BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Jayanthi VSPKSA, Das AB, Saxena U. Recent advances in biosensor development for the detection of cancer biomarkers. Biosens Bioelectron 2017;91:15-23. [PMID: 27984706 DOI: 10.1016/j.bios.2016.12.014] [Cited by in Crossref: 259] [Cited by in F6Publishing: 213] [Article Influence: 37.0] [Reference Citation Analysis]
Number Citing Articles
1 Aydın EB, Aydın M, Sezgintürk MK. Novel electrochemical biosensing platform based on conductive multilayer for sensitive and selective detection of CYFRA 21-1. Sensors and Actuators B: Chemical 2023;378:133208. [DOI: 10.1016/j.snb.2022.133208] [Reference Citation Analysis]
2 Ikram M, Bari MA, Bilal M, Jamal F, Nabgan W, Haider J, Haider A, Nazir G, Khan AD, Khan K, Tareen AK, Khan Q, Ali G, Imran M, Caffrey E, Maqbool M. Innovations in the synthesis of graphene nanostructures for bio and gas sensors. Biomater Adv 2023;145:213234. [PMID: 36502548 DOI: 10.1016/j.bioadv.2022.213234] [Reference Citation Analysis]
3 Zhan Y, Zhang R, Guo Y, Cao S, Chen G, Tian B. Recent advances in tumor biomarker detection by lanthanide upconversion nanoparticles. J Mater Chem B 2023;11:755-71. [PMID: 36606393 DOI: 10.1039/d2tb02017c] [Reference Citation Analysis]
4 Brosseau NE, Vallée I, Mayer-Scholl A, Ndao M, Karadjian G. Aptamer-Based Technologies for Parasite Detection. Sensors (Basel) 2023;23. [PMID: 36679358 DOI: 10.3390/s23020562] [Reference Citation Analysis]
5 Kadir M, Nemkayeva R, Baigarinova G, Alpysbayeva B, Assembayeva A, Smirnov V. SERS-active substrates based on Ag-coated TiO2 nanotubes and nanograss. Physica E: Low-dimensional Systems and Nanostructures 2023;145:115499. [DOI: 10.1016/j.physe.2022.115499] [Reference Citation Analysis]
6 Wang C, Zeng H, Liu K, Lin Y, Yang H, Xie X, Wei D, Ye J. Biosensor-based therapy powered by synthetic biology. Smart Materials in Medicine 2023;4:212-224. [DOI: 10.1016/j.smaim.2022.10.003] [Reference Citation Analysis]
7 Brazaca LC, Imamura AH, Almeida MB, Carrilho E. Application of smart materials in biosensors for cancer diagnosis. New Trends in Smart Nanostructured Biomaterials in Health Sciences 2023. [DOI: 10.1016/b978-0-323-85671-3.00008-7] [Reference Citation Analysis]
8 Forough M, Bilgen E, Persil Çetinkol Ö. Biosensors for nucleic acid detection. Advanced Sensor Technology 2023. [DOI: 10.1016/b978-0-323-90222-9.00021-2] [Reference Citation Analysis]
9 Oktaviyanti IK, Ali DS, Awadh SA, Opulencia MJC, Yusupov S, Dias R, Alsaikhan F, Mohammed MM, Sharma H, Mustafa YF, Saleh MM. RETRACTED ARTICLE: Recent advances on applications of immunosensing systems based on nanomaterials for CA15-3 breast cancer biomarker detection. Anal Bioanal Chem 2023;415:367. [PMID: 35641643 DOI: 10.1007/s00216-022-04150-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
10 Chen Y, An Q, Teng K, Liu C, Sun F, Li G. Application of SERS in In-Vitro Biomedical Detection. Chem Asian J 2022;:e202201194. [PMID: 36581747 DOI: 10.1002/asia.202201194] [Reference Citation Analysis]
11 Domaros A, Zarzeczańska D, Ossowski T, Wcisło A. Controlled Silanization of Transparent Conductive Oxides as a Precursor of Molecular Recognition Systems. Materials (Basel) 2022;16. [PMID: 36614648 DOI: 10.3390/ma16010309] [Reference Citation Analysis]
12 Chiou YE, Yu KJ, Pang SN, Yang YL, Pang ST, Weng WH. A Highly Sensitive Urinary Exosomal miRNAs Biosensor Applied to Evaluation of Prostate Cancer Progression. Bioengineering (Basel) 2022;9. [PMID: 36551009 DOI: 10.3390/bioengineering9120803] [Reference Citation Analysis]
13 Chen C, Wang K, Luo L. AuNPs and 2D functional nanomaterial-assisted SPR development for the cancer detection: a critical review. Cancer Nano 2022;13. [DOI: 10.1186/s12645-022-00138-7] [Reference Citation Analysis]
14 Akgönüllü S, Denizli A. Recent advances in optical biosensing approaches for biomarkers detection. Biosensors and Bioelectronics: X 2022;12:100269. [DOI: 10.1016/j.biosx.2022.100269] [Reference Citation Analysis]
15 Khan H, Shah MR, Barek J, Malik MI. Cancer biomarkers and their biosensors: A comprehensive review. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116813] [Reference Citation Analysis]
16 Chen X, Niu W, Yuan Q, Zhang Y, Gao X, Su D. Mapping the endogenous Zn2+ in situ during zebrafish embryogenesis by a fluorogenic sensor. Sensors and Actuators B: Chemical 2022. [DOI: 10.1016/j.snb.2022.132937] [Reference Citation Analysis]
17 Li M, Jiang F, Xue L, Peng C, Shi Z, Zhang Z, Li J, Pan Y, Wang X, Feng C, Qiao D, Chen Z, Luo Q, Chen X. Recent Progress in Biosensors for Detection of Tumor Biomarkers. Molecules 2022;27:7327. [DOI: 10.3390/molecules27217327] [Reference Citation Analysis]
18 Lin B, Jiang J, Jia J, Zhou X. Recent Advances in Exosomal miRNA Biosensing for Liquid Biopsy. Molecules 2022;27. [PMID: 36363975 DOI: 10.3390/molecules27217145] [Reference Citation Analysis]
19 C.c.g. Carneiro M, Rodrigues LR, Moreira FT, Goreti F. Sales M. Paper-based ELISA for fast CA 15–3 detection in point-of-care. Microchemical Journal 2022;181:107756. [DOI: 10.1016/j.microc.2022.107756] [Reference Citation Analysis]
