BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Cao L, Fang C, Zeng R, Zhao X, Jiang Y, Chen Z. Paper-based microfluidic devices for electrochemical immunofiltration analysis of human chorionic gonadotropin. Biosensors and Bioelectronics 2017;92:87-94. [DOI: 10.1016/j.bios.2017.02.002] [Cited by in Crossref: 66] [Cited by in F6Publishing: 68] [Article Influence: 11.0] [Reference Citation Analysis]
Number Citing Articles
1 Faheem A, Cinti S. Advanced techniques for manufacturing paper-based microfluidic analytical devices. Microfluidic Biosensors 2023. [DOI: 10.1016/b978-0-12-823846-2.00009-2] [Reference Citation Analysis]
2 Lapizco-Encinas BH, Zhang YV. Microfluidic systems in clinical diagnosis. Electrophoresis 2023;44:217-45. [PMID: 35977346 DOI: 10.1002/elps.202200150] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Wu K, He X, Wang J, Pan T, He R, Kong F, Cao Z, Ju F, Huang Z, Nie L. Recent progress of microfluidic chips in immunoassay. Front Bioeng Biotechnol 2022;10:1112327. [PMID: 36619380 DOI: 10.3389/fbioe.2022.1112327] [Reference Citation Analysis]
4 Qin Z, Huang Z, Pan P, Pan Y, Zuo R, Sun Y, Liu X. A Nitrocellulose Paper-Based Multi-Well Plate for Point-of-Care ELISA. Micromachines (Basel) 2022;13. [PMID: 36557531 DOI: 10.3390/mi13122232] [Reference Citation Analysis]
5 Anushka, Bandopadhyay A, Das PK. Paper based microfluidic devices: a review of fabrication techniques and applications. Eur Phys J Spec Top 2022. [DOI: 10.1140/epjs/s11734-022-00727-y] [Reference Citation Analysis]
6 Smajdor J, Paczosa-Bator B, Piech R. Advances on Hormones and Steroids Determination: A Review of Voltammetric Methods since 2000. Membranes (Basel) 2022;12. [PMID: 36557132 DOI: 10.3390/membranes12121225] [Reference Citation Analysis]
7 Kuswandi B, Hidayat MA, Noviana E. Paper-based sensors for rapid important biomarkers detection. Biosensors and Bioelectronics: X 2022;12:100246. [DOI: 10.1016/j.biosx.2022.100246] [Reference Citation Analysis]
8 Shalaby AA, Tsao C, Ishida A, Maeki M, Tokeshi M. Microfluidic Paper-Based Analytical Devices for Cancer Diagnosis. Sensors and Actuators B: Chemical 2022. [DOI: 10.1016/j.snb.2022.133243] [Reference Citation Analysis]
9 Kuswandi B, Hidayat MA, Noviana E. Paper-Based Electrochemical Biosensors for Food Safety Analysis. Biosensors (Basel) 2022;12. [PMID: 36551055 DOI: 10.3390/bios12121088] [Reference Citation Analysis]
10 Yuan Y, Liu B, Wang T, Li N, Zhang Z, Zhang H. Electrochemical microfluidic paper-based analytical devices for tumor marker detection. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116816] [Reference Citation Analysis]
11 Sateesh J, Guha K, Dutta A, Sengupta P, Yalamanchili D, Donepudi NS, Surya Manoj M, Sohail SS. A comprehensive review on advancements in tissue engineering and microfluidics toward kidney-on-chip. Biomicrofluidics 2022;16:041501. [PMID: 35992641 DOI: 10.1063/5.0087852] [Reference Citation Analysis]
12 Sun M, Ma B, Yuan S, Xin L, Zhao C, Liu H. Mercury thermometer-inspired test strip for concentration cell-based potentiometric detection of salivary α-amylase. Analytica Chimica Acta 2022;1206:339770. [DOI: 10.1016/j.aca.2022.339770] [Reference Citation Analysis]
13 Zhang H, Li X, Zhu Q, Wang Z. The recent development of nanomaterials enhanced paper-based electrochemical analytical devices. Journal of Electroanalytical Chemistry 2022;909:116140. [DOI: 10.1016/j.jelechem.2022.116140] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
