BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang A, Guo W, Ke H, Zhang X, Zhang H, Huang C, Yang D, Jia N, Cui D. Sandwich-format ECL immunosensor based on Au star@BSA-Luminol nanocomposites for determination of human chorionic gonadotropin. Biosensors and Bioelectronics 2018;101:219-26. [DOI: 10.1016/j.bios.2017.10.040] [Cited by in Crossref: 65] [Cited by in F6Publishing: 62] [Article Influence: 13.0] [Reference Citation Analysis]
Number Citing Articles
1 Akbari Nakhjavani S, Khalilzadeh B, Afsharan H, Hosseini N, Ghahremani MH, Carrara S, Tasoglu S, Omidi Y. Electrochemiluminescent immunosensor for detection of carcinoembryonic antigen using luminol-coated silver nanoparticles. Mikrochim Acta 2023;190:77. [PMID: 36715890 DOI: 10.1007/s00604-023-05656-8] [Reference Citation Analysis]
2 Chen AL, Wang XY, Zhang Q, Bao N, Ding SN. Sandwich-Type Electrochemiluminescence Immunosensor Based on CDs@dSiO(2) Nanoparticles as Nanoprobe and Co-Reactant. Biosensors (Basel) 2023;13. [PMID: 36671968 DOI: 10.3390/bios13010133] [Reference Citation Analysis]
3 Huang Y, Zhang L, Ji Y, Deng H, Long M, Ge S, Su Y, Chan SY, Loh XJ, Zhuang A, Ruan J. A non-invasive smart scaffold for bone repair and monitoring. Bioactive Materials 2023;19:499-510. [DOI: 10.1016/j.bioactmat.2022.04.034] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Völlmecke K, Afroz R, Bierbach S, Brenker LJ, Frücht S, Glass A, Giebelhaus R, Hoppe A, Kanemaru K, Lazarek M, Rabbe L, Song L, Velasco Suarez A, Wu S, Serpe M, Kuckling D. Hydrogel-Based Biosensors. Gels 2022;8. [PMID: 36547292 DOI: 10.3390/gels8120768] [Reference Citation Analysis]
5 Firoozbakhtian A, Hosseini M, Sheikholeslami MN, Salehnia F, Xu G, Rabbani H, Sobhanie E. Detection of COVID-19: A Smartphone-Based Machine-Learning-Assisted ECL Immunoassay Approach with the Ability of RT-PCR CT Value Prediction. Anal Chem 2022. [DOI: 10.1021/acs.analchem.2c03502] [Reference Citation Analysis]
6 Zhou F, Xiao M, Feng D, Yang P. Ratiometric ECL sensor based on Apt-AuNS@Lu nanoprobe for analyzing cell swelling-induced ATP release. Mikrochim Acta 2022;189:423. [PMID: 36255523 DOI: 10.1007/s00604-022-05491-3] [Reference Citation Analysis]
7 Hosseini M, Sobhanie E, Salehnia F, Xu G, Rabbani H, Naghavi Sheikholeslami M, Firoozbakhtian A, Sadeghi N, Hossein Farajollah M, Reza Ganjali M, Vosough H. Development of sandwich electrochemiluminescence immunosensor for COVID-19 diagnosis by SARS-CoV-2 spike protein detection based on Au@BSA-luminol nanocomposites. Bioelectrochemistry 2022;147:108161. [DOI: 10.1016/j.bioelechem.2022.108161] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Svigelj R, Zuliani I, Dossi N, Toniolo R. A portable electrochemiluminescence aptasensor for β-lactoglobulin detection. Anal Bioanal Chem 2022. [PMID: 36131144 DOI: 10.1007/s00216-022-04328-5] [Reference Citation Analysis]
9 Pan D, Lin Y, Liu X, Xin Y, Tian Q, Zhang J. Ultrasensitive and preprocessing-free electrochemical biosensing platform for the detection of cancer-derived exosomes based on spiky-shaped aptamer-magnetic beads. Biosens Bioelectron 2022;217:114705. [PMID: 36150326 DOI: 10.1016/j.bios.2022.114705] [Reference Citation Analysis]
10 Zhao G, Yan Q, Wang B, Wang Visualzation N, Duolihong B, Xia X. CoFe-(oxy)hydroxide as a novel electrocatalytic tag in immunosensing for ultra-sensitive detection of procalcitonin based on the oxygen evolution reaction. Bioelectrochemistry 2022. [DOI: 10.1016/j.bioelechem.2022.108217] [Reference Citation Analysis]
11 Zhang A, Liu Q, Huang Z, Zhang Q, Wang R, Cui D. Electrochemical Cytosensor Based on a Gold Nanostar-Decorated Graphene Oxide Platform for Gastric Cancer Cell Detection. Sensors (Basel) 2022;22:2783. [PMID: 35408396 DOI: 10.3390/s22072783] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
