1 |
Leite JP, Figueira F, Mendes RF, Almeida Paz FA, Gales L. Metal-Organic Frameworks as Sensors for Human Amyloid Diseases. ACS Sens 2023. [PMID: 36892002 DOI: 10.1021/acssensors.2c02741] [Reference Citation Analysis]
|
2 |
Xie J, Yang G, Tan X, Yuan R, Chen S. Coreactant-free electrochemiluminescence of polyfluorene nanoparticle coupling double quencher for β-amyloid(1-42) detection. Talanta 2023;258:124398. [PMID: 36871519 DOI: 10.1016/j.talanta.2023.124398] [Reference Citation Analysis]
|
3 |
Li L, Wang X, Chen J, Huang T, Cao H, Liu X. A Novel Electrochemiluminescence Immunosensor Based on Resonance Energy Transfer between g-CN and NU-1000(Zr) for Ultrasensitive Detection of Ochratoxin A in Coffee. Foods 2023;12. [PMID: 36832782 DOI: 10.3390/foods12040707] [Reference Citation Analysis]
|
4 |
Wang C, Liu S, Ju H. Electrochemiluminescence nanoemitters for immunoassay of protein biomarkers. Bioelectrochemistry 2023;149:108281. [PMID: 36283193 DOI: 10.1016/j.bioelechem.2022.108281] [Reference Citation Analysis]
|
5 |
Meng S, Qin D, Wu Y, Mo G, Jiang X, Deng B. Electrochemiluminescence resonance energy transfer of MnCO(3) for ultrasensitive amyloid-β protein detection. Talanta 2023;253:123993. [PMID: 36228558 DOI: 10.1016/j.talanta.2022.123993] [Reference Citation Analysis]
|
6 |
Tajahmadi S, Molavi H, Ahmadijokani F, Shamloo A, Shojaei A, Sharifzadeh M, Rezakazemi M, Fatehizadeh A, Aminabhavi TM, Arjmand M. Metal-organic frameworks: A promising option for the diagnosis and treatment of Alzheimer's disease. J Control Release 2023;353:1-29. [PMID: 36343762 DOI: 10.1016/j.jconrel.2022.11.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
7 |
Su C, Dong C, Jiang D, Shan X, Chen Z. Construction of electrochemiluminescence aptasensor for acetamiprid detection using flower-liked SnO2 nanocrystals encapsulated Ag3PO4 composite as luminophore. Microchemical Journal 2023. [DOI: 10.1016/j.microc.2022.108374] [Reference Citation Analysis]
|
8 |
Pourmadadi M, Rajabzadeh-Khosroshahi M, Saeidi Tabar F, Ajalli N, Samadi A, Yazdani M, Yazdian F, Rahdar A, Díez-Pascual AM. Two-Dimensional Graphitic Carbon Nitride (g-C(3)N(4)) Nanosheets and Their Derivatives for Diagnosis and Detection Applications. J Funct Biomater 2022;13. [PMID: 36412845 DOI: 10.3390/jfb13040204] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
9 |
Gai Z, Li F, Yang X. Electrochemiluinescence monitoring the interaction between human serum albumin and amyloid-β peptide. Bioelectrochemistry 2022. [DOI: 10.1016/j.bioelechem.2022.108315] [Reference Citation Analysis]
|
10 |
Wang X, Chen R, Hu J, Yuan W. An adjustable amyloid-β oligomers aptasensor based on the synergistic effect of self-enhanced metal-organic gel luminophore and triple-helix DNA system. Int J Biol Macromol 2022:S0141-8130(22)02114-6. [PMID: 36174865 DOI: 10.1016/j.ijbiomac.2022.09.182] [Reference Citation Analysis]
|
11 |
Wang L, Wang B, Kang K, Ji X, Wang B, Li C, Ren J. Electrochemiluminescence resonance energy transfer system between ruthenium-based nanosheets and CdS quantum dots for detection of chlorogenic acid. Mikrochim Acta 2022;189:323. [PMID: 35933502 DOI: 10.1007/s00604-022-05428-w] [Reference Citation Analysis]
|
12 |
Ma X, Li M, Kang Q, Huang Y, Ma C, Shen D. A simple and sensitive approach to monitor the spectrum change during the electrochemiluminescence process and reveal the mutual promotion between g-C3N4 and co-reactant of S2O82-. Sensors and Actuators B: Chemical 2022;360:131679. [DOI: 10.1016/j.snb.2022.131679] [Reference Citation Analysis]
|
13 |
Gupta N, Todi K, Narayan T, Malhotra B. Graphitic carbon nitride-based nanoplatforms for biosensors: design strategies and applications. Materials Today Chemistry 2022;24:100770. [DOI: 10.1016/j.mtchem.2021.100770] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
14 |
Fang J, Feng R, Yang L, Yue Q, Li M, Zhang N, Dan Wu, Ma H, Cao W, Wei Q. Electrocatalytic excitation and Co-reaction acceleration synergistic amplification signal of hydrazide-conjugated carbon dots for an electrochemiluminescence immunoassay. Sensors and Actuators B: Chemical 2022;357:131443. [DOI: 10.1016/j.snb.2022.131443] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
15 |
Sanjeev K, Esokkiya A, Sudalaimani S, Giribabu K. Graphitic carbon nitride for sensors. Nanoscale Graphitic Carbon Nitride 2022. [DOI: 10.1016/b978-0-12-823034-3.00007-8] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
16 |
Tian J, Liang Z, Hu O, He Q, Sun D, Chen Z. An electrochemical dual-aptamer biosensor based on metal-organic frameworks MIL-53 decorated with Au@Pt nanoparticles and enzymes for detection of COVID-19 nucleocapsid protein. Electrochimica Acta 2021;387:138553. [DOI: 10.1016/j.electacta.2021.138553] [Cited by in Crossref: 51] [Cited by in F6Publishing: 26] [Article Influence: 25.5] [Reference Citation Analysis]
