BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sabouri AH, Marcondes MC, Flynn C, Berger M, Xiao N, Fox HS, Sarvetnick NE. TLR signaling controls lethal encephalitis in WNV-infected brain. Brain Res 2014;1574:84-95. [PMID: 24928618 DOI: 10.1016/j.brainres.2014.05.049] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 2.6] [Reference Citation Analysis]
Number Citing Articles
1 Fontes-dantas FL, Fernandes GG, Gutman EG, De Lima EV, Antonio LS, Hammerle MB, Mota-araujo HP, Colodeti LC, Araújo SMB, da Silva TN, Duarte LA, Salvio AL, Pires KL, Leon LAA, Vasconcelos CCF, Romão L, Savio LEB, Silva JL, da Costa R, Clarke JR, Da Poian AT, Alves-leon SV, Passos GF, Figueiredo CP. SARS-CoV-2 spike protein induces TLR-4-mediated long-term cognitive dysfunction recapitulating post-COVID syndrome.. [DOI: 10.1101/2022.06.07.495149] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
2 Yang Y, Brown MC, Zhang G, Stevenson K, Mohme M, Kornahrens R, Bigner DD, Ashley DM, López GY, Gromeier M. Polio Virotherapy of Malignant Glioma Engages the Tumor Myeloid Infiltrate and Induces Diffuse Microglia Activation.. [DOI: 10.1101/2022.04.19.488771] [Reference Citation Analysis]
3 Stonedahl S, Leser JS, Clarke P, Tyler KL. Depletion of Microglia in an Ex Vivo Brain Slice Culture Model of West Nile Virus Infection Leads to Increased Viral Titers and Cell Death. Microbiol Spectr 2022;:e0068522. [PMID: 35412380 DOI: 10.1128/spectrum.00685-22] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
4 Gern OL, Mulenge F, Pavlou A, Ghita L, Steffen I, Stangel M, Kalinke U. Toll-like Receptors in Viral Encephalitis. Viruses 2021;13:2065. [PMID: 34696494 DOI: 10.3390/v13102065] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
5 Clarke P, Leser JS, Tyler KL. Intrinsic Innate Immune Responses Control Viral Growth and Protect against Neuronal Death in an Ex Vivo Model of West Nile Virus-Induced Central Nervous System Disease. J Virol 2021;95:e0083521. [PMID: 34190599 DOI: 10.1128/JVI.00835-21] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
6 Ghita L, Breitkopf V, Mulenge F, Pavlou A, Gern OL, Durán V, Prajeeth CK, Kohls M, Jung K, Stangel M, Steffen I, Kalinke U. Sequential MAVS and MyD88/TRIF signaling triggers anti-viral responses of tick-borne encephalitis virus-infected murine astrocytes. J Neurosci Res 2021. [PMID: 34296786 DOI: 10.1002/jnr.24923] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Ghita L, Spanier J, Chhatbar C, Mulenge F, Pavlou A, Larsen PK, Waltl I, Lueder Y, Kohls M, Jung K, Best SM, Förster R, Stangel M, Schreiner D, Kalinke U. MyD88 signaling by neurons induces chemokines that recruit protective leukocytes to the virus-infected CNS. Sci Immunol 2021;6:eabc9165. [PMID: 34172587 DOI: 10.1126/sciimmunol.abc9165] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
8 Stonedahl S, Clarke P, Tyler KL. The Role of Microglia during West Nile Virus Infection of the Central Nervous System. Vaccines (Basel) 2020;8:E485. [PMID: 32872152 DOI: 10.3390/vaccines8030485] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
9 Fulton CDM, Beasley DWC, Bente DA, Dineley KT. Long-term, West Nile virus-induced neurological changes: A comparison of patients and rodent models. Brain Behav Immun Health 2020;7:100105. [PMID: 34589866 DOI: 10.1016/j.bbih.2020.100105] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
