1 |
Mi X, Li H, Tu Y. An Aptamer Biosensing Strategy for Label-Free Assay of Dual Acute Myocardial Infarction Biomarkers Built upon AuNPs/Ti3C2-MXenes. Chemosensors 2023;11:157. [DOI: 10.3390/chemosensors11030157] [Reference Citation Analysis]
|
2 |
Li M, Yu Q, Zheng M, Jiang R, Zhu H, Guo H, Sun H, Liu M. A label-free electrochemical immunosensor based on Au-BSN-rGO for highly-sensitive detection of β-amyloid 1-42. Nanoscale 2023;15:4063-70. [PMID: 36734202 DOI: 10.1039/d2nr05787e] [Reference Citation Analysis]
|
3 |
Police Patil AV, Chuang YS, Li C, Wu CC. Recent Advances in Electrochemical Immunosensors with Nanomaterial Assistance for Signal Amplification. Biosensors (Basel) 2023;13. [PMID: 36671960 DOI: 10.3390/bios13010125] [Reference Citation Analysis]
|
4 |
Zhang J, Tang C, Chen D, Jiang L, Wang A, Feng J. Ultrasensitive label-free sandwich immunoassay of cardiac biomarker myoglobin using meso-SiO2@ploydapamine@PtPd nanocrystals and PtNi nanodendrites for effective signal amplification. Applied Surface Science 2023;608:155216. [DOI: 10.1016/j.apsusc.2022.155216] [Reference Citation Analysis]
|
5 |
Xia Y, Liu Y, Hu X, Zhao F, Zeng B. Dual-Mode Electrochemical Competitive Immunosensor Based on Cd(2+)/Au/Polydopamine/Ti(3)C(2) Composite and Copper-Based Metal-Organic Framework for 17β-Estradiol Detection. ACS Sens 2022;7:3077-84. [PMID: 36198618 DOI: 10.1021/acssensors.2c01420] [Reference Citation Analysis]
|
6 |
Zhang M, Guo X. Gold/platinum bimetallic nanomaterials for immunoassay and immunosensing. Coordination Chemistry Reviews 2022;465:214578. [DOI: 10.1016/j.ccr.2022.214578] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
|
7 |
Kaya SI, Karadurmuş L, Cetinkaya A, Ozcelikay G, Ozkan SA. Types of Biosensors and their Importance in Cardiovascular Applications. Predicting Heart Failure 2022. [DOI: 10.1002/9781119813040.ch3] [Reference Citation Analysis]
|
8 |
Wang Z, Zhao H, Chen K, Zhou F, Magdassi S, Lan M. Two-dimensional mesoporous nitrogen-rich carbon nanosheets loaded with CeO2 nanoclusters as nanozymes for the electrochemical detection of superoxide anions in HepG2 cells. Biosens Bioelectron 2022;209:114229. [PMID: 35390557 DOI: 10.1016/j.bios.2022.114229] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
9 |
Crapnell RD, Dempsey NC, Sigley E, Tridente A, Banks CE. Electroanalytical point-of-care detection of gold standard and emerging cardiac biomarkers for stratification and monitoring in intensive care medicine - a review. Microchim Acta 2022;189. [DOI: 10.1007/s00604-022-05186-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
10 |
Tan X, Li Z, Wang X, Xu M, Yang M, Zhao J. Simultaneous determination of cadmium( ii ), lead( ii ), copper( ii ) and mercury( ii ) using an electrode modified by N/S co-doped graphene. New J Chem 2022;46:10618-27. [DOI: 10.1039/d2nj01060g] [Reference Citation Analysis]
|
11 |
Zhao H, Niu Z, Chen K, Chen L, Wang Z, Lan M, Shi J, Huang W. A novel sandwich-type electrochemical biosensor enabling sensitive detection of circulating tumor DNA. Microchemical Journal 2021;171:106783. [DOI: 10.1016/j.microc.2021.106783] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
|
12 |
Chen H, Cai J, Yang J, Zhong Z, Ma M, Deng W, Tan Y, Xie Q. Synergistic electrocatalysis of Cu2S@Co3S4 core-shell heterostructures toward H2O2 reduction and their application for sensitive immunosensing of alpha fetoprotein. Sensors and Actuators B: Chemical 2021;348:130703. [DOI: 10.1016/j.snb.2021.130703] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
13 |
Du X, Su X, Zhang W, Yi S, Zhang G, Jiang S, Li H, Li S, Xia F. Progress, Opportunities, and Challenges of Troponin Analysis in the Early Diagnosis of Cardiovascular Diseases. Anal Chem 2021. [PMID: 34843218 DOI: 10.1021/acs.analchem.1c04476] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
14 |
