for cancer therapy. J Mater Chem B 2022. [PMID: 36048171 DOI: 10.1039/d2tb01326f] [Reference Citation Analysis]
5 Sahu BP, Baishya R, Hatiboruah JL, Laloo D, Biswas N. A comprehensive review on different approaches for tumor targeting using nanocarriers and recent developments with special focus on multifunctional approaches. J Pharm Investig . [DOI: 10.1007/s40005-022-00583-x] [Reference Citation Analysis]
6 Li X, Wang Y, Feng C, Chen H, Gao Y. Chemical Modification of Chitosan for Developing Cancer Nanotheranostics. Biomacromolecules 2022. [PMID: 35522524 DOI: 10.1021/acs.biomac.2c00184] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
7 Farzin L, Saber R, Sadjadi S, Mohagheghpour E, Sheini A. Nanomaterials-based hyperthermia: A literature review from concept to applications in chemistry and biomedicine. Journal of Thermal Biology 2022. [DOI: 10.1016/j.jtherbio.2022.103201] [Reference Citation Analysis]
8 Raikwar S, Jain A, Saraf S, Tiwari A, Panda PK, Jain SK. Environmental stimuli-sensitive chitosan nanocarriers in therapeutics. Chitosan in Biomedical Applications 2022. [DOI: 10.1016/b978-0-12-821058-1.00007-1] [Reference Citation Analysis]
9 Pooresmaeil M, Namazi H. Chitosan Based Nanocomposites for Drug Delivery Application. Nanotechnology for Biomedical Applications 2022. [DOI: 10.1007/978-981-16-7483-9_7] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Narmani A, Jafari SM. Chitosan-based nanodelivery systems for cancer therapy: Recent advances. Carbohydr Polym 2021;272:118464. [PMID: 34420724 DOI: 10.1016/j.carbpol.2021.118464] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 22.0] [Reference Citation Analysis]
11 Karimi S, Namazi H. Fe3O4@PEG-coated dendrimer modified graphene oxide nanocomposite as a pH-sensitive drug carrier for targeted delivery of doxorubicin. Journal of Alloys and Compounds 2021;879:160426. [DOI: 10.1016/j.jallcom.2021.160426] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 18.0] [Reference Citation Analysis]
12 Jiang Q, Liu X, Liang G, Sun X. Self-assembly of peptide nanofibers for imaging applications. Nanoscale 2021;13:15142-50. [PMID: 34494635 DOI: 10.1039/d1nr04992e] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
13 Luo M, Zhang X, Wu J, Zhao J. Modifications of polysaccharide-based biomaterials under structure-property relationship for biomedical applications. Carbohydr Polym 2021;266:118097. [PMID: 34044964 DOI: 10.1016/j.carbpol.2021.118097] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 30.0] [Reference Citation Analysis]
14 Javadian S, Najafi K, Sadrpoor SM, Ektefa F, Dalir N, Nikkhah M. Graphene quantum dots based magnetic nanoparticles as a promising delivery system for controlled doxorubicin release. Journal of Molecular Liquids 2021;331:115746. [DOI: 10.1016/j.molliq.2021.115746] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
15 Yang HY, Li Y, Lee DS. Functionalization of Magnetic Nanoparticles with Organic Ligands toward Biomedical Applications. Adv NanoBio Res 2021;1:2000043. [DOI: 10.1002/anbr.202000043] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
16 Sahu BP, Biswas N, Das MK. Multifunctional nanotheranostics for cancer diagnosis and treatments. Multifunctional Theranostic Nanomedicines in Cancer 2021. [DOI: 10.1016/b978-0-12-821712-2.00008-6] [Reference Citation Analysis]
17 Auzély-velty R, Szarpak A. Natural polymer-based magnetic nanohybrids toward biomedical applications. Biopolymeric Nanomaterials 2021. [DOI: 10.1016/b978-0-12-824364-0.00023-x] [Reference Citation Analysis]
18 Umar AA, Abdul Patah MF, Abnisa F, Daud WMAW. Preparation of magnetized iron oxide grafted on graphene oxide for hyperthermia application. Reviews in Chemical Engineering 2020;0:000010151520200001. [DOI: 10.1515/revce-2020-0001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
