1 |
Zolti O, Suganthan B, Ramasamy RP. Lab-on-a-Chip Electrochemical Biosensors for Foodborne Pathogen Detection: A Review of Common Standards and Recent Progress. Biosensors (Basel) 2023;13. [PMID: 36831981 DOI: 10.3390/bios13020215] [Reference Citation Analysis]
|
2 |
Police Patil AV, Chuang YS, Li C, Wu CC. Recent Advances in Electrochemical Immunosensors with Nanomaterial Assistance for Signal Amplification. Biosensors (Basel) 2023;13. [PMID: 36671960 DOI: 10.3390/bios13010125] [Reference Citation Analysis]
|
3 |
Mazur F, Tjandra AD, Zhou Y, Gao Y, Chandrawati R. Paper-based sensors for bacteria detection. Nat Rev Bioeng 2023;1:180-92. [PMID: 36937095 DOI: 10.1038/s44222-023-00024-w] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
4 |
Forster RJ, De Eguilaz MR, Barhoum A, Cumba LR. Electrochemical Biosensing of Bacteria and Biofilms. Encyclopedia of Sensors and Biosensors 2023. [DOI: 10.1016/b978-0-12-822548-6.00117-5] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
5 |
Janik-Karpinska E, Ceremuga M, Niemcewicz M, Podogrocki M, Stela M, Cichon N, Bijak M. Immunosensors-The Future of Pathogen Real-Time Detection. Sensors (Basel) 2022;22. [PMID: 36560126 DOI: 10.3390/s22249757] [Reference Citation Analysis]
|
6 |
Stilman W, Wackers G, Sichani SB, Khorshid M, Theßeling F, Vereman J, Andruck L, Elian D, Cornelis P, Impe JV, Verstrepen K, Van de Voorde I, Wagner P. A table-top sensor for the detection of hydrophobins and yeasts in brewery applications. Sensors and Actuators B: Chemical 2022;373:132690. [DOI: 10.1016/j.snb.2022.132690] [Reference Citation Analysis]
|
7 |
Silva-neto HA, Arantes IV, Ferreira AL, do Nascimento GH, Meloni GN, de Araujo WR, Paixão TR, Coltro WK. Recent advances on paper-based microfluidic devices for bioanalysis. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116893] [Reference Citation Analysis]
|
8 |
Kuswandi B, Hidayat MA, Noviana E. Paper-Based Electrochemical Biosensors for Food Safety Analysis. Biosensors (Basel) 2022;12. [PMID: 36551055 DOI: 10.3390/bios12121088] [Reference Citation Analysis]
|
9 |
Nam NN, Do HDK, Trinh KTL, Lee NY. Recent Progress in Nanotechnology-Based Approaches for Food Monitoring. Nanomaterials (Basel) 2022;12. [PMID: 36500739 DOI: 10.3390/nano12234116] [Reference Citation Analysis]
|
10 |
Bhargava Reddy MS, Kailasa S, Marupalli BCG, Sadasivuni KK, Aich S. A Family of 2D-MXenes: Synthesis, Properties, and Gas Sensing Applications. ACS Sens 2022. [PMID: 35972775 DOI: 10.1021/acssensors.2c01046] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
|
11 |
Ngashangva L, Hemdan BA, El-Liethy MA, Bachu V, Minteer SD, Goswami P. Emerging Bioanalytical Devices and Platforms for Rapid Detection of Pathogens in Environmental Samples. Micromachines (Basel) 2022;13:1083. [PMID: 35888900 DOI: 10.3390/mi13071083] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
12 |
Li L, Liang D, Guo W, Tang D, Zeng Y. New Insights on Potentiometric Immunosensor at Carbon Fiber Microelectrode for Alpha‐Fetoprotein in Hepatocellular Carcinoma. Electroanalysis 2022;34:976-80. [DOI: 10.1002/elan.202100213] [Reference Citation Analysis]
|
13 |
Mahari S, Gandhi S. Recent Advances in Electrochemical Biosensors for the Detection of Salmonellosis: Current Prospective and Challenges. Biosensors (Basel) 2022;12:365. [PMID: 35735514 DOI: 10.3390/bios12060365] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
14 |