12 Li Y, Fu R, Duan Z, Zhu C, Fan D. Injectable Hydrogel Based on Defect‐Rich Multi‐Nanozymes for Diabetic Wound Healing via an Oxygen Self‐Supplying Cascade Reaction. Small. [DOI: 10.1002/smll.202200165] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
13 Lu Y, Wang H, Shi X, Ding C, Fan G. Photoanode-supported cathodic immunosensor for sensitive and specific detection of human chorionic gonadotropin. Analytica Chimica Acta 2022;1199:339560. [DOI: 10.1016/j.aca.2022.339560] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
14 Kailasa SK, Joshi DJ, Kateshiya MR, Koduru JR, Malek NI. Review on the biomedical and sensing applications of nanomaterial-incorporated hydrogels. Materials Today Chemistry 2022;23:100746. [DOI: 10.1016/j.mtchem.2021.100746] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 13.0] [Reference Citation Analysis]
15 Ge XY, Zhang JX, Feng YG, Wang AJ, Mei LP, Feng JJ. Label-free electrochemical biosensor for determination of procalcitonin based on graphene-wrapped Co nanoparticles encapsulated in carbon nanobrushes coupled with AuPtCu nanodendrites. Mikrochim Acta 2022;189:110. [PMID: 35178584 DOI: 10.1007/s00604-022-05179-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Ying M, Li Q, Wu J, Jiang Y, Xu Z, Ma M, Xu G. CuS@BSA-NB2 Nanoparticles for HER2-Targeted Photothermal Therapy. Front Pharmacol 2022;12:779591. [DOI: 10.3389/fphar.2021.779591] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
17 Laraib U, Sargazi S, Rahdar A, Khatami M, Pandey S. Nanotechnology-based approaches for effective detection of tumor markers: A comprehensive state-of-the-art review. Int J Biol Macromol 2022;195:356-83. [PMID: 34920057 DOI: 10.1016/j.ijbiomac.2021.12.052] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 23.0] [Reference Citation Analysis]
18 Romodin LA. Chemiluminescence Detection in the Study of Free-Radical Reactions. Part 2. Luminescent Additives That Increase the Chemiluminescence Quantum Yield. Acta Naturae 2022;14:31-9. [PMID: 35441047 DOI: 10.32607/actanaturae.11427] [Reference Citation Analysis]
19 Liu C, Qie Y, Zhao L, Li M, Guo LH. A High-Throughput Platform for the Rapid Quantification of Phosphorylated Histone H2AX in Cell Lysates Based on Microplate Electrochemiluminescence Immunosensor Array. ACS Sens 2021;6:3724-32. [PMID: 34591450 DOI: 10.1021/acssensors.1c01502] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
20 Shi B, Shang L, Zhang W, Jia L, Ma R, Xue Q, Wang H. Electrochemical stripping chemiluminescent sensor based on copper nanoclusters for detection of carcinoembryonic antigen. Sensors and Actuators B: Chemical 2021;344:130291. [DOI: 10.1016/j.snb.2021.130291] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
21 Shao X, Song X, Liu X, Yan L, Liu L, Fan D, Wei Q, Ju H. A dual signal-amplified electrochemiluminescence immunosensor based on core-shell CeO2-Au@Pt nanosphere for procalcitonin detection. Mikrochim Acta 2021;188:344. [PMID: 34528141 DOI: 10.1007/s00604-021-04988-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
22 Liu Q, Zhang A, Wang R, Zhang Q, Cui D. A Review on Metal- and Metal Oxide-Based Nanozymes: Properties, Mechanisms, and Applications. Nanomicro Lett 2021;13:154. [PMID: 34241715 DOI: 10.1007/s40820-021-00674-8] [Cited by in Crossref: 60] [Cited by in F6Publishing: 71] [Article Influence: 30.0] [Reference Citation Analysis]
23 Ge XY, Feng YG, Cen SY, Wang AJ, Mei LP, Luo X, Feng JJ. A label-free electrochemical immnunosensor based on signal magnification of oxygen reduction reaction catalyzed by uniform PtCo nanodendrites for highly sensitive detection of carbohydrate antigen 15-3. Anal Chim Acta 2021;1176:338750. [PMID: 34399893 DOI: 10.1016/j.aca.2021.338750] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