20 Ma E, Liu C, Bai X, Fan P, Li G, Chen K, Li L, Qu Q. An ultrasensitive electrochemical DNA biosensor based on the highly conductive Nd–Sb-co-doped SnO2@Pt nanocomposite for the rapid detection of HIV-DNA. Journal of Materials Research. [DOI: 10.1557/s43578-022-00731-x] [Reference Citation Analysis]
21 Bakhtiari-Nezhad S, Rejali L, Hadizadeh M, Taleghani MY, Aghdaei HA, Young C, Khanabadi B, Nazemalhosseini-Mojarad E, Bonab MA. Up regulation of long non-coding RNAs BACE1 and down regulation of LINC-PINT are associated with CRC clinicopathological characteristics. Mol Biol Rep 2022. [PMID: 36087249 DOI: 10.1007/s11033-022-07707-4] [Reference Citation Analysis]
22 Tosi D, Shaimerdenova M, Sypabekova M, Ayupova T. Minimalistic design and rapid-fabrication single-mode fiber biosensors: Review and perspectives. Optical Fiber Technology 2022;72:102968. [DOI: 10.1016/j.yofte.2022.102968] [Reference Citation Analysis]
23 Mouawad L. Review—New Approaches for the Detection of Lithium Carbonate: The First Line Treatment for Bipolar Disorder. ECS Adv 2022;1:036501. [DOI: 10.1149/2754-2734/ac8065] [Reference Citation Analysis]
24 Cicha I, Priefer R, Severino P, Souto EB, Jain S. Biosensor-Integrated Drug Delivery Systems as New Materials for Biomedical Applications. Biomolecules 2022;12:1198. [DOI: 10.3390/biom12091198] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Han H, Zhong Y, He C, Fu L, Huang Q, Kuang Y, Yi X, Zeng W, Zhong H, Yang M. Recent advances in organic fluorescent probes for tumor related enzyme detection. Dyes and Pigments 2022;204:110386. [DOI: 10.1016/j.dyepig.2022.110386] [Reference Citation Analysis]
26 Barrientos K, Arango JP, Moncada MS, Placido J, Patiño J, Macías SL, Maldonado C, Torijano S, Bustamante S, Londoño ME, Jaramillo M. Carbon dot-based biosensors for the detection of communicable and non -communicable diseases. Talanta 2022. [DOI: 10.1016/j.talanta.2022.123791] [Reference Citation Analysis]
27 Ran B, Chen C, Liu B, Lan M, Chen H, Zhu Y. A Ti 3 C 2 T X /Pt–Pd based amperometric biosensor for sensitive cancer biomarker detection. Electrophoresis 2022. [DOI: 10.1002/elps.202100218] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
28 Hu T, Gu Z, Williams GR, Strimaite M, Zha J, Zhou Z, Zhang X, Tan C, Liang R. Layered double hydroxide-based nanomaterials for biomedical applications. Chem Soc Rev 2022;51:6126-76. [PMID: 35792076 DOI: 10.1039/d2cs00236a] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
29 Xing H, Zhang Y, Krämer M, Kissmann A, Amann V, Raber HF, Weil T, Stieger KR, Knippschild U, Henkel M, Andersson J, Rosenau F. A Polyclonal Aptamer Library for the Specific Binding of the Gut Bacterium Roseburia intestinalis in Mixtures with Other Gut Microbiome Bacteria and Human Stool Samples. IJMS 2022;23:7744. [DOI: 10.3390/ijms23147744] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
30 Shen N, Wang Q, Qiu Y, Wang Y, Li D, Li M. Clinicopathological and prognostic role of ROC1 in neoplasms: A PRISMA-compliant systematic review and meta-analysis. Medicine (Baltimore) 2022;101:e29806. [PMID: 35777041 DOI: 10.1097/MD.0000000000029806] [Reference Citation Analysis]
31 Kumar S, Sharma R, Bhawna, Gupta A, Singh P, Kalia S, Thakur P, Kumar V. Prospects of Biosensors Based on Functionalized and Nanostructured Solitary Materials: Detection of Viral Infections and Other Risks. ACS Omega. [DOI: 10.1021/acsomega.2c01033] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Li X, Ma F, Yang M, Zhang J. Nanomaterial based analytical methods for breast cancer biomarker detection. Materials Today Advances 2022;14:100219. [DOI: 10.1016/j.mtadv.2022.100219] [Reference Citation Analysis]
33 Sohrabi H, Bolandi N, Hemmati A, Eyvazi S, Ghasemzadeh S, Baradaran B, Oroojalian F, Reza Majidi M, de la Guardia M, Mokhtarzadeh A. State-of-the-art cancer biomarker detection by portable (Bio) sensing technology: A critical review. Microchemical Journal 2022;177:107248. [DOI: 10.1016/j.microc.2022.107248] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
34 Cheng Y, Han Y, Zhang W, Zeng L, Long Y, Wang S, Weng Q. Gram-scale synthesis of boron nitride nanosheets by salt-template method for anticancer drug delivery. Chemical Engineering Journal 2022;437:135304. [DOI: 10.1016/j.cej.2022.135304] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
35 Li Y, Yang F, Li S, Yuan R, Xiang Y. Target-triggered tertiary amplifications for sensitive and label-free protein detection based on lighting-up RNA aptamer transcriptions. Analytica Chimica Acta 2022. [DOI: 10.1016/j.aca.2022.340028] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
36 Chupradit S, Km Nasution M, Rahman HS, Suksatan W, Turki Jalil A, Abdelbasset W, Bokov D, Markov A, Fardeeva IN, Widjaja G, Shalaby MN, Saleh MM, Mustafa YF, Surendar A, Bidares R. Various types of electrochemical biosensors for leukemia detection and therapeutic approaches. Anal Biochem 2022;:114736. [PMID: 35588855 DOI: 10.1016/j.ab.2022.114736] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 28.0] [Reference Citation Analysis]
37 Janeena A, Prem S, Mohandass P, Ashokraj S, Narayanan J, Easwaramoorthi S, Ayyadurai N. Selection and screening of genetically encoded fluorescent protein as a sensor for cancer theranostics. Biosensors and Bioelectronics: X 2022;10:100129. [DOI: 10.1016/j.biosx.2022.100129] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