González del Campo MM, Vaquer A, de la Rica R. Polymer Components for Paper‐Based Analytical Devices. Adv Materials Technologies. [DOI: 10.1002/admt.202200140] [Reference Citation Analysis]
|
15 |
Hao W, Ge Y, Qu M, Wen Y, Liang H, Li M, Chen C, Xu L. A simple rapid portable immunoassay of trace zearalenone in feed ingredients and agricultural food. Journal of Food Composition and Analysis 2022;107:104292. [DOI: 10.1016/j.jfca.2021.104292] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
16 |
Péter B, Farkas E, Kurunczi S, Szittner Z, Bősze S, Ramsden JJ, Szekacs I, Horvath R. Review of Label-Free Monitoring of Bacteria: From Challenging Practical Applications to Basic Research Perspectives. Biosensors (Basel) 2022;12:188. [PMID: 35448248 DOI: 10.3390/bios12040188] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
17 |
Zhang H, Li X, Zhu Q, Wang Z. The recent development of nanomaterials enhanced paper-based electrochemical analytical devices. Journal of Electroanalytical Chemistry 2022;909:116140. [DOI: 10.1016/j.jelechem.2022.116140] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
|
18 |
Fatibello-filho O. Potentiometric Biosensors. Tools and Trends in Bioanalytical Chemistry 2022. [DOI: 10.1007/978-3-030-82381-8_13] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
19 |
Trevanich S. Techniques for Detection of Microbial Contamination. Microbial Decontamination of Food 2022. [DOI: 10.1007/978-981-19-5114-5_1] [Reference Citation Analysis]
|
20 |
Mousavizadegan M, Roshani A, Hosseini M. Nanoengineered Aptamer Assisted Strategies for the Detection of Foodborne Pathogens. Biosensing and Micro-Nano Devices 2022. [DOI: 10.1007/978-981-16-8333-6_3] [Reference Citation Analysis]
|
21 |
Özbek O, Berkel C. Recent advances in potentiometric analysis: Paper–based devices. Sensors International 2022;3:100189. [DOI: 10.1016/j.sintl.2022.100189] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
22 |
Yao Z, Coatsworth P, Shi X, Zhi J, Hu L, Yan R, Güder F, Yu H. Paper-based sensors for diagnostics, human activity monitoring, food safety and environmental detection. Sens Diagn 2022;1:312-42. [DOI: 10.1039/d2sd00017b] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
|
23 |
Amiri M, Arshi S, Saberi RS. Recent advances in immunosensors for healthcare. The Detection of Biomarkers 2022. [DOI: 10.1016/b978-0-12-822859-3.00014-6] [Reference Citation Analysis]
|
24 |
Verma DK, Thakur M, Tripathy S, Mohapatra B, Singh S, Patel AR, Gupta AK, Chávez-gonzález ML, Srivastav PP, Sandoval-cortes J, Aguilar CN. Emerging biosensor technology and its potential application in food. Innovations in Fermentation and Phytopharmaceutical Technologies 2022. [DOI: 10.1016/b978-0-12-821877-8.00017-8] [Reference Citation Analysis]
|
25 |
Oveissi F, Nguyen LH, Giaretta JE, Shahrbabaki Z, Rath RJ, Apalangya VA, Yun J, Dehghani F, Naficy S. Sensors for food quality and safety. Food Engineering Innovations Across the Food Supply Chain 2022. [DOI: 10.1016/b978-0-12-821292-9.00010-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
26 |
Hung YP, Chen YF, Tsai PJ, Huang IH, Ko WC, Jan JS. Advances in the Application of Nanomaterials as Treatments for Bacterial Infectious Diseases. Pharmaceutics 2021;13:1913. [PMID: 34834328 DOI: 10.3390/pharmaceutics13111913] [Reference Citation Analysis]
|
27 |