24 Wang Z, Liu Y, Wang Z, Huang X, Huang W. Hydrogel‐based composites: Unlimited platforms for biosensors and diagnostics. VIEW 2021;2:20200165. [DOI: 10.1002/viw.20200165] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
25 Clasky AJ, Watchorn JD, Chen PZ, Gu FX. From prevention to diagnosis and treatment: Biomedical applications of metal nanoparticle-hydrogel composites. Acta Biomater 2021;122:1-25. [PMID: 33352300 DOI: 10.1016/j.actbio.2020.12.030] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 11.0] [Reference Citation Analysis]
26 Liu H, Liu Z, Yi J, Ma D, Xia F, Tian D, Zhou C. A dual-signal electroluminescence aptasensor based on hollow Cu/Co-MOF-luminol and g-C3N4 for simultaneous detection of acetamiprid and malathion. Sensors and Actuators B: Chemical 2021;331:129412. [DOI: 10.1016/j.snb.2020.129412] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
27 Zhang Q, Tian Y, Liang Z, Wang Z, Xu S, Ma Q. DNA-Mediated Au–Au Dimer-Based Surface Plasmon Coupling Electrochemiluminescence Sensor for BRCA1 Gene Detection. Anal Chem 2021;93:3308-14. [DOI: 10.1021/acs.analchem.0c05440] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 10.5] [Reference Citation Analysis]
28 Lu W, Chen ZA, Wei M, Cao X, Sun X. A three-dimensional CoNi-MOF nanosheet array-based immunosensor for sensitive monitoring of human chorionic gonadotropin with core-shell ZnNi-MOF@Nile Blue nanotags. Analyst 2021;145:8097-103. [PMID: 33084628 DOI: 10.1039/d0an01648a] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
29 Tong X, Jin S, Zhao Y, Gai Y, E Y, Li D. Facile nano-free electrochemiluminescence biosensor for detection of sulphamethoxazole via tris(2,2'-bipyridyl)ruthenium(II) and N-methyl pyrrolidone recognition. IET Nanobiotechnol 2020;14:167-71. [PMID: 32433035 DOI: 10.1049/iet-nbt.2019.0257] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
30 Liu X, Wang Q, Chen J, Chen X, Yang W. Ultrasensitive electrochemiluminescence biosensor for the detection of tumor exosomes based on peptide recognition and luminol-AuNPs@g-C3N4 nanoprobe signal amplification. Talanta 2021;221:121379. [DOI: 10.1016/j.talanta.2020.121379] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 13.0] [Reference Citation Analysis]
31 Li J, Chen X, Weng G, Zhu J, Zhao J. A highly specific and sensitive fluorescence quenching probe for carcinoembryonic antigen detection based on tetrapod Au nanostars with Ag coating. Materials Today Communications 2020;25:101373. [DOI: 10.1016/j.mtcomm.2020.101373] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
32 Yin Y, Mei R, Wang Y, Zhao X, Yu Q, Liu W, Chen L. Silica-Coated, Waxberry-like Surface-Enhanced Raman Resonant Scattering Tag-Pair with Near-Infrared Raman Dye Encoding: Toward In Vivo Duplexing Detection. Anal Chem 2020;92:14814-21. [PMID: 33045167 DOI: 10.1021/acs.analchem.0c03674] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
33 Manzoor R, Wang L, Wang H, Lei Y, Sehrish A, Khan MS, Ali A, Wu D, Wei Q. Ultrasensitive competitive electrochemiluminescence immunosensor based on luminol-AuNPs@Mo2C and upconversion nanoparticles for detection of diethylstilbestrol. Microchemical Journal 2020;158:105283. [DOI: 10.1016/j.microc.2020.105283] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
34 Biscay J, Findlay E, Dennany L. Electrochemical monitoring of alcohol in sweat. Talanta 2021;224:121815. [PMID: 33379040 DOI: 10.1016/j.talanta.2020.121815] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
35 Shi L, Zheng W, Miao H, Liu H, Jing X, Zhao Y. Ratiometric persistent luminescence aptasensors for carcinoembryonic antigen detection. Microchim Acta 2020;187. [DOI: 10.1007/s00604-020-04593-0] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