19 Liu X, Wang J, Hu W. Preparation and controlled inhibition behavior of Fe3O4/CS/inhibitors nanocomposite for carbon steel in 3.5% NaCl solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2020;601:124985. [DOI: 10.1016/j.colsurfa.2020.124985] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
20 Zhang J, Jin M, Park YI, Jin L, Quan B. Facile synthesis of ultra-small hollow manganese silicate nanoparticles as pH/GSH-responsive T1-MRI contrast agents. Ceramics International 2020;46:18632-8. [DOI: 10.1016/j.ceramint.2020.04.175] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
21 Xie P, Liu P. pH-responsive surface charge reversal carboxymethyl chitosan-based drug delivery system for pH and reduction dual-responsive triggered DOX release. Carbohydrate Polymers 2020;236:116093. [DOI: 10.1016/j.carbpol.2020.116093] [Cited by in Crossref: 32] [Cited by in F6Publishing: 36] [Article Influence: 16.0] [Reference Citation Analysis]
22 Zhao P, Liu S, Wang L, Liu G, Cheng Y, Lin M, Sui K, Zhang H. Alginate mediated functional aggregation of gold nanoclusters for systemic photothermal therapy and efficient renal clearance. Carbohydr Polym 2020;241:116344. [PMID: 32507204 DOI: 10.1016/j.carbpol.2020.116344] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
23 Zheng K, Chen R, Sun Y, Tan Z, Liu Y, Cheng X, Leng J, Guo Z, Xu P. Cantharidin-loaded functional mesoporous titanium peroxide nanoparticles for non-small cell lung cancer targeted chemotherapy combined with high effective photodynamic therapy. Thorac Cancer 2020;11:1476-86. [PMID: 32246815 DOI: 10.1111/1759-7714.13414] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
24 Li G, Pei M, Liu P. pH/Reduction dual-responsive comet-shaped PEGylated CQD-DOX conjugate prodrug: Synthesis and self-assembly as tumor nanotheranostics. Mater Sci Eng C Mater Biol Appl 2020;110:110653. [PMID: 32204081 DOI: 10.1016/j.msec.2020.110653] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
25 Sahu BP, Biswas N, Das MK. Multifunctional Nanoscale Particles for Theranostic Application in Healthcare. Nano Medicine and Nano Safety 2020. [DOI: 10.1007/978-981-15-6255-6_14] [Reference Citation Analysis]
26 Plachá D, Jampilek J. Graphenic Materials for Biomedical Applications. Nanomaterials (Basel) 2019;9:E1758. [PMID: 31835693 DOI: 10.3390/nano9121758] [Cited by in Crossref: 65] [Cited by in F6Publishing: 67] [Article Influence: 21.7] [Reference Citation Analysis]
27 Sultankulov B, Berillo D, Sultankulova K, Tokay T, Saparov A. Progress in the Development of Chitosan-Based Biomaterials for Tissue Engineering and Regenerative Medicine. Biomolecules 2019;9:E470. [PMID: 31509976 DOI: 10.3390/biom9090470] [Cited by in Crossref: 128] [Cited by in F6Publishing: 133] [Article Influence: 42.7] [Reference Citation Analysis]
28 Song S, Wang Y, Xie J, Sun B, Zhou N, Shen H, Shen J. Carboxymethyl Chitosan Modified Carbon Nanoparticle for Controlled Emamectin Benzoate Delivery: Improved Solubility, pH-Responsive Release, and Sustainable Pest Control. ACS Appl Mater Interfaces 2019;11:34258-67. [PMID: 31461267 DOI: 10.1021/acsami.9b12564] [Cited by in Crossref: 69] [Cited by in F6Publishing: 74] [Article Influence: 23.0] [Reference Citation Analysis]
29 Xie P, Liu P. Core-shell-corona chitosan-based micelles for tumor intracellular pH-triggered drug delivery: Improving performance by grafting polycation. Int J Biol Macromol 2019;141:161-70. [PMID: 31479675 DOI: 10.1016/j.ijbiomac.2019.08.251] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
30 Zhang J, Li L, Shi R, Mei J, Xiao Z, Ma W. An efficient approach for the synthesis of magnetic separable Fe 3 O 4 @TiO 2 core-shell nanocomposites and its magnetic and photocatalytic performances. Mater Res Express 2019;6:105014. [DOI: 10.1088/2053-1591/ab3531] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
31 Balan V, Malihin S, Verestiuc L. Chitosan-Based Systems for Theranostic Applications. Functional Chitosan 2019. [DOI: 10.1007/978-981-15-0263-7_12] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]