McCuskey SR, Chatsirisupachai J, Zeglio E, Parlak O, Panoy P, Herland A, Bazan GC, Nguyen TQ. Current Progress of Interfacing Organic Semiconducting Materials with Bacteria. Chem Rev 2021. [PMID: 34714064 DOI: 10.1021/acs.chemrev.1c00487] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
|
28 |
Nesakumar N, Lakshmanakumar M, Srinivasan S, Jayalatha Jbb A, Balaguru Rayappan JB. Principles and Recent Advances in Biosensors for Pathogens Detection. ChemistrySelect 2021;6:10063-91. [DOI: 10.1002/slct.202101062] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
29 |
Fu X, Sun J, Liang R, Guo H, Wang L, Sun X. Application progress of microfluidics-integrated biosensing platforms in the detection of foodborne pathogens. Trends in Food Science & Technology 2021;116:115-29. [DOI: 10.1016/j.tifs.2021.07.006] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
|
30 |
Perdomo SA, Marmolejo-tejada JM, Jaramillo-botero A. Review—Bio-Nanosensors: Fundamentals and Recent Applications. J Electrochem Soc 2021;168:107506. [DOI: 10.1149/1945-7111/ac2972] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
|
31 |
Awang MS, Bustami Y, Hamzah HH, Zambry NS, Najib MA, Khalid MF, Aziah I, Abd Manaf A. Advancement in Salmonella Detection Methods: From Conventional to Electrochemical-Based Sensing Detection. Biosensors (Basel) 2021;11:346. [PMID: 34562936 DOI: 10.3390/bios11090346] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
|
32 |
Manjakkal L, Mitra S, Petillot YR, Shutler J, Scott EM, Willander M, Dahiya R. Connected Sensors, Innovative Sensor Deployment, and Intelligent Data Analysis for Online Water Quality Monitoring. IEEE Internet Things J 2021;8:13805-24. [DOI: 10.1109/jiot.2021.3081772] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
|
33 |
Zhang D, Yu S, Wang X, Huang J, Pan W, Zhang J, Meteku BE, Zeng J. UV illumination-enhanced ultrasensitive ammonia gas sensor based on (001)TiO2/MXene heterostructure for food spoilage detection. J Hazard Mater 2021;423:127160. [PMID: 34537639 DOI: 10.1016/j.jhazmat.2021.127160] [Cited by in Crossref: 40] [Cited by in F6Publishing: 52] [Article Influence: 20.0] [Reference Citation Analysis]
|
34 |
Bordbar MM, Sheini A, Hashemi P, Hajian A, Bagheri H. Disposable Paper-Based Biosensors for the Point-of-Care Detection of Hazardous Contaminations-A Review. Biosensors (Basel) 2021;11:316. [PMID: 34562906 DOI: 10.3390/bios11090316] [Cited by in Crossref: 16] [Cited by in F6Publishing: 20] [Article Influence: 8.0] [Reference Citation Analysis]
|
35 |
Xing G, Luo B, Qin J, Wang X, Hou P, Zhang H, Wang C, Wang J, Li A. A probe-free electrochemical immunosensor for methyl jasmonate based on ferrocene functionalized-carboxylated graphene-multi-walled carbon nanotube nanocomposites. Talanta 2021;232:122477. [PMID: 34074445 DOI: 10.1016/j.talanta.2021.122477] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
36 |
Melo AMA, Furtado RF, de Fatima Borges M, Biswas A, Cheng HN, Alves CR. Performance of an amperometric immunosensor assembled on carboxymethylated cashew gum for Salmonella detection. Microchemical Journal 2021;167:106268. [DOI: 10.1016/j.microc.2021.106268] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
|
37 |
Alahmad W, Varanusupakul P, Varanusupakul P. Recent Developments and Applications of Microfluidic Paper-Based Analytical Devices for the Detection of Biological and Chemical Hazards in Foods: A Critical Review. Crit Rev Anal Chem 2023;53:233-52. [PMID: 34304654 DOI: 10.1080/10408347.2021.1949695] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
