BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang D, Li W, Ma Z. Improved sandwich-format electrochemical immunosensor based on “smart” SiO2@polydopamine nanocarrier. Biosensors and Bioelectronics 2018;109:171-6. [DOI: 10.1016/j.bios.2018.03.027] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 6.2] [Reference Citation Analysis]
Number Citing Articles
1 Jiang M, Wang M, Lai W, Zhang M, Ma C, Li P, Li J, Li H, Hong C. Preparation of a pH-responsive controlled-release electrochemical immunosensor based on polydopamine encapsulation for ultrasensitive detection of alpha-fetoprotein. Mikrochim Acta 2022;189:334. [PMID: 35970980 DOI: 10.1007/s00604-022-05433-z] [Reference Citation Analysis]
2 Niu P, Jiang J, Liu K, Wang S, Jing J, Xu T, Wang T, Liu Y, Liu T. Fiber-integrated WGM optofluidic chip enhanced by microwave photonic analyzer for cardiac biomarker detection with ultra-high resolution. Biosens Bioelectron 2022;208:114238. [PMID: 35390720 DOI: 10.1016/j.bios.2022.114238] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
3 Kim J, Park M. Recent Progress in Electrochemical Immunosensors. Biosensors (Basel) 2021;11:360. [PMID: 34677316 DOI: 10.3390/bios11100360] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
4 Li B, Zhang Y, Ren X, Li Y, Wang H, Ma H, Wu D, Wei Q. A No‐washing Point‐of‐Care Electrochemical Biosensor Based on CuS Nanoparticles for Rapid and Sensitive Detection of Neuron‐specific Enolase. Electroanalysis 2022;34:338-44. [DOI: 10.1002/elan.202100275] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
5 Chang Z, Xu Y, Shen Y. Ultrasensitive Electrochemical Immunoassay for Prostate Specific Antigen (PSA) Based Upon Silver-Functionalized Polyethyleneimine (PEI)–Silica Nanoparticles (NPs). Analytical Letters 2022;55:68-84. [DOI: 10.1080/00032719.2021.1916752] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
6 Zheng Y, Li J, Zhou B, Ian H, Shao H. Advanced sensitivity amplification strategies for voltammetric immunosensors of tumor marker: State of the art. Biosensors and Bioelectronics 2021;178:113021. [DOI: 10.1016/j.bios.2021.113021] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
7 Wang XY, Feng YG, Wang AJ, Mei LP, Luo X, Xue Y, Feng JJ. Facile construction of ratiometric electrochemical immunosensor using hierarchical PtCoIr nanowires and porous SiO2@Ag nanoparticles for accurate detection of septicemia biomarker. Bioelectrochemistry 2021;140:107802. [PMID: 33794412 DOI: 10.1016/j.bioelechem.2021.107802] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 6.5] [Reference Citation Analysis]
8 Zhang H, Wang Z, Wang F, Zhang Y, Wang H, Liu Y. Ti3C2 MXene mediated Prussian blue in situ hybridization and electrochemical signal amplification for the detection of exosomes. Talanta 2021;224:121879. [PMID: 33379088 DOI: 10.1016/j.talanta.2020.121879] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 13.0] [Reference Citation Analysis]
9 Feng YG, Wang XY, Wang ZW, Wang AJ, Mei LP, Luo X, Feng JJ. A label-free electrochemical immunosensor based on encapsulated signal molecules in mesoporous silica-coated gold nanorods for ultrasensitive assay of procalcitonin. Bioelectrochemistry 2021;140:107753. [PMID: 33631415 DOI: 10.1016/j.bioelechem.2021.107753] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
10 Dowlatshahi S, Abdekhodaie MJ. Electrochemical prostate-specific antigen biosensors based on electroconductive nanomaterials and polymers. Clin Chim Acta 2021;516:111-35. [PMID: 33545110 DOI: 10.1016/j.cca.2021.01.018] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
11 Darvishi E, Ehzari H, Shahlaei M, Behbood L, Arkan E. The electrochemical immunosensor for detection of prostatic specific antigen using quince seed mucilage-GNPs-SNPs as a green composite. Bioelectrochemistry 2021;139:107744. [PMID: 33517204 DOI: 10.1016/j.bioelechem.2021.107744] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
12 Yakubu S, Xiao J, Gu J, Cheng J, Wang J, Li X, Zhang Z. A competitive electrochemical immunosensor based on bimetallic nanoparticle decorated nanoflower-like MnO2 for enhanced peroxidase-like activity and sensitive detection of Tetrabromobisphenol A. Sensors and Actuators B: Chemical 2020;325:128909. [DOI: 10.1016/j.snb.2020.128909] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.7] [Reference Citation Analysis]
13 Wang N, Wang C, Chen H, Bai L, Wang W, Yang H, Wei D, Yang L. Facile fabrication of a controlled polymer brush-type functional nanoprobe for highly sensitive determination of alpha fetoprotein. Anal Methods 2020;12:4438-46. [PMID: 32856029 DOI: 10.1039/d0ay01151g] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
14 Zhang H, Wang Z, Wang F, Zhang Y, Wang H, Liu Y. In Situ Formation of Gold Nanoparticles Decorated Ti3C2 MXenes Nanoprobe for Highly Sensitive Electrogenerated Chemiluminescence Detection of Exosomes and Their Surface Proteins. Anal Chem 2020;92:5546-53. [PMID: 32186362 DOI: 10.1021/acs.analchem.0c00469] [Cited by in Crossref: 93] [Cited by in F6Publishing: 100] [Article Influence: 31.0] [Reference Citation Analysis]