36 Tang T, Yang F, Wang L, Zhao C, Nie F, Guopingyang. A sandwich electrochemiluminescent assay for determination of concanavalin A with triple signal amplification based on MoS2NF@MWCNTs modified electrode and Zn-MOF encapsulated luminol. Microchim Acta 2020;187. [DOI: 10.1007/s00604-020-04472-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
37 Qin D, Jiang X, Mo G, Zheng X, Deng B. Electrochemiluminescence immunoassay of human chorionic gonadotropin using silver carbon quantum dots and functionalized polymer nanospheres. Mikrochim Acta 2020;187:482. [PMID: 32749541 DOI: 10.1007/s00604-020-04450-0] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]
38 Lian X, Feng Z, Tan R, Mi X, Tu Y. Direct electrochemiluminescent immunosensing for an early indication of coronary heart disease using dual biomarkers. Analytica Chimica Acta 2020;1110:82-9. [DOI: 10.1016/j.aca.2020.03.022] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
39 Luo F, Long C, Wu Z, Xiong H, Chen M, Zhang X, Wen W, Wang S. Functional silica nanospheres for sensitive detection of H9N2 avian influenza virus based on immunomagnetic separation. Sensors and Actuators B: Chemical 2020;310:127831. [DOI: 10.1016/j.snb.2020.127831] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
40 Fang D, Huang Y, Zhang S, Dai H, Hong Z, Lin Y. Versatile NiCo2O4 nanosheets hybrids-based label-free immunosensor for thyroglobulin using photothermal amplification. Electrochimica Acta 2020;337:135790. [DOI: 10.1016/j.electacta.2020.135790] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
41 George SM, Tandon S, Kandasubramanian B. Advancements in Hydrogel-Functionalized Immunosensing Platforms. ACS Omega 2020;5:2060-8. [PMID: 32064366 DOI: 10.1021/acsomega.9b03816] [Cited by in Crossref: 29] [Cited by in F6Publishing: 32] [Article Influence: 9.7] [Reference Citation Analysis]
42 Wang L, Xing B, Ren X, Hu X, Wang H, Wu D, Wei Q. Mo2C combined with carbon material nanosphere as an electrochemiluminescence super-enhancer and antibody label for ultrasensitive detection of cardiac troponin I. Biosensors and Bioelectronics 2020;150:111910. [DOI: 10.1016/j.bios.2019.111910] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
43 Yang J, Xia Q, Guo L, Luo F, Dong Y, Qiu B, Lin Z. A highly sensitive signal-on biosensor for microRNA 142-3p based on the quenching of Ru(bpy) 32+ –TPA electrochemiluminescence by carbon dots and duplex specific nuclease-assisted target recycling amplification. Chem Commun 2020;56:6692-5. [DOI: 10.1039/c9cc09706f] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
44 Wang M, Liu J, Qin X, Nie X, Dong Y, Liang X, Zhu Z, Yang D, Shao Y. Electrochemiluminescence detection of cardiac troponin I based on Au–Ag alloy nanourchins. Analyst 2020;145:873-9. [DOI: 10.1039/c9an01904a] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
45 Zhou Y, Jiang X, Tong T, Fang L, Wu Y, Liang J, Xiao S. High antiviral activity of mercaptoethane sulfonate functionalized Te/BSA nanostars against arterivirus and coronavirus. RSC Adv 2020;10:14161-9. [DOI: 10.1039/d0ra01387k] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 7.0] [Reference Citation Analysis]
46 Turan E, Şahin F, Suludere Z, Tümtürk H. A fluoroimmunodiagnostic nanoplatform for thyroglobulin detection based on fluorescence quenching signal. Sensors and Actuators B: Chemical 2019;300:127052. [DOI: 10.1016/j.snb.2019.127052] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
47 Ma C, Cao Y, Gou X, Zhu JJ. Recent Progress in Electrochemiluminescence Sensing and Imaging. Anal Chem 2020;92:431-54. [PMID: 31679341 DOI: 10.1021/acs.analchem.9b04947] [Cited by in Crossref: 205] [Cited by in F6Publishing: 214] [Article Influence: 51.3] [Reference Citation Analysis]