38 Li C, Yuan Q, Xu G, Yang Q, Hou J, Zheng L, Wu G. A seven-autophagy-related gene signature for predicting the prognosis of differentiated thyroid carcinoma. World J Surg Oncol 2022;20:129. [PMID: 35459137 DOI: 10.1186/s12957-022-02590-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Nocerino V, Miranda B, Tramontano C, Chianese G, Dardano P, Rea I, De Stefano L. Plasmonic Nanosensors: Design, Fabrication, and Applications in Biomedicine. Chemosensors 2022;10:150. [DOI: 10.3390/chemosensors10050150] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
40 Calatayud DG, Neophytou S, Nicodemou E, Giuffrida SG, Ge H, Pascu SI. Nano-Theranostics for the Sensing, Imaging and Therapy of Prostate Cancers. Front Chem 2022;10:830133. [DOI: 10.3389/fchem.2022.830133] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
41 Parihar A, Singhal A, Kumar N, Khan R, Khan MA, Srivastava AK. Next-Generation Intelligent MXene-Based Electrochemical Aptasensors for Point-of-Care Cancer Diagnostics. Nanomicro Lett 2022;14:100. [PMID: 35403935 DOI: 10.1007/s40820-022-00845-1] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 12.0] [Reference Citation Analysis]
42 Sypabekova M, Amantayeva A, Vangelista L, González-vila Á, Caucheteur C, Tosi D. Ultralow Limit Detection of Soluble HER2 Biomarker in Serum with a Fiber-Optic Ball-Tip Resonator Assisted by a Tilted FBG. ACS Meas Au. [DOI: 10.1021/acsmeasuresciau.2c00008] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
43 Fahmy HM, Abu Serea ES, Salah-Eldin RE, Al-Hafiry SA, Ali MK, Shalan AE, Lanceros-Méndez S. Recent Progress in Graphene- and Related Carbon-Nanomaterial-based Electrochemical Biosensors for Early Disease Detection. ACS Biomater Sci Eng 2022;8:964-1000. [PMID: 35229605 DOI: 10.1021/acsbiomaterials.1c00710] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
44 Zhou Z, Wang J, Li G, Chen Y, Xu T, Zhang X. Wireless USB-like electrochemical platform for individual electrochemical sensing in microdroplets. Analytica Chimica Acta 2022;1197:339526. [DOI: 10.1016/j.aca.2022.339526] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
45 Lino C, Barrias S, Chaves R, Adega F, Martins-lopes P, Fernandes J. Biosensors as diagnostic tools in clinical applications. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2022. [DOI: 10.1016/j.bbcan.2022.188726] [Reference Citation Analysis]
46 Hong R, Sun H, Li D, Yang W, Fan K, Liu C, Dong L, Wang G. A Review of Biosensors for Detecting Tumor Markers in Breast Cancer. Life 2022;12:342. [DOI: 10.3390/life12030342] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
47 Kaur B, Kumar S, Kaushik BK. Recent advancements in optical biosensors for cancer detection. Biosens Bioelectron 2022;197:113805. [PMID: 34801795 DOI: 10.1016/j.bios.2021.113805] [Cited by in Crossref: 55] [Cited by in F6Publishing: 47] [Article Influence: 55.0] [Reference Citation Analysis]
48 Gade A, Sharma A, Srivastava N, Flora SJS. Surface plasmon resonance: A promising approach for label-free early cancer diagnosis. Clin Chim Acta 2022:S0009-8981(22)00041-9. [PMID: 35120900 DOI: 10.1016/j.cca.2022.01.023] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
49 Hou K, Ning Z, Chen H, Wu Y. Nanomaterial Technology and Triple Negative Breast Cancer. Front Oncol 2021;11:828810. [PMID: 35096628 DOI: 10.3389/fonc.2021.828810] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
50 Hussain SH, Huertas CS, Mitchell A, Deman AL, Laurenceau E. Biosensors for circulating tumor cells (CTCs)-biomarker detection in lung and prostate cancer: Trends and prospects. Biosens Bioelectron 2022;197:113770. [PMID: 34768065 DOI: 10.1016/j.bios.2021.113770] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
51 Zhao X, Yuan Y, Liu X, Mao F, Xu G, Liu Q. A Versatile Platform for Sensitive and Label-Free Identification of Biomarkers through an Exo-III-Assisted Cascade Signal Amplification Strategy. Anal Chem 2022. [PMID: 35040308 DOI: 10.1021/acs.analchem.1c05012] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
52 Li D, Yan L, Lin F, Yuan X, Yang X, Yang X, Wei L, Yang Y, Lu Y. Urinary Biomarkers for the Noninvasive Detection of Gastric Cancer. J Gastric Cancer 2022;22:e28. [DOI: 10.5230/jgc.2022.22.e28] [Reference Citation Analysis]
53 Arora T, Kaur M, Nand P. Deep Learning Methods for Chronic Myeloid Leukaemia Diagnosis. Trends and Advancements of Image Processing and Its Applications 2022. [DOI: 10.1007/978-3-030-75945-2_7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
54 Tarokh A, Hosseini M. Biomarker sensing using luminescent metal nanoclusters. Luminescent Metal Nanoclusters 2022. [DOI: 10.1016/b978-0-323-88657-4.00008-9] [Reference Citation Analysis]
55 Kaya SI, Ozcelikay G, Mollarasouli F, Bakirhan NK, Ozkan SA. Recent achievements and challenges on nanomaterial based electrochemical biosensors for the detection of colon and lung cancer biomarkers. Sensors and Actuators B: Chemical 2022;351:130856. [DOI: 10.1016/j.snb.2021.130856] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
