BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
Number Citing Articles
1 Fiore L, Sinha A, Seddaoui N, di Biasio J, Ricci F, Stojanovic GM, Arduini F. Paper card-like electrochemical platform as a smart point-of-care device for reagent-free glucose measurement in tears. Chem Commun (Camb) 2023. [PMID: 36928485 DOI: 10.1039/d2cc06561d] [Reference Citation Analysis]
2 Butler D, Kammarchedu V, Zhou K, Peeke L, Lyle L, Snyder DW, Ebrahimi A. Cellulose-Based Laser-Induced Graphene Devices for Electrochemical Monitoring of Bacterial Phenazine Production and Viability. Sens Actuators B Chem 2023;378:133090. [PMID: 36644326 DOI: 10.1016/j.snb.2022.133090] [Reference Citation Analysis]
3 Kunpatee K, Kalcher K, Chailapakul O, Chaiyo S, Samphao A. A paper chromatographic-based electrochemical analytical device for the separation and simultaneous detection of carbofuran and carbaryl pesticides. Sensors and Actuators B: Chemical 2023;377:133116. [DOI: 10.1016/j.snb.2022.133116] [Reference Citation Analysis]
4 Zhang X, Zhang Z, Diao W, Zhou C, Song Y, Wang R, Luo X, Liu G. Early-diagnosis of major depressive disorder: From biomarkers to point-of-care testing. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116904] [Reference Citation Analysis]
5 Wang W, Ding S, Chen F, Zhang Q. Electrochemical paper-based analytical device for flow injection analysis based on locally enhanced evaporation. Sensors and Actuators B: Chemical 2022;371:132517. [DOI: 10.1016/j.snb.2022.132517] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Qian S, Han Y, Xu F, Feng D, Yang X, Wu X, Hao L, Yuan M. A fast, sensitive, low-cost electrochemical paper-based chip for real-time simultaneous detection of cadmium (Ⅱ) and lead (Ⅱ) via aptamer. Talanta 2022;247:123548. [DOI: 10.1016/j.talanta.2022.123548] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
7 Amor-Gutiérrez O, Costa-Rama E, Fernández-Abedul MT. Paper-Based Enzymatic Electrochemical Sensors for Glucose Determination. Sensors (Basel) 2022;22:6232. [PMID: 36015999 DOI: 10.3390/s22166232] [Reference Citation Analysis]
8 Castro LF, Silva-neto HA, Sousa LR, de Araujo WR, Coltro WK. Silicone glue-based graphite ink incorporated on paper platform as an affordable approach to construct stable electrochemical sensors. Talanta 2022. [DOI: 10.1016/j.talanta.2022.123812] [Reference Citation Analysis]
9 Fan K, Zeng J, Yang C, Wang G, Lian K, Zhou X, Deng Y, Liu G. Digital Quantification Method for Sensitive Point-of-Care Detection of Salivary Uric Acid Using Smartphone-Assisted μPADs. ACS Sens 2022. [PMID: 35820152 DOI: 10.1021/acssensors.2c00854] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
10 Zhang T, Ding F, Yang Y, Zhao G, Zhang C, Wang R, Huang X. Research Progress and Future Trends of Microfluidic Paper-Based Analytical Devices in In-Vitro Diagnosis. Biosensors 2022;12:485. [DOI: 10.3390/bios12070485] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Alidoust M, Yamini Y, Baharfar M. Microfluidic paper-based analytical devices and electromembrane extraction; Hyphenation of fields towards effective analytical platforms. Analytica Chimica Acta 2022;1216:339987. [DOI: 10.1016/j.aca.2022.339987] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
12 Arduini F. Electrochemical paper-based devices: when the simple replacement of the support to print ecodesigned electrodes radically improves the features of the electrochemical devices. Current Opinion in Electrochemistry 2022. [DOI: 10.1016/j.coelec.2022.101090] [Reference Citation Analysis]
13 Wu J, Jing X, Liu Y, Zhao L, Ji X, Fu H, Zhang B, Zhang Y, Wang S. A paper origami-based micro-total electrochemical immunoassay (μTEI) for the detection of total malachite green in aquatic products. Sensors and Actuators B: Chemical 2022;361:131748. [DOI: 10.1016/j.snb.2022.131748] [Reference Citation Analysis]
14 Ray R, Prabhu A, Prasad D, Garlapati VK, Aminabhavi TM, Mani NK, Simal-Gandara J. Paper-based microfluidic devices for food adulterants: Cost-effective technological monitoring systems. Food Chem 2022;390:133173. [PMID: 35594772 DOI: 10.1016/j.foodchem.2022.133173] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
15 Glasco DL, Sheelam A, Ho NHB, Mamaril AM, King M, Bell JG. Editors’ Choice—Review—3D Printing: An Innovative Trend in Analytical Sensing. ECS Sens Plus 2022;1:010602. [DOI: 10.1149/2754-2726/ac5c7a] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 34.0] [Reference Citation Analysis]
16 Weiß LJK, Lubins G, Music E, Rinklin P, Banzet M, Peng H, Terkan K, Mayer D, Wolfrum B. Single-Impact Electrochemistry in Paper-Based Microfluidics. ACS Sens 2022;7:884-92. [PMID: 35235291 DOI: 10.1021/acssensors.1c02703] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
17 Zhang H, Li X, Zhu Q, Wang Z. The recent development of nanomaterials enhanced paper-based electrochemical analytical devices. Journal of Electroanalytical Chemistry 2022;909:116140. [DOI: 10.1016/j.jelechem.2022.116140] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