14 Kelkar N, Prabhu A, Prabhu A, Giri Nandagopal M, Mani NK. Sensing of body fluid hormones using paper-based analytical devices. Microchemical Journal 2022;174:107069. [DOI: 10.1016/j.microc.2021.107069] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
15 Hou Y, Lv CC, Guo YL, Ma XH, Liu W, Jin Y, Li BX, Yang M, Yao SY. Recent Advances and Applications in Paper-Based Devices for Point-of-Care Testing. J Anal Test 2022;:1-27. [PMID: 35039787 DOI: 10.1007/s41664-021-00204-w] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
16 Sobhanie E, Roshani A, Hosseini M. Microfluidic systems with amperometric and voltammetric detection and paper-based sensors and biosensors. Carbon Nanomaterials-Based Sensors 2022. [DOI: 10.1016/b978-0-323-91174-0.00023-8] [Reference Citation Analysis]
17 Arantes IV, Gongoni JL, Mendes LF, de Ataide VN, Ameku WA, Garcia PT, de Araujo WR, Paixão TR. Electrochemical paper-based analytical devices. Paper-based Analytical Devices for Chemical Analysis and Diagnostics 2022. [DOI: 10.1016/b978-0-12-820534-1.00011-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Ameku WA, Ataide VN, Costa ET, Gomes LR, Napoleão-Pêgo P, William Provance D Jr, Paixão TRLC, Salles MO, De-Simone SG. A Pencil-Lead Immunosensor for the Rapid Electrochemical Measurement of Anti-Diphtheria Toxin Antibodies. Biosensors (Basel) 2021;11:489. [PMID: 34940247 DOI: 10.3390/bios11120489] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
19 Kishnani V, Park S, Nakate UT, Mondal K, Gupta A. Nano-functionalized paper-based IoT enabled devices for point-of-care testing: a review. Biomed Microdevices 2021;24:2. [PMID: 34792679 DOI: 10.1007/s10544-021-00588-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
20 Fan Y, Guo Y, Shi S, Ma J. An electrochemical immunosensor based on reduced graphene oxide/multiwalled carbon nanotubes/thionine/gold nanoparticle nanocomposites for the sensitive testing of follicle-stimulating hormone. Anal Methods 2021;13:3821-8. [PMID: 34373870 DOI: 10.1039/d1ay01032h] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
21 Kanno Y, Zhou Y, Fukuma T, Takahashi Y. Alkaline Phosphatase‐based Electrochemical Analysis for Point‐of‐Care Testing. Electroanalysis 2022;34:161-7. [DOI: 10.1002/elan.202100294] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
22 Zhang Y, Zhou N. Electrochemical Biosensors Based on Micro‐fabricated Devices for Point‐of‐Care Testing: A Review. Electroanalysis 2022;34:168-83. [DOI: 10.1002/elan.202100281] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
23 Cheng Y, Zhan T, Feng X, Han G. A synergistic effect of gold nanoparticles and melamine with signal amplification for C-reactive protein sensing. Journal of Electroanalytical Chemistry 2021;895:115417. [DOI: 10.1016/j.jelechem.2021.115417] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
24 Gao B. Paper‐Based Microfluidic Devices. Encyclopedia of Analytical Chemistry 2021. [DOI: 10.1002/9780470027318.a9732] [Reference Citation Analysis]
25 Xing Y, Zhao L, Cheng Z, Lv C, Yu F, Yu F. Microfluidics-Based Sensing of Biospecies. ACS Appl Bio Mater 2021;4:2160-91. [PMID: 35014344 DOI: 10.1021/acsabm.0c01271] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
26 Costa-Rama E, Fernández-Abedul MT. Paper-Based Screen-Printed Electrodes: A New Generation of Low-Cost Electroanalytical Platforms. Biosensors (Basel) 2021;11:51. [PMID: 33669316 DOI: 10.3390/bios11020051] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 11.5] [Reference Citation Analysis]
27 Manmana Y, Kubo T, Otsuka K. Recent developments of point-of-care (POC) testing platform for biomolecules. TrAC Trends in Analytical Chemistry 2021;135:116160. [DOI: 10.1016/j.trac.2020.116160] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 9.5] [Reference Citation Analysis]