56 Tortajada-genaro LA. DNA Genotyping Based on Isothermal Amplification and Colorimetric Detection by Consumer Electronics Devices. Methods in Molecular Biology 2022. [DOI: 10.1007/978-1-0716-1803-5_9] [Reference Citation Analysis]
57 Kaya HK, Çağlayan T, Kuralay F. Functionalized nanomaterial- based electrochemical sensors for point-of-care devices. Functionalized Nanomaterial-Based Electrochemical Sensors 2022. [DOI: 10.1016/b978-0-12-823788-5.00021-1] [Reference Citation Analysis]
58 Rebelo R, Caldas M, Neves MAD, Kundu SC, Reis RL, Correlo V. Natural Polymers for Biophotonic Use. Polysaccharides of Microbial Origin 2022. [DOI: 10.1007/978-3-030-42215-8_50] [Reference Citation Analysis]
59 Niu Y, Zhou J, Lai H, Zhou Q, Wang S, Zhai H. An UiO-66/P-L-histidine composite film fabricated by electropolymerization and electrodeposition for sensing biomarker 4-nitroquinoline N-oxide. Microchemical Journal 2022;172:106925. [DOI: 10.1016/j.microc.2021.106925] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
60 Hernández SNH, Chauhan G. Nanofibers for cancer sensing and diagnostics. Materials Today: Proceedings 2022;48:66-70. [DOI: 10.1016/j.matpr.2020.10.164] [Reference Citation Analysis]
61 Naal Z, Naal RMZG. Quartz Crystal Microbalance in Bioanalysis. Tools and Trends in Bioanalytical Chemistry 2022. [DOI: 10.1007/978-3-030-82381-8_17] [Reference Citation Analysis]
62 Pan J, Yang J, Yao S, Yang J. Colorimetric assay based on iron(iii) ions triggering the aggregation of a poly(tannic acid) coated Au nanocomposite for carbonic anhydrase II detection. Sens Diagn 2022;1:177-184. [DOI: 10.1039/d1sd00015b] [Reference Citation Analysis]
63 Ranjan P, Singhal A, Sadique MA, Yadav S, Parihar A, Khan R. Scope of biosensors, commercial aspects, and miniaturized devices for point-of-care testing from lab to clinics applications. Biosensor Based Advanced Cancer Diagnostics 2022. [DOI: 10.1016/b978-0-12-823424-2.00004-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
64 Shukla N, Chetri P, Boruah R, Gogoi A, Ahmed GA. Surface Plasmon Resonance Biosensors Based on Kretschmann Configuration: Basic Instrumentation and Applications. Lecture Notes in Nanoscale Science and Technology 2022. [DOI: 10.1007/978-3-030-99491-4_6] [Reference Citation Analysis]
65 Ruiz Simões F, Martins de Araújo G, Cardoso MA. Conducting Polymers and Carbon-Based Materials in Biosensor Applications. Advances in Bioelectrochemistry Volume 2 2022. [DOI: 10.1007/978-3-030-95270-9_6] [Reference Citation Analysis]
66 Dara H, Mali M, Aher H, Patil P, Sahu B, Arya N. Point of care diagnostics for cancer: Recent trends and challenges. Nanobioanalytical Approaches to Medical Diagnostics 2022. [DOI: 10.1016/b978-0-323-85147-3.00006-2] [Reference Citation Analysis]
67 Moulahoum H, Ghorbanizamani F, Zihnioglu F, Goksel T, Turhan K, Timur S. Biosensing technologies applied in virus detection as rapid tools during pandemics: past lessons and recent trends. Biosensors for Emerging and Re-Emerging Infectious Diseases 2022. [DOI: 10.1016/b978-0-323-88464-8.00004-x] [Reference Citation Analysis]
68 Nemati F, Pebdeni AB, Hosseini M. Graphene-based devices for cancer diagnosis. Biosensor Based Advanced Cancer Diagnostics 2022. [DOI: 10.1016/b978-0-12-823424-2.00014-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
69 Brancato V, Reis RL, Kundu SC. Coupling Micro-Physiological Systems and Biosensors for Improving Cancer Biomarkers Detection. Microfluidics and Biosensors in Cancer Research 2022. [DOI: 10.1007/978-3-031-04039-9_12] [Reference Citation Analysis]
70 Deepa, Nohwal B, Chaudhary R, Pundir CS. Amperometric detection of tumor suppressor protein p53 via pencil graphite electrode for fast cancer diagnosis. Anal Biochem 2021;639:114528. [PMID: 34919898 DOI: 10.1016/j.ab.2021.114528] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
71 Izadi N, Sebuyoya R, Moranova L, Hrstka R, Anton M, Bartosik M. Electrochemical bioassay coupled to LAMP reaction for determination of high-risk HPV infection in crude lysates. Anal Chim Acta 2021;1187:339145. [PMID: 34753575 DOI: 10.1016/j.aca.2021.339145] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
72 Centane S, Nyokong T. Impedimetric aptasensor for HER2 biomarker using graphene quantum dots, polypyrrole and cobalt phthalocyanine modified electrodes. Sensing and Bio-Sensing Research 2021;34:100467. [DOI: 10.1016/j.sbsr.2021.100467] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
73 Mahmoudpour M, Dolatabadi JE, Hasanzadeh M, Soleymani J. Carbon-based aerogels for biomedical sensing: Advances toward designing the ideal sensor. Adv Colloid Interface Sci 2021;298:102550. [PMID: 34695619 DOI: 10.1016/j.cis.2021.102550] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
74 Li Y, Yin S, Jiang N, Li X, Liu C, Li J, Liu Y. Novel sinuous band microelectrode array for electrochemical amperometric sensing. Electrochemistry Communications 2021;133:107159. [DOI: 10.1016/j.elecom.2021.107159] [Reference Citation Analysis]
75 Sloan-Dennison S, Laing S, Graham D, Faulds K. From Raman to SESORRS: moving deeper into cancer detection and treatment monitoring. Chem Commun (Camb) 2021;57:12436-51. [PMID: 34734952 DOI: 10.1039/d1cc04805h] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