Lv X, Bi M, Xu X, Li Y, Geng C, Cui B, Fang Y. An ultrasensitive ratiometric immunosensor based on the ratios of conjugated distyrylbenzene derivative nanosheets with AIECL properties and electrochemical signal for CYFRA21-1 detection. Anal Bioanal Chem 2021. [PMID: 34741181 DOI: 10.1007/s00216-021-03764-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
15 |
Feng S, Yan M, Xue Y, Huang J, Yang X. Electrochemical Immunosensor for Cardiac Troponin I Detection Based on Covalent Organic Framework and Enzyme-Catalyzed Signal Amplification. Anal Chem 2021;93:13572-9. [PMID: 34591449 DOI: 10.1021/acs.analchem.1c02636] [Cited by in Crossref: 22] [Cited by in F6Publishing: 26] [Article Influence: 11.0] [Reference Citation Analysis]
|
16 |
Yan H, He B, Ren W, Suo Z, Xu Y, Xie L, Li L, Yang J, Liu R. A label-free electrochemical immunosensing platform based on PEI-rGO/Pt@Au NRs for rapid and sensitive detection of zearalenone. Bioelectrochemistry 2022;143:107955. [PMID: 34607261 DOI: 10.1016/j.bioelechem.2021.107955] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
|
17 |
Zhao H, Liu T, Cui L, Li Y, Yang F, Zhang X. Label-free and dual-amplified electrochemical bioanalysis of MUC1 based on an inorganic-organic polymer hybrid mimic peroxidase (AuNPs@Cu7S4@Cu/Mn-AzoPPOP) and catalytic hairpin assembly. Sensors and Actuators B: Chemical 2021;345:130332. [DOI: 10.1016/j.snb.2021.130332] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
|
18 |
Yuan Z, Wang L, Chen J, Su W, Li A, Su G, Liu P, Zhou X. Electrochemical strategies for the detection of cTnI. Analyst 2021;146:5474-95. [PMID: 34515706 DOI: 10.1039/d1an00808k] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
|
19 |
Cao L, Tan Y, Deng W, Xie Q. MWCNTs-CoP hybrids for dual-signal electrochemical immunosensing of carcinoembryonic antigen based on overall water splitting. Talanta 2021;233:122521. [PMID: 34215136 DOI: 10.1016/j.talanta.2021.122521] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
|
20 |
Boonkaew S, Teengam P, Jampasa S, Rengpipat S, Siangproh W, Chailapakul O. Cost-effective paper-based electrochemical immunosensor using a label-free assay for sensitive detection of ferritin. Analyst 2020;145:5019-26. [PMID: 32520014 DOI: 10.1039/d0an00564a] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 12.0] [Reference Citation Analysis]
|
21 |
He B, Li J. Synthesis of gold nanocubes/PEI-wrinkled CoSe2 nanomaterials and its application in electrochemical immunosensors for detection of dipropyl phthalate. Rare Met 2021;40:1099-109. [DOI: 10.1007/s12598-020-01580-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
|
22 |
Tran VT, Ju H. Fluorescence Based on Surface Plasmon Coupled Emission for Ultrahigh Sensitivity Immunoassay of Cardiac Troponin I. Biomedicines 2021;9:448. [PMID: 33919217 DOI: 10.3390/biomedicines9050448] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
23 |
Li J, Jin H, Wei M, Ren W, Wang J, Zhang Y, Wu L, He B. Dual mode competitive electrochemical immunoassay for dibutyl phthalate detection based on PEI functionalized nitrogen doped graphene-CoSe2/gold nanowires and thionine-Au@Pt core-shell. Sensors and Actuators B: Chemical 2021;331:129401. [DOI: 10.1016/j.snb.2020.129401] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
|
24 |
Wang X, Feng Y, Wang A, Mei L, Yuan P, Luo X, Feng J. A facile ratiometric electrochemical strategy for ultrasensitive monitoring HER2 using polydopamine-grafted-ferrocene/reduced graphene oxide, Au@Ag nanoshuttles and hollow Ni@PtNi yolk-shell nanocages. Sensors and Actuators B: Chemical 2021;331:129460. [DOI: 10.1016/j.snb.2021.129460] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 14.5] [Reference Citation Analysis]
|
25 |
Pourali A, Rashidi MR, Barar J, Pavon-djavid G, Omidi Y. Voltammetric biosensors for analytical detection of cardiac troponin biomarkers in acute myocardial infarction. TrAC Trends in Analytical Chemistry 2021;134:116123. [DOI: 10.1016/j.trac.2020.116123] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
|
26 |