|
17 |
Zhao H, Xing Z, Su S, Song S, Li Z, Zhou W. Gear-shaped mesoporous NH2-MIL-53(Al)/CdS P-N heterojunctions as efficient visible-light-driven photocatalysts. Applied Catalysis B: Environmental 2021;291:120106. [DOI: 10.1016/j.apcatb.2021.120106] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 11.0] [Reference Citation Analysis]
|
18 |
Mesgari F, Salehnia F, Beigi SM, Hosseini M, Ganjali MR. Enzyme Free Electrochemiluminescence Sensor of Histamine Based on Graphite‐carbon Nitride Nanosheets. Electroanalysis. [DOI: 10.1002/elan.202100189] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
19 |
Pei F, Feng S, Wu Y, Lv X, Wang H, Chen SM, Hao Q, Cao Y, Lei W, Tong Z. Label-free photoelectrochemical immunosensor for aflatoxin B1 detection based on the Z-scheme heterojunction of g-C3N4/Au/WO3. Biosens Bioelectron 2021;189:113373. [PMID: 34090152 DOI: 10.1016/j.bios.2021.113373] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 7.5] [Reference Citation Analysis]
|
20 |
Qin D, Meng S, Wu Y, Mo G, Jiang X, Deng B. Design of a Dual-Wavelength Ratiometric Electrochemiluminescence Immunosensor for Sensitive Detection of Amyloid-β Protein in Human Serum. ACS Sustainable Chem Eng 2021;9:7541-9. [DOI: 10.1021/acssuschemeng.1c01237] [Cited by in Crossref: 7] [Cited by in F6Publishing: 19] [Article Influence: 3.5] [Reference Citation Analysis]
|
21 |
Wang H. Advances in electrochemiluminescence co-reaction accelerator and its analytical applications. Anal Bioanal Chem 2021;413:4119-35. [PMID: 33715042 DOI: 10.1007/s00216-021-03247-1] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
|
22 |
Ai Z, Zhao M, Han D, Chen K, Xiong D, Tang H. An "on-off" electrochemiluminescence immunosensor for PIVKA-II detection based on the dual quenching of CeO2-Au-g-C3N4 hybrids by Ag nanocubes-VB2. Biosens Bioelectron 2021;179:113059. [PMID: 33561664 DOI: 10.1016/j.bios.2021.113059] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
|
23 |
Chouhan RS, Jerman I, Heath D, Bohm S, Gandhi S, Sadhu V, Baker S, Horvat M. Emerging tri‐s‐triazine‐based graphitic carbon nitride: A potential signal‐transducing nanostructured material for sensor applications. Nano Select 2021;2:712-43. [DOI: 10.1002/nano.202000228] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
|
24 |
Shang L, Wang X, Zhang W, Jia L, Ma R, Jia W, Wang H. A dual-potential electrochemiluminescence sensor for ratiometric detection of carcinoembryonic antigen based on single luminophor. Sensors and Actuators B: Chemical 2020;325:128776. [DOI: 10.1016/j.snb.2020.128776] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 8.0] [Reference Citation Analysis]
|
25 |
Zou R, Teng X, Lin Y, Lu C. Graphitic carbon nitride-based nanocomposites electrochemiluminescence systems and their applications in biosensors. TrAC Trends in Analytical Chemistry 2020;132:116054. [DOI: 10.1016/j.trac.2020.116054] [Cited by in Crossref: 29] [Cited by in F6Publishing: 32] [Article Influence: 9.7] [Reference Citation Analysis]
|
26 |
Zhang Y, Liu W, Chen J, Niu H, Mao C, Jin B. Metal-organic gel and metal-organic framework based switchable electrochemiluminescence RNA sensing platform for Zika virus. Sensors and Actuators B: Chemical 2020;321:128456. [DOI: 10.1016/j.snb.2020.128456] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
|
27 |
Zhou J, Li Y, Wang W, Tan X, Lu Z, Han H. Metal-organic frameworks-based sensitive electrochemiluminescence biosensing. Biosens Bioelectron 2020;164:112332. [PMID: 32553355 DOI: 10.1016/j.bios.2020.112332] [Cited by in Crossref: 44] [Cited by in F6Publishing: 49] [Article Influence: 14.7] [Reference Citation Analysis]
|
28 |
Wang H, Zhang J, Dou F, Chen Z. A near-infrared fluorescent probe quinaldine red lights up the β-sheet structure of amyloid proteins in mouse brain. Biosens Bioelectron 2020;153:112048. [PMID: 32056662 DOI: 10.1016/j.bios.2020.112048] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
|
29 |
Zhang Y, Ren B, Zhang D, Liu Y, Zhang M, Zhao C, Zheng J. Design principles and fundamental understanding of biosensors for amyloid-β detection. J Mater Chem B 2020;8:6179-96. [DOI: 10.1039/d0tb00344a] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
|
30 |
Yan P, Dong J, Mo Z, Xu L, Qian J, Xia J, Zhang J, Li H. Enhanced photoelectrochemical sensing performance of graphitic carbon nitride by nitrogen vacancies engineering. Biosens Bioelectron 2020;148:111802. [PMID: 31665671 DOI: 10.1016/j.bios.2019.111802] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 6.3] [Reference Citation Analysis]
|