76 Zhang J. Recent Advances on Biomarkers and Bioreceptor Used for Cancer Detection. 2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC) 2021. [DOI: 10.1109/ic-nidc54101.2021.9660450] [Reference Citation Analysis]
77 Ding S, Zhang H, Wang X. Microfluidic-Chip-Integrated Biosensors for Lung Disease Models. Biosensors (Basel) 2021;11:456. [PMID: 34821672 DOI: 10.3390/bios11110456] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
78 Sajadpour M, Abbasian S, Siampour H, Bagheri H, Moshaii A. Label-free PSA electrochemical determination by seed-mediated electrochemically-deposited gold nanoparticles on an FTO electrode. J Solid State Electrochem 2022;26:149-61. [DOI: 10.1007/s10008-021-05081-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
79 Wang Y, Yang Y, Wu T, Zhang X, Wang R, Du X, Xu LP. Dendritic porous silica nanoparticles with high-curvature structures for a dual-mode DNA sensor based on fluorometer and person glucose meter. Mikrochim Acta 2021;188:407. [PMID: 34735602 DOI: 10.1007/s00604-021-05054-y] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
80 Chen H. Application of Intelligent Sensors in Biomarker Detection Using Accurate Data Measurement and Calculation. J Phys : Conf Ser 2021;2083:032035. [DOI: 10.1088/1742-6596/2083/3/032035] [Reference Citation Analysis]
81 Chang J, Gao N, Dai P, Zhu Z, You H, Han W, Li L. Facile engineered polymeric microdevice via co-coupling of phenylboronic acid and Protein A for oriented antibody immobilization enables substantial signal enhancement for an enhanced fluorescence immunoassay. Sensors and Actuators B: Chemical 2021;346:130444. [DOI: 10.1016/j.snb.2021.130444] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
82 Goldoni R, Scolaro A, Boccalari E, Dolci C, Scarano A, Inchingolo F, Ravazzani P, Muti P, Tartaglia G. Malignancies and Biosensors: A Focus on Oral Cancer Detection through Salivary Biomarkers. Biosensors (Basel) 2021;11:396. [PMID: 34677352 DOI: 10.3390/bios11100396] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
83 Yim Y, Shin H, Ahn SM, Min DH. Graphene oxide-based fluorescent biosensors and their biomedical applications in diagnosis and drug discovery. Chem Commun (Camb) 2021;57:9820-33. [PMID: 34494621 DOI: 10.1039/d1cc02157e] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
84 Awang MS, Bustami Y, Hamzah HH, Zambry NS, Najib MA, Khalid MF, Aziah I, Abd Manaf A. Advancement in Salmonella Detection Methods: From Conventional to Electrochemical-Based Sensing Detection. Biosensors (Basel) 2021;11:346. [PMID: 34562936 DOI: 10.3390/bios11090346] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
85 Brar B, Ranjan K, Palria A, Kumar R, Ghosh M, Sihag S, Minakshi P. Nanotechnology in Colorectal Cancer for Precision Diagnosis and Therapy. Front Nanotechnol 2021;3:699266. [DOI: 10.3389/fnano.2021.699266] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
86 Wang C, Zhang Y, Tang W, Wang C, Han Y, Qiang L, Gao J, Liu H, Han L. Ultrasensitive, high-throughput and multiple cancer biomarkers simultaneous detection in serum based on graphene oxide quantum dots integrated microfluidic biosensing platform. Anal Chim Acta 2021;1178:338791. [PMID: 34482866 DOI: 10.1016/j.aca.2021.338791] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
87 Hassanpour S, Hasanzadeh M. Label-free electrochemical-immunoassay of cancer biomarkers: Recent progress and challenges in the efficient diagnosis of cancer employing electroanalysis and based on point of care (POC). Microchemical Journal 2021;168:106424. [DOI: 10.1016/j.microc.2021.106424] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
88 Borum RM, Moore C, Chan SK, Steinmetz NF, Jokerst JV. A Photoacoustic Contrast Agent for miR-21 via NIR Fluorescent Hybridization Chain Reaction. Bioconjug Chem 2021. [PMID: 34406744 DOI: 10.1021/acs.bioconjchem.1c00375] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
89 Tyagi H, Daulton E, Bannaga AS, Arasaradnam RP, Covington JA. Non-Invasive Detection and Staging of Colorectal Cancer Using a Portable Electronic Nose. Sensors (Basel) 2021;21:5440. [PMID: 34450881 DOI: 10.3390/s21165440] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
90 Chen X, Zhang Y, Yuan Q, Li M, Bian Y, Su D, Gao X. Bioorthogonal chemistry in metal clusters: a general strategy for the construction of multifunctional probes for bioimaging in living cells and in vivo. J Mater Chem B 2021;9:6614-22. [PMID: 34378627 DOI: 10.1039/d1tb00836f] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
91 Wcisło A, Małuch I, Niedziałkowski P, Ossowski T, Prahl A. Label-Free Electrochemical Test of Protease Interaction with a Peptide Substrate Modified Gold Electrode. Chemosensors 2021;9:199. [DOI: 10.3390/chemosensors9080199] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
92 Lavanya R, Arun V. Detection of Begomovirus in chilli and tomato plants using functionalized gold nanoparticles. Sci Rep 2021;11:14203. [PMID: 34244585 DOI: 10.1038/s41598-021-93615-9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