15 George SM, Tandon S, Kandasubramanian B. Advancements in Hydrogel-Functionalized Immunosensing Platforms. ACS Omega 2020;5:2060-8. [PMID: 32064366 DOI: 10.1021/acsomega.9b03816] [Cited by in Crossref: 29] [Cited by in F6Publishing: 32] [Article Influence: 9.7] [Reference Citation Analysis]
16 Liang X, Zhao J, Ma Z. Improved binding induced self-assembled DNA to achieve ultrasensitive electrochemical proximity assay. Sensors and Actuators B: Chemical 2020;304:127278. [DOI: 10.1016/j.snb.2019.127278] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
17 Traynor SM, Pandey R, Maclachlan R, Hosseini A, Didar TF, Li F, Soleymani L. Review—Recent Advances in Electrochemical Detection of Prostate Specific Antigen (PSA) in Clinically-Relevant Samples. J Electrochem Soc 2020;167:037551. [DOI: 10.1149/1945-7111/ab69fd] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 9.0] [Reference Citation Analysis]
18 Chen Y, Feng J, Mei L, Shi C, Wang A. Dendritic core-shell rhodium@platinum-cobalt nanocrystals for ultrasensitive electrochemical immunoassay of squamous cell carcinoma antigen. Journal of Colloid and Interface Science 2019;555:647-54. [DOI: 10.1016/j.jcis.2019.08.012] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
19 Zhang C, Ma Z. PtCu nanoprobe-initiated cascade reaction modulated iodide-responsive sensing interface for improved electrochemical immunosensor of neuron-specific enolase. Biosensors and Bioelectronics 2019;143:111612. [DOI: 10.1016/j.bios.2019.111612] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 6.0] [Reference Citation Analysis]
20 Yin S, Ma Z. Self-sacrificial label assisted electroactivity conversion of sensing interface for ultrasensitive electrochemical immunosensor. Biosensors and Bioelectronics 2019;140:111355. [DOI: 10.1016/j.bios.2019.111355] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.8] [Reference Citation Analysis]
21 Zhang Y, Wang F, Zhang H, Wang H, Liu Y. Multivalency Interface and g-C 3 N 4 Coated Liquid Metal Nanoprobe Signal Amplification for Sensitive Electrogenerated Chemiluminescence Detection of Exosomes and Their Surface Proteins. Anal Chem 2019;91:12100-7. [DOI: 10.1021/acs.analchem.9b03427] [Cited by in Crossref: 50] [Cited by in F6Publishing: 52] [Article Influence: 12.5] [Reference Citation Analysis]
22 Liang X, Han H, Ma Z. pH responsive amperometric immunoassay for carcinoma antigen 125 based on hollow polydopamine encapsulating methylene blue. Sensors and Actuators B: Chemical 2019;290:625-30. [DOI: 10.1016/j.snb.2019.04.030] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
23 Zhang C, Zhang D, Ma Z, Han H. Cascade catalysis-initiated radical polymerization amplified impedimetric immunosensor for ultrasensitive detection of carbohydrate antigen 15-3. Biosensors and Bioelectronics 2019;137:1-7. [DOI: 10.1016/j.bios.2019.04.049] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 8.5] [Reference Citation Analysis]
24 Aydin EB, Aydin M, Sezgintürk MK. Advances in electrochemical immunosensors. Adv Clin Chem 2019;92:1-57. [PMID: 31472751 DOI: 10.1016/bs.acc.2019.04.006] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
25 Tang Q, Zhang L, Tan X, Jiao L, Wei Q, Li H. Bioinspired synthesis of organic–inorganic hybrid nanoflowers for robust enzyme-free electrochemical immunoassay. Biosensors and Bioelectronics 2019;133:94-9. [DOI: 10.1016/j.bios.2019.03.032] [Cited by in Crossref: 45] [Cited by in F6Publishing: 47] [Article Influence: 11.3] [Reference Citation Analysis]
26 Xue H, Zhao J, Zhou Q, Pan D, Zhang Y, Zhang Y, Shen Y. Boosting the Sensitivity of a Photoelectrochemical Immunoassay by Using SiO 2 @polydopamine Core–Shell Nanoparticles as a Highly Efficient Quencher. ACS Appl Nano Mater 2019;2:1579-88. [DOI: 10.1021/acsanm.9b00050] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 7.5] [Reference Citation Analysis]
27 Akbari Jonous Z, Shayeh JS, Yazdian F, Yadegari A, Hashemi M, Omidi M. An electrochemical biosensor for prostate cancer biomarker detection using graphene oxide-gold nanostructures. Eng Life Sci 2019;19:206-16. [PMID: 32625003 DOI: 10.1002/elsc.201800093] [Cited by in Crossref: 40] [Cited by in F6Publishing: 41] [Article Influence: 10.0] [Reference Citation Analysis]
28 Zhang D, Li W, Ma Z, Han H. Improved ELISA for tumor marker detection using electro-readout-mode based on label triggered degradation of methylene blue. Biosensors and Bioelectronics 2019;126:800-5. [DOI: 10.1016/j.bios.2018.11.038] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 5.8] [Reference Citation Analysis]
29 Zheng Y, Ma Z. Multifunctionalized ZIFs nanoprobe-initiated tandem reaction for signal amplified electrochemical immunoassay of carbohydrate antigen 24-2. Biosens Bioelectron 2019;129:42-9. [PMID: 30682688 DOI: 10.1016/j.bios.2019.01.016] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 7.8] [Reference Citation Analysis]
30 Arya SK, Estrela P. Recent Advances in Enhancement Strategies for Electrochemical ELISA-Based Immunoassays for Cancer Biomarker Detection. Sensors (Basel) 2018;18:E2010. [PMID: 29932161 DOI: 10.3390/s18072010] [Cited by in Crossref: 49] [Cited by in F6Publishing: 50] [Article Influence: 9.8] [Reference Citation Analysis]