48 Liu H, Cheng S, Shi X, Zhang H, Zhao Q, Dong H, Guo Y, Sun X. Electrochemiluminescence Aptasensor for Profenofos Detection Based on Silver Nanoparticles Enhanced Luminol Luminescence System. J Electrochem Soc 2019;166:B1562-6. [DOI: 10.1149/2.0801915jes] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
49 Gür SD, Bakhshpour M, Denizli A. Selective detection of Escherichia coli caused UTIs with surface imprinted plasmonic nanoscale sensor. Materials Science and Engineering: C 2019;104:109869. [DOI: 10.1016/j.msec.2019.109869] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 7.0] [Reference Citation Analysis]
50 Sedki M, Chen X, Chen C, Ge X, Mulchandani A. Non-lytic M13 phage-based highly sensitive impedimetric cytosensor for detection of coliforms. Biosens Bioelectron 2020;148:111794. [PMID: 31678821 DOI: 10.1016/j.bios.2019.111794] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 7.8] [Reference Citation Analysis]
51 Zhang L, Li Y, Ying Y, Fu Y. Recent advances in fabrication strategies and protein preservation application of protein-nanomaterial hybrids: Integration and synergy. TrAC Trends in Analytical Chemistry 2019;118:434-43. [DOI: 10.1016/j.trac.2019.06.002] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
52 Hong G, Zhang D, He Y, Yang Y, Chen P, Yang H, Zhou Z, Liu Y, Wang Y. New photothermal immunoassay of human chorionic gonadotropin using Prussian blue nanoparticle-based photothermal conversion. Anal Bioanal Chem 2019;411:6837-45. [PMID: 31471682 DOI: 10.1007/s00216-019-02049-w] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
53 Ozgur E, Roberts KE, Ozgur EO, Gin AN, Bankhead JR, Wang Z, Su J. Ultrasensitive Detection of Human Chorionic Gonadotropin Using Frequency Locked Microtoroid Optical Resonators. Anal Chem 2019;91:11872-8. [PMID: 31415150 DOI: 10.1021/acs.analchem.9b02630] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
54 Fang J, Zhao G, Dong X, Li X, Miao J, Wei Q, Cao W. Ultrasensitive electrochemiluminescence immunosensor for the detection of amyloid-β proteins based on resonance energy transfer between g-C3N4 and Pd NPs coated NH2-MIL-53. Biosens Bioelectron 2019;142:111517. [PMID: 31349185 DOI: 10.1016/j.bios.2019.111517] [Cited by in Crossref: 23] [Cited by in F6Publishing: 27] [Article Influence: 5.8] [Reference Citation Analysis]
55 Yang J, Liu X, Pan Y, Yang J, He B, Fu Y, Song Y. A self-powered microfluidic chip integrated with fluorescent microscopic counting for biomarkers assay. Sensors and Actuators B: Chemical 2019;291:192-9. [DOI: 10.1016/j.snb.2019.04.071] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
56 Maity R, Chatterjee M, Banerjee A, Das A, Mishra R, Mazumder S, Chanda N. Gold nanoparticle-assisted enhancement in the anti-cancer properties of theaflavin against human ovarian cancer cells. Mater Sci Eng C Mater Biol Appl 2019;104:109909. [PMID: 31499983 DOI: 10.1016/j.msec.2019.109909] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 4.5] [Reference Citation Analysis]
57 Fang D, Pan M, Yi H, Dai H, Hong Z, Zheng X, Lin Y. Enhanced electrochemiluminescence of luminol-DBAE system based on self-assembled mesocrystalline hybrid for the detection of ovarian cancer marker. Sensors and Actuators B: Chemical 2019;286:608-15. [DOI: 10.1016/j.snb.2019.01.151] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
58 Lin S, Zheng D, Li A, Chi Y. Black oxidized 3,3',5,5'-tetramethylbenzidine nanowires (oxTMB NWs) for enhancing Pt nanoparticle-based strip immunosensing. Anal Bioanal Chem 2019;411:4063-71. [PMID: 30972472 DOI: 10.1007/s00216-019-01745-x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