28 Gu S, Shi XM, Zhang D, Fan GC, Luo X. Peptide-Based Photocathodic Biosensors: Integrating a Recognition Peptide with an Antifouling Peptide. Anal Chem 2021;93:2706-12. [PMID: 33426877 DOI: 10.1021/acs.analchem.0c05234] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
29 Mahato K, Purohit B, Kumar A, Srivastava A, Chandra P. Next-Generation Immunosensing Technologies Based on Nano-Bio-Engineered Paper Matrices. Immunodiagnostic Technologies from Laboratory to Point-Of-Care Testing 2021. [DOI: 10.1007/978-981-15-5823-8_5] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
30 Sonia J, Zanhal GM, Prasad KS. Low cost paper electrodes and the role of oxygen functionalities and edge-plane sites towards trolox sensing. Microchemical Journal 2020;158:105164. [DOI: 10.1016/j.microc.2020.105164] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
31 Thuy TT, Sharipov M, Lee Y, Huy BT, Lee Y. Inkjet‐based microreactor for the synthesis of silver nanoparticles on plasmonic paper decorated with chitosan nano‐wrinkles for efficient on‐site Surface‐enhanced Raman Scattering (SERS). Nano Select 2020;1:499-509. [DOI: 10.1002/nano.202000081] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
32 Baharfar M, Rahbar M, Tajik M, Liu G. Engineering strategies for enhancing the performance of electrochemical paper-based analytical devices. Biosens Bioelectron 2020;167:112506. [PMID: 32823207 DOI: 10.1016/j.bios.2020.112506] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 10.3] [Reference Citation Analysis]
33 Gomes NO, Carrilho E, Machado SAS, Sgobbi LF. Bacterial cellulose-based electrochemical sensing platform: A smart material for miniaturized biosensors. Electrochimica Acta 2020;349:136341. [DOI: 10.1016/j.electacta.2020.136341] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 11.0] [Reference Citation Analysis]
34 Antonacci A, Scognamiglio V, Mazzaracchio V, Caratelli V, Fiore L, Moscone D, Arduini F. Paper-Based Electrochemical Devices for the Pharmaceutical Field: State of the Art and Perspectives. Front Bioeng Biotechnol 2020;8:339. [PMID: 32391344 DOI: 10.3389/fbioe.2020.00339] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
35 Feng X, Li H, Ferranco A, Chen Z, Xue M, Han G, Jiang Z, Kraatz H. A Very Simple Method for Detection of Bisphenol A in Environmental Water by Heme Signal Amplification. J Electrochem Soc 2020;167:067503. [DOI: 10.1149/1945-7111/ab7e20] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
36 Khoshbin Z, Housaindokht MR, Verdian A. A low-cost paper-based aptasensor for simultaneous trace-level monitoring of mercury (II) and silver (I) ions. Anal Biochem 2020;597:113689. [PMID: 32199832 DOI: 10.1016/j.ab.2020.113689] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 10.7] [Reference Citation Analysis]
37 Zhang W, Wang R, Luo F, Wang P, Lin Z. Miniaturized electrochemical sensors and their point-of-care applications. Chinese Chemical Letters 2020;31:589-600. [DOI: 10.1016/j.cclet.2019.09.022] [Cited by in Crossref: 58] [Cited by in F6Publishing: 60] [Article Influence: 19.3] [Reference Citation Analysis]
38 Cai Y, Niu J, Liu Y, Du X, Wu Z. Online sample clean-up and enrichment of proteins from salty media with dynamic double gradients on a paper fluidic channel. Analytica Chimica Acta 2020;1100:149-55. [DOI: 10.1016/j.aca.2019.11.048] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