93 Miu D, Constantinoiu I, Dinca V, Viespe C. Surface Acoustic Wave Biosensor with Laser-Deposited Gold Layer Having Controlled Porosity. Chemosensors 2021;9:173. [DOI: 10.3390/chemosensors9070173] [Reference Citation Analysis]
94 Vinoth S, Shalini Devi K, Pandikumar A. A comprehensive review on graphitic carbon nitride based electrochemical and biosensors for environmental and healthcare applications. TrAC Trends in Analytical Chemistry 2021;140:116274. [DOI: 10.1016/j.trac.2021.116274] [Cited by in Crossref: 33] [Cited by in F6Publishing: 27] [Article Influence: 16.5] [Reference Citation Analysis]
95 Federici L, Masulli M, Allocati N. An Overview of Biosensors Based on Glutathione Transferases and for the Detection of Glutathione. Electroanalysis 2021;33:1852-65. [DOI: 10.1002/elan.202100143] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
96 Cowell TW, Valera E, Jankelow A, Park J, Schrader AW, Ding R, Berger J, Bashir R, Han HS. Rapid, multiplexed detection of biomolecules using electrically distinct hydrogel beads. Lab Chip 2020;20:2274-83. [PMID: 32490455 DOI: 10.1039/d0lc00243g] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
97 Hallil H, Dejous C, Hage-ali S, Elmazria O, Rossignol J, Stuerga D, Talbi A, Mazzamurro A, Joubert P, Lefeuvre E. Passive Resonant Sensors: Trends and Future Prospects. IEEE Sensors J 2021;21:12618-32. [DOI: 10.1109/jsen.2021.3065734] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
98 Huang X, Zhang ZH, Chen J, Mao Z, Zhu H, Liu Y, Zhu Z, Chen H. One dimensional magneto-optical nanocomplex from silver nanoclusters and magnetite nanorods containing ordered mesocages for sensitive detection of PD-L1. Biosens Bioelectron 2021;189:113385. [PMID: 34091282 DOI: 10.1016/j.bios.2021.113385] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
99 Hianik T. Advances in Electrochemical and Acoustic Aptamer-Based Biosensors and Immunosensors in Diagnostics of Leukemia. Biosensors (Basel) 2021;11:177. [PMID: 34073054 DOI: 10.3390/bios11060177] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
100 Lu T, Wang L, Xia Y, Jin Y, Zhang L, Du S. A multimer-based SERS aptasensor for highly sensitive and homogeneous assay of carcinoembryonic antigens. Analyst 2021;146:3016-24. [PMID: 33949429 DOI: 10.1039/d1an00121c] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
101 Zhao R, Zhao L, Feng H, Chen X, Zhang H, Bai Y, Feng F, Shuang S. A label-free fluorescent aptasensor based on HCR and G-quadruplex DNAzymes for the detection of prostate-specific antigen. Analyst 2021;146:1340-5. [PMID: 33367331 DOI: 10.1039/d0an02188a] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
102 Shi Q, Zhao J, Liang L. Two dimensional photonic crystal slab biosensors using label free refractometric sensing schemes: A review. Progress in Quantum Electronics 2021;77:100298. [DOI: 10.1016/j.pquantelec.2020.100298] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
103 Martisova A, Holcakova J, Izadi N, Sebuyoya R, Hrstka R, Bartosik M. DNA Methylation in Solid Tumors: Functions and Methods of Detection. Int J Mol Sci 2021;22:4247. [PMID: 33921911 DOI: 10.3390/ijms22084247] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
104 Ruan X, Wang Y, Kwon EY, Wang L, Cheng N, Niu X, Ding S, Van Wie BJ, Lin Y, Du D. Nanomaterial-enhanced 3D-printed sensor platform for simultaneous detection of atrazine and acetochlor. Biosens Bioelectron 2021;184:113238. [PMID: 33878594 DOI: 10.1016/j.bios.2021.113238] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 12.0] [Reference Citation Analysis]
105 Al-shami A, Oweis RJ, Al-fandi MG. Developing an electrochemical immunosensor for early diagnosis of hepatocellular carcinoma. SR 2021;41:125-34. [DOI: 10.1108/sr-02-2020-0030] [Reference Citation Analysis]
106 Zohar O, Khatib M, Omar R, Vishinkin R, Broza YY, Haick H. Biointerfaced sensors for biodiagnostics. VIEW 2021;2:20200172. [DOI: 10.1002/viw.20200172] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
107 Hu X, Xia F, Lee J, Li F, Lu X, Zhuo X, Nie G, Ling D. Tailor-Made Nanomaterials for Diagnosis and Therapy of Pancreatic Ductal Adenocarcinoma. Adv Sci (Weinh) 2021;8:2002545. [PMID: 33854877 DOI: 10.1002/advs.202002545] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
108 Wei Y. Advances on the biosensor based on nanotechnology. J Phys : Conf Ser 2021;1885:022023. [DOI: 10.1088/1742-6596/1885/2/022023] [Reference Citation Analysis]
109 Chatzipetrou M, Gounaridis L, Tsekenis G, Dimadi M, Vestering-Stenger R, F Schreuder E, Trilling A, Besselink G, Scheres L, van der Meer A, Lindhout E, G Heideman R, Leeuwis H, Graf S, Volden T, Ningler M, Kouloumentas C, Strehle C, Revol V, Klinakis A, Avramopoulos H, Zergioti I. A Miniature Bio-Photonics Companion Diagnostics Platform for Reliable Cancer Treatment Monitoring in Blood Fluids. Sensors (Basel) 2021;21:2230. [PMID: 33806753 DOI: 10.3390/s21062230] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
110 Wang Y, Zeng S, Crunteanu A, Xie Z, Humbert G, Ma L, Wei Y, Brunel A, Bessette B, Orlianges JC, Lalloué F, Schmidt OG, Yu N, Ho HP. Targeted Sub-Attomole Cancer Biomarker Detection Based on Phase Singularity 2D Nanomaterial-Enhanced Plasmonic Biosensor. Nanomicro Lett 2021;13:96. [PMID: 34138312 DOI: 10.1007/s40820-021-00613-7] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