38 |
Yuan H, Chiu PY, Chen CF. Paper-based analytical devices for point-of-care blood tests. Biomicrofluidics 2021;15:041303. [PMID: 34326913 DOI: 10.1063/5.0055601] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
39 |
Xu L, Bai X, Bhunia AK. Current State of Development of Biosensors and Their Application in Foodborne Pathogen Detection. J Food Prot 2021;84:1213-27. [PMID: 33710346 DOI: 10.4315/JFP-20-464] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
|
40 |
Noviana E, Ozer T, Carrell CS, Link JS, Mcmahon C, Jang I, Henry CS. Microfluidic Paper-Based Analytical Devices: From Design to Applications. Chem Rev 2021;121:11835-85. [DOI: 10.1021/acs.chemrev.0c01335] [Cited by in Crossref: 66] [Cited by in F6Publishing: 91] [Article Influence: 33.0] [Reference Citation Analysis]
|
41 |
Cai C, Mo J, Lu Y, Zhang N, Wu Z, Wang S, Nie S. Integration of a porous wood-based triboelectric nanogenerator and gas sensor for real-time wireless food-quality assessment. Nano Energy 2021;83:105833. [DOI: 10.1016/j.nanoen.2021.105833] [Cited by in Crossref: 62] [Cited by in F6Publishing: 49] [Article Influence: 31.0] [Reference Citation Analysis]
|
42 |
Deusenbery C, Wang Y, Shukla A. Recent Innovations in Bacterial Infection Detection and Treatment. ACS Infect Dis 2021;7:695-720. [PMID: 33733747 DOI: 10.1021/acsinfecdis.0c00890] [Cited by in Crossref: 30] [Cited by in F6Publishing: 34] [Article Influence: 15.0] [Reference Citation Analysis]
|
43 |
Ozer T, Mccord C, Geiss BJ, Dandy D, Henry CS. Thermoplastic Electrodes for Detection of Escherichia coli. J Electrochem Soc 2021;168:047509. [DOI: 10.1149/1945-7111/abf77e] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
44 |
Islam T, Hasan MM, Awal A, Nurunnabi M, Ahammad AJS. Metal Nanoparticles for Electrochemical Sensing: Progress and Challenges in the Clinical Transition of Point-of-Care Testing. Molecules 2020;25:E5787. [PMID: 33302537 DOI: 10.3390/molecules25245787] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 6.0] [Reference Citation Analysis]
|
45 |
Qi J, Fan X, Deng D, He H, Luo L. Progress in Rapid Detection Techniques Using Paper-Based Platforms for Food Safety. Chinese Journal of Analytical Chemistry 2020;48:1616-24. [DOI: 10.1016/s1872-2040(20)60064-0] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
|
46 |
Sharafeldin M, Davis JJ. Point of Care Sensors for Infectious Pathogens. Anal Chem 2021;93:184-97. [DOI: 10.1021/acs.analchem.0c04677] [Cited by in Crossref: 27] [Cited by in F6Publishing: 31] [Article Influence: 9.0] [Reference Citation Analysis]
|
47 |
Shen Y, Xu L, Li Y. Biosensors for rapid detection of Salmonella in food: A review. Compr Rev Food Sci Food Saf 2021;20:149-97. [PMID: 33443806 DOI: 10.1111/1541-4337.12662] [Cited by in Crossref: 43] [Cited by in F6Publishing: 48] [Article Influence: 14.3] [Reference Citation Analysis]
|
48 |
Campbell VR, Carson MS, Lao A, Maran K, Yang EJ, Kamei DT. Point-of-Need Diagnostics for Foodborne Pathogen Screening. SLAS Technol 2021;26:55-79. [PMID: 33012245 DOI: 10.1177/2472630320962003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
|
49 |
Martínez-Periñán E, Gutiérrez-Sánchez C, García-Mendiola T, Lorenzo E. Electrochemiluminescence Biosensors Using Screen-Printed Electrodes. Biosensors (Basel) 2020;10:E118. [PMID: 32916838 DOI: 10.3390/bios10090118] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 6.7] [Reference Citation Analysis]
|
50 |