39 Romanholo PVV, Sgobbi LF, Carrilho E. Exploring paper as a substrate for electrochemical micro-devices. Comprehensive Analytical Chemistry 2020. [DOI: 10.1016/bs.coac.2020.03.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
40 Batista Deroco P, Giarola JDF, Wachholz Júnior D, Arantes Lorga G, Tatsuo Kubota L. Paper-based electrochemical sensing devices. Comprehensive Analytical Chemistry 2020. [DOI: 10.1016/bs.coac.2019.11.001] [Cited by in Crossref: 10] [Article Influence: 3.3] [Reference Citation Analysis]
41 Han G, Li H, Ferranco A, Tao Zhan, Cheng Y, Chen Z, Xue M, Feng X, Kraatz H. The construction of a simple sensor for the simultaneous detection of nitrite and thiosulfate by heme catalysis. RSC Adv 2020;10:35007-16. [DOI: 10.1039/d0ra06942f] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
42 Sakamoto H, Shoji H, Amaya S, Saiki T, Takamura E, Satomura T, Suye SI. Electrochemical characteristics of a hyperthermophilic enzyme in microdroplets stirred and heated by surface acoustic waves. Biotechnol Prog 2020;36:e2943. [PMID: 31756290 DOI: 10.1002/btpr.2943] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
43 Teepoo S, Arsawiset S, Chanayota P. One-Step Polylactic Acid Screen-Printing Microfluidic Paper-Based Analytical Device: Application for Simultaneous Detection of Nitrite and Nitrate in Food Samples. Chemosensors 2019;7:44. [DOI: 10.3390/chemosensors7030044] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
44 Silva NF, Almeida CM, Magalhães JM, Gonçalves MP, Freire C, Delerue-matos C. Development of a disposable paper-based potentiometric immunosensor for real-time detection of a foodborne pathogen. Biosensors and Bioelectronics 2019;141:111317. [DOI: 10.1016/j.bios.2019.111317] [Cited by in Crossref: 53] [Cited by in F6Publishing: 53] [Article Influence: 13.3] [Reference Citation Analysis]
45 Hong G, Zhang D, He Y, Yang Y, Chen P, Yang H, Zhou Z, Liu Y, Wang Y. New photothermal immunoassay of human chorionic gonadotropin using Prussian blue nanoparticle-based photothermal conversion. Anal Bioanal Chem 2019;411:6837-45. [PMID: 31471682 DOI: 10.1007/s00216-019-02049-w] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
46 Qi L, Zhang A, Wang Y, Liu L, Wang X. Atom transfer radical polymer-modified paper for improvement in protein fixation in paper-based ELISA. BMC Chem 2019;13:110. [PMID: 31463479 DOI: 10.1186/s13065-019-0622-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
47 Liu L, Zhang A, Wang X. Ultrasensitive Paper-based ELISA by Introducing Atom Transfer Radical Polymer-modified Graphene Oxide Sheets and Gold Nanoparticles. Chem Lett 2019;48:779-82. [DOI: 10.1246/cl.190307] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
48 Hu J, Xiao K, Jin B, Zheng X, Ji F, Bai D. Paper-based point-of-care test with xeno nucleic acid probes. Biotechnol Bioeng 2019;116:2764-77. [PMID: 31282991 DOI: 10.1002/bit.27106] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
49 Zhang J, Yang Z, Liu Q, Liang H. Electrochemical biotoxicity detection on a microfluidic paper-based analytical device via cellular respiratory inhibition. Talanta 2019;202:384-91. [PMID: 31171199 DOI: 10.1016/j.talanta.2019.05.031] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
50 Han G, Su X, Hou J, Ferranco A, Feng X, Zeng R, Chen Z, Kraatz H. Disposable electrochemical sensors for hemoglobin detection based on ferrocenoyl cysteine conjugates modified electrode. Sensors and Actuators B: Chemical 2019;282:130-6. [DOI: 10.1016/j.snb.2018.11.042] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 8.5] [Reference Citation Analysis]