10 Ghita L, Breitkopf V, Mulenge F, Pavlou A, Gern OL, Durán V, Prajeeth CK, Kohls M, Jung K, Stangel M, Steffen I, Kalinke U. Sequential MAVS- and MyD88/TRIF-signaling triggers anti-viral responses of tick-borne encephalitis virus-infected murine astrocytes.. [DOI: 10.1101/2020.06.30.177485] [Reference Citation Analysis]
11 Li L, Mao S, Wang J, Ding X, Zen JY. Viral infection and neurological disorders—potential role of extracellular nucleotides in neuroinflammation. ExRNA 2019;1. [DOI: 10.1186/s41544-019-0031-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
12 Serman TM, Gack MU. Evasion of Innate and Intrinsic Antiviral Pathways by the Zika Virus. Viruses 2019;11:E970. [PMID: 31652496 DOI: 10.3390/v11100970] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 8.0] [Reference Citation Analysis]
13 Yakass MB, Franco D, Quaye O. Suppressors of Cytokine Signaling and Protein Inhibitors of Activated Signal Transducer and Activator of Transcriptions As Therapeutic Targets in Flavivirus Infections. J Interferon Cytokine Res 2020;40:1-18. [PMID: 31436502 DOI: 10.1089/jir.2019.0097] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
14 Patel S, Sinigaglia A, Barzon L, Fassan M, Sparber F, LeibundGut-Landmann S, Ackermann M. Role of NS1 and TLR3 in Pathogenesis and Immunity of WNV. Viruses 2019;11:E603. [PMID: 31277274 DOI: 10.3390/v11070603] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
15 Singh PK, Singh S, Farr D, Kumar A. Interferon-stimulated gene 15 (ISG15) restricts Zika virus replication in primary human corneal epithelial cells. Ocul Surf 2019;17:551-9. [PMID: 30905842 DOI: 10.1016/j.jtos.2019.03.006] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 10.0] [Reference Citation Analysis]
16 Ti D, Hao H, Fu X, Han W. Mesenchymal stem cells-derived exosomal microRNAs contribute to wound inflammation. Sci China Life Sci. 2016;59:1305-1312. [PMID: 27864711 DOI: 10.1007/s11427-016-0240-4] [Cited by in Crossref: 79] [Cited by in F6Publishing: 89] [Article Influence: 13.2] [Reference Citation Analysis]
17 Uddin MJ, Suen WW, Bosco-Lauth A, Hartwig AE, Hall RA, Bowen RA, Bielefeldt-Ohmann H. Kinetics of the West Nile virus induced transcripts of selected cytokines and Toll-like receptors in equine peripheral blood mononuclear cells. Vet Res 2016;47:61. [PMID: 27267361 DOI: 10.1186/s13567-016-0347-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
18 Kumar M, Belcaid M, Nerurkar VR. Identification of host genes leading to West Nile virus encephalitis in mice brain using RNA-seq analysis. Sci Rep 2016;6:26350. [PMID: 27211830 DOI: 10.1038/srep26350] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 5.3] [Reference Citation Analysis]
19 Suen WW, Uddin MJ, Prow NA, Bowen RA, Hall RA, Bielefeldt-Ohmann H. Tissue-specific transcription profile of cytokine and chemokine genes associated with flavivirus control and non-lethal neuropathogenesis in rabbits. Virology 2016;494:1-14. [PMID: 27061052 DOI: 10.1016/j.virol.2016.03.026] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
20 Reiss CS. Innate Immunity in Viral Encephalitis. Neurotropic Viral Infections 2016. [DOI: 10.1007/978-3-319-33189-8_8] [Reference Citation Analysis]
21 Skar G. Neuroglia in Infectious Brain Diseases. Colloquium Series on Neuroglia in Biology and Medicine: From Physiology to Disease 2015;2:1-87. [DOI: 10.4199/c00125ed1v01y201503ngl005] [Reference Citation Analysis]