111 Wang T, Wu Y, She J, Xu Y, Zhang Y, Zhao A, Manoj D, Xi J, Sun Y, Ren J, Xiao F. 3D nitrogen-doped carbon nanofoam arrays embedded with PdCu alloy nanoparticles: Assembling on flexible microelectrode for electrochemical detection in cancer cells. Anal Chim Acta 2021;1158:338420. [PMID: 33863406 DOI: 10.1016/j.aca.2021.338420] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
112 Shahsavar K, Hosseini M, Shokri E, Xu G. New insight into G-quadruplexes; diagnosis application in cancer. Anal Biochem 2021;620:114149. [PMID: 33636157 DOI: 10.1016/j.ab.2021.114149] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
113 Song Y, He L, Zhang S, Liu X, Chen K, Jia Q, Zhang Z, Du M. Novel impedimetric sensing strategy for detecting ochratoxin A based on NH2-MIL-101(Fe) metal-organic framework doped with cobalt phthalocyanine nanoparticles. Food Chem 2021;351:129248. [PMID: 33640766 DOI: 10.1016/j.foodchem.2021.129248] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 11.0] [Reference Citation Analysis]
114 Zhang J, Zhang X, Wei X, Xue Y, Wan H, Wang P. Recent advances in acoustic wave biosensors for the detection of disease-related biomarkers: A review. Anal Chim Acta 2021;1164:338321. [PMID: 33992219 DOI: 10.1016/j.aca.2021.338321] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 12.0] [Reference Citation Analysis]
115 Alharthi SD, Bijukumar D, Prasad S, Khan AM, Mathew MT. Evolution in Biosensors for Cancers Biomarkers Detection: A Review. J Bio Tribo Corros 2021;7. [DOI: 10.1007/s40735-020-00463-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
116 Djago F, Lange J, Poinot P. Induced volatolomics of pathologies. Nat Rev Chem 2021;5:183-96. [DOI: 10.1038/s41570-020-00248-z] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
117 Pan MM, Wang YF, Wang L, Yu X, Xu L. Recent advances in visual detection for cancer biomarkers and infectious pathogens. J Mater Chem B 2021;9:35-52. [PMID: 33225338 DOI: 10.1039/d0tb01883j] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
118 Kaneko I. Time-Frequency Analysis in Health Informatics. Intelligent Systems Reference Library 2021. [DOI: 10.1007/978-3-030-54932-9_3] [Reference Citation Analysis]
119 Nanotechnology-based optical biosensors for food applications. Advanced Food Analysis Tools 2021. [DOI: 10.1016/b978-0-12-820591-4.00008-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
120 Rebelo R, Caldas M, Neves MAD, Kundu SC, Reis RL, Correlo V. Natural Polymers for Biophotonic Use. Polysaccharides of Microbial Origin 2021. [DOI: 10.1007/978-3-030-35734-4_50-1] [Reference Citation Analysis]
121 Liu L, Han L, Wu Q, Sun Y, Li K, Liu Y, Liu H, Luo E. Multifunctional DNA dendrimer nanostructures for biomedical applications. J Mater Chem B 2021;9:4991-5007. [PMID: 34008692 DOI: 10.1039/d1tb00689d] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
122 Terracciano M, Tramontano C, Moretta R, Miranda B, Borbone N, De Stefano L, Rea I. Protein-modified porous silicon optical devices for biosensing. Porous Silicon for Biomedical Applications 2021. [DOI: 10.1016/b978-0-12-821677-4.00017-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
123 Mitra S, Basak M, Bandyopadhyay D. Multifunctional gold nanoparticles for biosensing. Fundamentals and Properties of Multifunctional Nanomaterials 2021. [DOI: 10.1016/b978-0-12-822352-9.00012-2] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
124 Asadi H, Ramasamy RP. Graphene-based Electrochemical Biosensor for Impedimetric Detection of miRNAs as Potential Cancer Biomarkers. J Electrochem Soc 2020;167:167523. [DOI: 10.1149/1945-7111/abd284] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
125 Bernasconi R, Meroni D, Aliverti A, Magagnin L. Fabrication of a Bioimpedance Sensor via Inkjet Printing and Selective Metallization. IEEE Sensors J 2020;20:14024-31. [DOI: 10.1109/jsen.2020.3007619] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
126 Chen X, Bian Y, Li M, Zhang Y, Gao X, Su D. Activatable Off-on Near-Infrared QCy7-based Fluorogenic Probes for Bioimaging. Chem Asian J 2020;15:3983-94. [PMID: 33034939 DOI: 10.1002/asia.202001057] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
127 Crapnell RD, Dempsey-hibbert NC, Peeters M, Tridente A, Banks CE. Molecularly imprinted polymer based electrochemical biosensors: Overcoming the challenges of detecting vital biomarkers and speeding up diagnosis. Talanta Open 2020;2:100018. [DOI: 10.1016/j.talo.2020.100018] [Cited by in Crossref: 45] [Cited by in F6Publishing: 23] [Article Influence: 15.0] [Reference Citation Analysis]
128 Zeng Z, Zhou R, Sun R, Zhang X, Cheng Z, Chen C, Zhu Q. Nonlinear hybridization chain reaction-based functional DNA nanostructure assembly for biosensing, bioimaging applications. Biosens Bioelectron 2020;173:112814. [PMID: 33197767 DOI: 10.1016/j.bios.2020.112814] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 8.7] [Reference Citation Analysis]
129 Çağlayan Z, Demircan Yalçın Y, Külah H. A Prominent Cell Manipulation Technique in BioMEMS: Dielectrophoresis. Micromachines (Basel) 2020;11:E990. [PMID: 33153069 DOI: 10.3390/mi11110990] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 3.7] [Reference Citation Analysis]