51 Zhong Q, Ding H, Gao B, He Z, Gu Z. Advances of Microfluidics in Biomedical Engineering. Adv Mater Technol 2019;4:1800663. [DOI: 10.1002/admt.201800663] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 7.5] [Reference Citation Analysis]
52 Nesakumar N, Kesavan S, Li C, Alwarappan S. Microfluidic Electrochemical Devices for Biosensing. J Anal Test 2019;3:3-18. [DOI: 10.1007/s41664-019-0083-y] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 6.8] [Reference Citation Analysis]
53 Zhu G, Yin X, Jin D, Zhang B, Gu Y, An Y. Paper-based immunosensors: Current trends in the types and applied detection techniques. TrAC Trends in Analytical Chemistry 2019;111:100-17. [DOI: 10.1016/j.trac.2018.09.027] [Cited by in Crossref: 63] [Cited by in F6Publishing: 65] [Article Influence: 15.8] [Reference Citation Analysis]
54 Feng XZ, Ferranco A, Su X, Chen Z, Jiang Z, Han GC. A Facile Electrochemical Sensor Labeled by Ferrocenoyl Cysteine Conjugate for the Detection of Nitrite in Pickle Juice. Sensors (Basel) 2019;19:E268. [PMID: 30641921 DOI: 10.3390/s19020268] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
55 Marín-barroso E, Messina GA, Bertolino FA, Raba J, Pereira SV. Electrochemical immunosensor modified with carbon nanofibers coupled to a paper platform for the determination of gliadins in food samples. Anal Methods 2019;11:2170-8. [DOI: 10.1039/c9ay00255c] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
56 Gebretsadik T, Belayneh T, Gebremichael S, Linert W, Thomas M, Berhanu T. Recent advances in and potential utilities of paper-based electrochemical sensors: beyond qualitative analysis. Analyst 2019;144:2467-79. [DOI: 10.1039/c8an02463d] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 8.0] [Reference Citation Analysis]
57 Nsabimana A, Lan Y, Du F, Wang C, Zhang W, Xu G. Alkaline phosphatase-based electrochemical sensors for health applications. Anal Methods 2019;11:1996-2006. [DOI: 10.1039/c8ay02793e] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
58 Yang G, Lai Y, Xiao Z, Tang C, Deng Y. Ultrasensitive electrochemical immunosensor of carcinoembryonic antigen based on gold-label silver-stain signal amplification. Chinese Chemical Letters 2018;29:1857-60. [DOI: 10.1016/j.cclet.2018.11.030] [Cited by in Crossref: 52] [Cited by in F6Publishing: 56] [Article Influence: 10.4] [Reference Citation Analysis]
59 Huang L, Zhang D, Jiao L, Su E, He N. A new quality control method for lateral flow assay. Chinese Chemical Letters 2018;29:1853-6. [DOI: 10.1016/j.cclet.2018.11.028] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
60 Felix FS, Baccaro ALB, Angnes L. Disposable Voltammetric Immunosensors Integrated with Microfluidic Platforms for Biomedical, Agricultural and Food Analyses: A Review. Sensors (Basel) 2018;18:E4124. [PMID: 30477240 DOI: 10.3390/s18124124] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
61 Fu L, Wang Y. Detection methods and applications of microfluidic paper-based analytical devices. TrAC Trends in Analytical Chemistry 2018;107:196-211. [DOI: 10.1016/j.trac.2018.08.018] [Cited by in Crossref: 144] [Cited by in F6Publishing: 154] [Article Influence: 28.8] [Reference Citation Analysis]
62 Sierra T, Crevillen AG, Escarpa A. Electrochemical detection based on nanomaterials in CE and microfluidic systems. ELECTROPHORESIS 2019;40:113-23. [DOI: 10.1002/elps.201800281] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 4.8] [Reference Citation Analysis]
63 Paschoalino WJ, Kogikoski S, Barragan JTC, Giarola JF, Cantelli L, Rabelo TM, Pessanha TM, Kubota LT. Emerging Considerations for the Future Development of Electrochemical Paper-Based Analytical Devices. ChemElectroChem 2019;6:10-30. [DOI: 10.1002/celc.201800677] [Cited by in Crossref: 52] [Cited by in F6Publishing: 52] [Article Influence: 10.4] [Reference Citation Analysis]