Pires NMM, Dong T, Yang Z, da Silva LFBA. Recent methods and biosensors for foodborne pathogen detection in fish: progress and future prospects to sustainable aquaculture systems. Crit Rev Food Sci Nutr 2021;61:1852-76. [PMID: 32539431 DOI: 10.1080/10408398.2020.1767032] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
51 |
Ali AA, Altemimi AB, Alhelfi N, Ibrahim SA. Application of Biosensors for Detection of Pathogenic Food Bacteria: A Review. Biosensors (Basel) 2020;10:E58. [PMID: 32486225 DOI: 10.3390/bios10060058] [Cited by in Crossref: 42] [Cited by in F6Publishing: 46] [Article Influence: 14.0] [Reference Citation Analysis]
|
52 |
Nunez-Bajo E, Fernández-Abedul MT. Paper-based platforms with coulometric readout for ascorbic acid determination in fruit juices. Analyst 2020;145:3431-9. [PMID: 32259174 DOI: 10.1039/d0an00477d] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
|
53 |
Riu J, Giussani B. Electrochemical biosensors for the detection of pathogenic bacteria in food. TrAC Trends in Analytical Chemistry 2020;126:115863. [DOI: 10.1016/j.trac.2020.115863] [Cited by in Crossref: 74] [Cited by in F6Publishing: 80] [Article Influence: 24.7] [Reference Citation Analysis]
|
54 |
Malvano F, Pilloton R, Albanese D. A novel impedimetric biosensor based on the antimicrobial activity of the peptide nisin for the detection of Salmonella spp. Food Chem 2020;325:126868. [PMID: 32387945 DOI: 10.1016/j.foodchem.2020.126868] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 7.7] [Reference Citation Analysis]
|
55 |
Choi S, Eom Y, Kim SM, Jeong DW, Han J, Koo JM, Hwang SY, Park J, Oh DX. A Self-Healing Nanofiber-Based Self-Responsive Time-Temperature Indicator for Securing a Cold-Supply Chain. Adv Mater 2020;32:e1907064. [PMID: 32022987 DOI: 10.1002/adma.201907064] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 10.0] [Reference Citation Analysis]
|
56 |
Mondal D, Binish R, Samanta S, Paul D, Mukherji S. Detection of Total Bacterial Load in Water Samples Using a Disposable Impedimetric Sensor. IEEE Sensors J 2020;20:1712-1720. [DOI: 10.1109/jsen.2019.2950422] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
|
57 |
Ataide VN, Mendes LF, Gama LILM, de Araujo WR, Paixão TRLC. Electrochemical paper-based analytical devices: ten years of development. Anal Methods 2020;12:1030-54. [DOI: 10.1039/c9ay02350j] [Cited by in Crossref: 65] [Cited by in F6Publishing: 69] [Article Influence: 21.7] [Reference Citation Analysis]
|
58 |
Batista Deroco P, Giarola JDF, Wachholz Júnior D, Arantes Lorga G, Tatsuo Kubota L. Paper-based electrochemical sensing devices. Comprehensive Analytical Chemistry 2020. [DOI: 10.1016/bs.coac.2019.11.001] [Cited by in Crossref: 10] [Article Influence: 3.3] [Reference Citation Analysis]
|
59 |
Díaz-liñán MC, García-valverde MT, Lucena R, Cárdenas S, López-lorente AI. Paper-based sorptive phases for microextraction and sensing. Anal Methods 2020;12:3074-91. [DOI: 10.1039/d0ay00702a] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
|
60 |
Daliri F, Department of Agriculture Biotechnology, Kwame Nkrumah University of Science and Technology, Private Mail Bag, University Post Office, Kumasi, Ghana, Aboagye AA, Kyei-baffour V, Elahi F, Chelliah R, Daliri EB. Immunosensors for Food Safety: Current Trends and Future Perspectives. J Fd Hyg Safety 2019;34:509-518. [DOI: 10.13103/jfhs.2019.34.6.509] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|