59 Lv H, Li Y, Zhang X, Li X, Xu Z, Chen L, Li D, Dong Y. Thionin functionalized signal amplification label derived dual-mode electrochemical immunoassay for sensitive detection of cardiac troponin I. Biosens Bioelectron 2019;133:72-8. [PMID: 30909015 DOI: 10.1016/j.bios.2019.03.033] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 8.0] [Reference Citation Analysis]
60 Chen Z, Zhang S, Zhang S, Sun Q, Xiao Y, Wang K. Cadmium-Based Coordination Polymers from 1D to 3D: Synthesis, Structures, and Photoluminescent and Electrochemiluminescent Properties. ChemPlusChem 2019;84:190-202. [DOI: 10.1002/cplu.201800569] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 6.0] [Reference Citation Analysis]
61 Baghbaderani SS, Noorbakhsh A. Novel chitosan-Nafion composite for fabrication of highly sensitive impedimetric and colorimetric As(III) aptasensor. Biosens Bioelectron 2019;131:1-8. [PMID: 30797108 DOI: 10.1016/j.bios.2019.01.059] [Cited by in Crossref: 25] [Cited by in F6Publishing: 29] [Article Influence: 6.3] [Reference Citation Analysis]
62 Dąbrowski M, Zimińska A, Kalecki J, Cieplak M, Lisowski W, Maksym R, Shao S, D’souza F, Kuhn A, Sharma PS. Facile Fabrication of Surface-Imprinted Macroporous Films for Chemosensing of Human Chorionic Gonadotropin Hormone. ACS Appl Mater Interfaces 2019;11:9265-76. [DOI: 10.1021/acsami.8b17951] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 5.8] [Reference Citation Analysis]
63 Sun Y, Fan J, Cui L, Ke W, Zheng F, Zhao Y. Fluorometric nanoprobes for simultaneous aptamer-based detection of carcinoembryonic antigen and prostate specific antigen. Mikrochim Acta 2019;186:152. [PMID: 30712215 DOI: 10.1007/s00604-019-3281-4] [Cited by in Crossref: 35] [Cited by in F6Publishing: 38] [Article Influence: 8.8] [Reference Citation Analysis]
64 Khan MS, Zhu W, Ali A, Ahmad SM, Li X, Yang L, Wang Y, Wang H, Wei Q. Electrochemiluminescent immunosensor for prostate specific antigen based upon luminol functionalized platinum nanoparticles loaded on graphene. Analytical Biochemistry 2019;566:50-7. [DOI: 10.1016/j.ab.2018.11.010] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 6.8] [Reference Citation Analysis]
65 Gao Y, Wu Y, Zhao K, Wang H, Liu S. In-Situ imaging detection of cell membrane and intracellular cholesterol via cascade reactions. Biosens Bioelectron 2019;126:249-54. [PMID: 30445299 DOI: 10.1016/j.bios.2018.10.062] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
66 Wang H, Wang C, Wang A, Zhang L, Luo X, Yuan P, Feng J. Green synthesis of Pd nanocones as a novel and effective electrochemiluminescence illuminant for highly sensitive detection of dopamine. Sensors and Actuators B: Chemical 2019;281:588-94. [DOI: 10.1016/j.snb.2018.10.153] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 5.0] [Reference Citation Analysis]
67 Mao Y, Wang N, Yu F, Yu S, Liu L, Tian Y, Wang J, Wang Y, He L, Wu Y. Simultaneous detection of carcinoembryonic antigen and neuron-specific enolase in human serum based on time-resolved chemiluminescence immunoassay. Analyst 2019;144:4813-9. [DOI: 10.1039/c9an00910h] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
68 Wang C, Hu L, Zhao K, Deng A, Li J. Multiple signal amplification electrochemiluminescent immunoassay for Sudan I using gold nanorods functionalized graphene oxide and palladium/aurum core-shell nanocrystallines as labels. Electrochimica Acta 2018;278:352-62. [DOI: 10.1016/j.electacta.2018.05.061] [Cited by in Crossref: 21] [Cited by in F6Publishing: 10] [Article Influence: 4.2] [Reference Citation Analysis]
69 Zhang D, Li W, Ma Z. Improved sandwich-format electrochemical immunosensor based on “smart” SiO2@polydopamine nanocarrier. Biosensors and Bioelectronics 2018;109:171-6. [DOI: 10.1016/j.bios.2018.03.027] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 6.2] [Reference Citation Analysis]