64 Jutila E, Koivunen R, Kiiski I, Bollström R, Sikanen T, Gane P. Microfluidic Lateral Flow Cytochrome P450 Assay on a Novel Printed Functionalized Calcium Carbonate-Based Platform for Rapid Screening of Human Xenobiotic Metabolism. Adv Funct Mater 2018;28:1802793. [DOI: 10.1002/adfm.201802793] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
65 Nechaeva D, Shishov A, Ermakov S, Bulatov A. A paper-based analytical device for the determination of hydrogen sulfide in fuel oils based on headspace liquid-phase microextraction and cyclic voltammetry. Talanta 2018;183:290-6. [DOI: 10.1016/j.talanta.2018.02.074] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 4.0] [Reference Citation Analysis]
66 Zhang A, Cai Y, Xu Y, Liu W. A paper-based microfluidic device with cotton thread channels based on surface acoustic wave. Ferroelectrics 2018;526:24-32. [DOI: 10.1080/00150193.2018.1456250] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
67 Pavithra M, Muruganand S, Parthiban C. Development of novel paper based electrochemical immunosensor with self-made gold nanoparticle ink and quinone derivate for highly sensitive carcinoembryonic antigen. Sensors and Actuators B: Chemical 2018;257:496-503. [DOI: 10.1016/j.snb.2017.10.177] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 5.4] [Reference Citation Analysis]
68 Kokkinos CT, Giokas DL, Economou AS, Petrou PS, Kakabakos SE. Paper-Based Microfluidic Device with Integrated Sputtered Electrodes for Stripping Voltammetric Determination of DNA via Quantum Dot Labeling. Anal Chem 2018;90:1092-7. [DOI: 10.1021/acs.analchem.7b04274] [Cited by in Crossref: 44] [Cited by in F6Publishing: 44] [Article Influence: 8.8] [Reference Citation Analysis]
69 Economou A, Kokkinos C, Prodromidis M. Flexible plastic, paper and textile lab-on-a chip platforms for electrochemical biosensing. Lab Chip 2018;18:1812-30. [DOI: 10.1039/c8lc00025e] [Cited by in Crossref: 87] [Cited by in F6Publishing: 87] [Article Influence: 17.4] [Reference Citation Analysis]
70 Cao L, Fang C, Zeng R, Zhao X, Zhao F, Jiang Y, Chen Z. A disposable paper-based microfluidic immunosensor based on reduced graphene oxide-tetraethylene pentamine/Au nanocomposite decorated carbon screen-printed electrodes. Sensors and Actuators B: Chemical 2017;252:44-54. [DOI: 10.1016/j.snb.2017.05.148] [Cited by in Crossref: 46] [Cited by in F6Publishing: 36] [Article Influence: 7.7] [Reference Citation Analysis]
71 Mccann L, Benavidez TE, Holtsclaw S, Garcia CD. Addressing the distribution of proteins spotted on μPADs. Analyst 2017;142:3899-905. [DOI: 10.1039/c7an00849j] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.7] [Reference Citation Analysis]
72 Kang S, Jang S, Haldorai Y, Vilian ATE, Rethinasabapathy M, Roh C, Han Y, Huh YS. Facile fabrication of paper-based analytical devices for rapid and highly selective colorimetric detection of cesium in environmental samples. RSC Adv 2017;7:48374-85. [DOI: 10.1039/c7ra08444g] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
73 Arduini F, Cinti S, Scognamiglio V, Moscone D. Paper-Based Electrochemical Devices in Biomedical Field. Past, Present and Future Challenges of Biosensors and Bioanalytical Tools in Analytical Chemistry: A Tribute to Professor Marco Mascini 2017. [DOI: 10.1016/bs.coac.2017.06.005] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 3.7] [Reference Citation Analysis]