Lee H, Youn H, Hwang A, Lee H, Park JY, Kim W, Yoo Y, Ban C, Kang T, Kim B. Troponin Aptamer on an Atomically Flat Au Nanoplate Platform for Detection of Cardiac Troponin I. Nanomaterials (Basel) 2020;10:E1402. [PMID: 32708486 DOI: 10.3390/nano10071402] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
|
27 |
Wang X, Chen Y, Mei L, Wang A, Yuan P, Feng J. Confining signal probe in porous PdPtCoNi@Pt-skin nanopolyhedra to construct a sandwich-type electrochemical immmunosensor for ultrasensitive detection of creatine kinase-MB. Sensors and Actuators B: Chemical 2020;315:128088. [DOI: 10.1016/j.snb.2020.128088] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
|
28 |
Dhara K, Mahapatra DR. Review on electrochemical sensing strategies for C-reactive protein and cardiac troponin I detection. Microchemical Journal 2020;156:104857. [DOI: 10.1016/j.microc.2020.104857] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 8.0] [Reference Citation Analysis]
|
29 |
Bao C, Liu X, Shao X, Ren X, Zhang Y, Sun X, Fan D, Wei Q, Ju H. Cardiac troponin I photoelectrochemical sensor: {Mo368} as electrode donor for Bi2S3 and Au co-sensitized FeOOH composite. Biosens Bioelectron 2020;157:112157. [PMID: 32250931 DOI: 10.1016/j.bios.2020.112157] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
|
30 |
Mohammadi A, Heydari-bafrooei E, Foroughi MM, Mohammadi M. Electrochemical aptasensor for ultrasensitive detection of PCB77 using thionine-functionalized MoS2-rGO nanohybrid. Microchemical Journal 2020;155:104747. [DOI: 10.1016/j.microc.2020.104747] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
|
31 |
Chen Y, Ge X, Cen S, Wang A, Luo X, Feng J. Ultrasensitive dual-signal ratiometric electrochemical aptasensor for neuron-specific enolase based on Au nanoparticles@Pd nanoclusters-poly(bismarck brown Y) and dendritic AuPt nanoassemblies. Sensors and Actuators B: Chemical 2020;311:127931. [DOI: 10.1016/j.snb.2020.127931] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 10.3] [Reference Citation Analysis]
|
32 |
Li Y, Hou L, Liu Z, Lu W, Zhao M, Xiao H, Hu T, Zheng Z, Jia J, Wu H. A Sensitive Electrochemical MUC1 Sensing Platform Based on Electroactive Cu-MOFs Decorated by AuPt Nanoparticles. J Electrochem Soc 2020;167:087502. [DOI: 10.1149/1945-7111/ab88b9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|
33 |
He B, Li M, Li M. Electrochemical determination of sulfamethazine using a gold electrode modified with multi-walled carbon nanotubes, graphene oxide nanoribbons and branched aptamers. Microchim Acta 2020;187. [DOI: 10.1007/s00604-020-04244-4] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
|
34 |
Wang H, Huang X, Wang A, Luo X, Liu W, Yuan P, Feng J. Construction of efficient “on-off-on” fluorescence aptasensor for ultrasensitive detection of prostate specific antigen via covalent energy transfer between g-C3N4 quantum dots and palladium triangular plates. Analytica Chimica Acta 2020;1104:53-9. [DOI: 10.1016/j.aca.2020.01.009] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
|
35 |
Li W, Qiao X, Hong C, Ma C, Song Y. A sandwich-type electrochemical immunosensor for detecting CEA based on CeO2-MoS2 absorbed Pb2+. Analytical Biochemistry 2020;592:113566. [DOI: 10.1016/j.ab.2019.113566] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
|
36 |
Chen Y, Mei L, Feng J, Yuan P, Luo X, Wang A. Simple one-pot aqueous synthesis of 3D superstructured PtCoCuPd alloyed tripods with hierarchical branches for ultrasensitive immunoassay of cardiac troponin I. Biosensors and Bioelectronics 2019;145:111638. [DOI: 10.1016/j.bios.2019.111638] [Cited by in Crossref: 37] [Cited by in F6Publishing: 30] [Article Influence: 9.3] [Reference Citation Analysis]
|
37 |
Sun D, Lin X, Lu J, Wei P, Luo Z, Lu X, Chen Z, Zhang L. DNA nanotetrahedron-assisted electrochemical aptasensor for cardiac troponin I detection based on the co-catalysis of hybrid nanozyme, natural enzyme and artificial DNAzyme. Biosens Bioelectron 2019;142:111578. [PMID: 31422223 DOI: 10.1016/j.bios.2019.111578] [Cited by in Crossref: 51] [Cited by in F6Publishing: 52] [Article Influence: 12.8] [Reference Citation Analysis]
|