18 Baharfar M, Kalantar-Zadeh K. Emerging Role of Liquid Metals in Sensing. ACS Sens 2022;7:386-408. [PMID: 35119830 DOI: 10.1021/acssensors.1c02606] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 9.0] [Reference Citation Analysis]
19 Wu J, Wang M, Hong H, Lin J, Gan N, Bi W. A Novel Truncated DNAzyme Modified Paper Analytical Device for Point-of-Care Test of Copper Ions in Natural Waters. Chemosensors 2022;10:72. [DOI: 10.3390/chemosensors10020072] [Reference Citation Analysis]
20 Pang R, Zhu Q, Wei J, Meng X, Wang Z. Enhancement of the Detection Performance of Paper-Based Analytical Devices by Nanomaterials. Molecules 2022;27:508. [PMID: 35056823 DOI: 10.3390/molecules27020508] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
21 Kang M, Lee S. Graphene for Nanobiosensors and Nanobiochips. Multifaceted Biomedical Applications of Graphene 2022. [DOI: 10.1007/978-981-16-4923-3_10] [Reference Citation Analysis]
22 Bondancia TJ, Soares AC, Popolin-neto M, Gomes NO, Raymundo-pereira PA, Barud HS, Machado SA, Ribeiro SJ, Melendez ME, Carvalho AL, Reis RM, Paulovich FV, Oliveira ON. Low-cost bacterial nanocellulose-based interdigitated biosensor to detect the p53 cancer biomarker. Materials Science and Engineering: C 2022. [DOI: 10.1016/j.msec.2022.112676] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
23 Meng F, Aihaiti A, Li X, Zhang W, Qin Y, Zhu N, Zhang M. Functional graphene paper from smart building to sensor application. Biosensors and Bioelectronics 2022. [DOI: 10.1016/j.bios.2022.114031] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
24 Arantes IV, Mendes LF, Ataide VN, de Araujo WR, Paixão TR. Conclusions, challenges, and next steps. Paper-based Analytical Devices for Chemical Analysis and Diagnostics 2022. [DOI: 10.1016/b978-0-12-820534-1.00010-4] [Reference Citation Analysis]
25 Lian K, Feng H, Liu S, Wang K, Liu Q, Deng L, Wang G, Chen Y, Liu G. Insulin quantification towards early diagnosis of prediabetes/diabetes. Biosensors and Bioelectronics 2022. [DOI: 10.1016/j.bios.2022.114029] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
26 El-said WA, Akhtar N, Kamal MM. Fabrication of functionalized nanomaterial-based electrochemical sensors’ platforms. Functionalized Nanomaterial-Based Electrochemical Sensors 2022. [DOI: 10.1016/b978-0-12-823788-5.00008-9] [Reference Citation Analysis]
27 Yao Z, Coatsworth P, Shi X, Zhi J, Hu L, Yan R, Güder F, Yu H. Paper-based sensors for diagnostics, human activity monitoring, food safety and environmental detection. Sens Diagn 2022;1:312-42. [DOI: 10.1039/d2sd00017b] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
28 Baharfar M, Mayyas M, Rahbar M, Allioux FM, Tang J, Wang Y, Cao Z, Centurion F, Jalili R, Liu G, Kalantar-Zadeh K. Exploring Interfacial Graphene Oxide Reduction by Liquid Metals: Application in Selective Biosensing. ACS Nano 2021;15:19661-71. [PMID: 34783540 DOI: 10.1021/acsnano.1c06973] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
29 Farahmandi M, Yamini Y, Baharfar M, Karami M. Dispersive magnetic solid phase microextraction on microfluidic systems for extraction and determination of parabens. Anal Chim Acta 2021;1188:339183. [PMID: 34794570 DOI: 10.1016/j.aca.2021.339183] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
30 Jiang C, Fu Y, Liu G, Shu B, Davis J, Tofaris GK. Multiplexed Profiling of Extracellular Vesicles for Biomarker Development. Nanomicro Lett 2021;14:3. [PMID: 34855021 DOI: 10.1007/s40820-021-00753-w] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 6.5] [Reference Citation Analysis]
31 Rahbar M, Zou S, Baharfar M, Liu G. A Customized Microfluidic Paper-Based Platform for Colorimetric Immunosensing: Demonstrated via hCG Assay for Pregnancy Test. Biosensors (Basel) 2021;11:474. [PMID: 34940231 DOI: 10.3390/bios11120474] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
32 Silva MKL, Sousa GS, Simoes RP, Cesarino I. Fabrication of paper-based analytical devices using a PLA 3D-printed stencil for electrochemical determination of chloroquine and escitalopram. J Solid State Electrochem 2021;:1-6. [PMID: 34751209 DOI: 10.1007/s10008-021-05075-w] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
33 Liu C, Chu D, Kalantar-Zadeh K, George J, Young HA, Liu G. Cytokines: From Clinical Significance to Quantification. Adv Sci (Weinh) 2021;8:e2004433. [PMID: 34114369 DOI: 10.1002/advs.202004433] [Cited by in Crossref: 23] [Cited by in F6Publishing: 30] [Article Influence: 11.5] [Reference Citation Analysis]
34 Liu G, Jiang C, Lin X, Yang Y. Point-of-care detection of cytokines in cytokine storm management and beyond: Significance and challenges. View (Beijing) 2021;:20210003. [PMID: 34766163 DOI: 10.1002/VIW.20210003] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
35 Wang C, Liu M, Wang Z, Li S, Deng Y, He N. Point-of-care diagnostics for infectious diseases: From methods to devices. Nano Today 2021;37:101092. [PMID: 33584847 DOI: 10.1016/j.nantod.2021.101092] [Cited by in Crossref: 98] [Cited by in F6Publishing: 70] [Article Influence: 49.0] [Reference Citation Analysis]