130 Ramirez-Valles EG, Rodríguez-Pulido A, Barraza-Salas M, Martínez-Velis I, Meneses-Morales I, Ayala-García VM, Alba-Fierro CA. A Quest for New Cancer Diagnosis, Prognosis and Prediction Biomarkers and Their Use in Biosensors Development. Technol Cancer Res Treat 2020;19:1533033820957033. [PMID: 33107395 DOI: 10.1177/1533033820957033] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
131 Fan H, Guo Z. Bioinspired surfaces with wettability: biomolecule adhesion behaviors. Biomater Sci 2020;8:1502-35. [PMID: 31994566 DOI: 10.1039/c9bm01729a] [Cited by in Crossref: 52] [Cited by in F6Publishing: 53] [Article Influence: 17.3] [Reference Citation Analysis]
132 Rahaie M, Noroozi SK. A nanobiosensor based on graphene oxide and DNA binding dye for multi-microRNAs detection. Biosci Rep 2019;39:BSR20181404. [PMID: 31833555 DOI: 10.1042/BSR20181404] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
133 Li Y, Zuo S, Ding L, Xu P, Wang K, Liu Y, Li J, Liu C. Sensitive immunoassay of cardiac troponin I using an optimized microelectrode array in a novel integrated microfluidic electrochemical device. Anal Bioanal Chem 2020;412:8325-38. [DOI: 10.1007/s00216-020-02968-z] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
134 Duan F, Hu M, Guo C, Song Y, Wang M, He L, Zhang Z, Pettinari R, Zhou L. Chromium-based metal-organic framework embedded with cobalt phthalocyanine for the sensitively impedimetric cytosensing of colorectal cancer (CT26) cells and cell imaging. Chemical Engineering Journal 2020;398:125452. [DOI: 10.1016/j.cej.2020.125452] [Cited by in Crossref: 57] [Cited by in F6Publishing: 61] [Article Influence: 19.0] [Reference Citation Analysis]
135 Li X, Ding C, Li X, Yang H, Liu S, Wang X, Zhang L, Sun Q, Liu X, Chen J. Electronic biopolymers: From molecular engineering to functional devices. Chemical Engineering Journal 2020;397:125499. [DOI: 10.1016/j.cej.2020.125499] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 11.0] [Reference Citation Analysis]
136 Dhanapala L, Krause CE, Jones AL, Rusling JF. Printed Electrodes in Microfluidic Arrays for Cancer Biomarker Protein Detection. Biosensors (Basel) 2020;10:E115. [PMID: 32906644 DOI: 10.3390/bios10090115] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
137 Mattarozzi M, Giannetto M, Careri M. Electrochemical immunomagnetic assay as biosensing strategy for determination of ovarian cancer antigen HE4 in human serum. Talanta 2020;217:120991. [PMID: 32498877 DOI: 10.1016/j.talanta.2020.120991] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
138 Dolatkhah M, Hashemzadeh N, Barar J, Adibkia K, Aghanejad A, Barzegar-jalali M, Omidi Y. Graphene-based multifunctional nanosystems for simultaneous detection and treatment of breast cancer. Colloids and Surfaces B: Biointerfaces 2020;193:111104. [DOI: 10.1016/j.colsurfb.2020.111104] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 8.0] [Reference Citation Analysis]
139 Ramos-díaz AR, Aguilar RG, Martínez-gutiérrez H, Ortiz-lópez J. Electrochemical sensor using carbon nanotube composites for chronic-degenerative diseases diagnosis. MRS Advances 2020;5:2331-2340. [DOI: 10.1557/adv.2020.253] [Reference Citation Analysis]
140 Reddy KK, Bandal H, Satyanarayana M, Goud KY, Gobi KV, Jayaramudu T, Amalraj J, Kim H. Recent Trends in Electrochemical Sensors for Vital Biomedical Markers Using Hybrid Nanostructured Materials. Adv Sci (Weinh) 2020;7:1902980. [PMID: 32670744 DOI: 10.1002/advs.201902980] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 10.3] [Reference Citation Analysis]
141 Deepa, Nohwal B, Pundir C. An electrochemical CD59 targeted noninvasive immunosensor based on graphene oxide nanoparticles embodied pencil graphite for detection of lung cancer. Microchemical Journal 2020;156:104957. [DOI: 10.1016/j.microc.2020.104957] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
142 de Oliveira WF, dos Santos Silva PM, Coelho LCBB, dos Santos Correia MT. Biomarkers, Biosensors and Biomedicine. CMC 2020;27:3519-33. [DOI: 10.2174/0929867326666190124103125] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
143 Li S, Zhang Y, Mu S, Ma M, Liu X, Zhang H. Magnetic organic porous polymer as a solid-phase extraction adsorbent for enrichment and quantitation of gastric cancer biomarkers (P-cresol and 4-hydroxybenzoic acid) in urine samples by UPLC. Mikrochim Acta 2020;187:388. [PMID: 32542460 DOI: 10.1007/s00604-020-04362-z] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
144 Sadighbayan D, Tohidkia MR, Mehdipour T, Hasanzadeh M, Yari Khosroushahi A. Bio-assay of the non-amidated progastrin-derived peptide (G17-Gly) using the tailor-made recombinant antibody fragment and phage display method: a biomedical analysis. Anal Methods 2020;12:2735-46. [PMID: 32930305 DOI: 10.1039/d0ay00627k] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
145 Nemati A, Aghajanzadeh MS, Rooberahan M, Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran, Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran., Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.. An Overview on Cancer Diagnosis based on Antibody-Based Immune Techniques. Mod Med Lab J 2020;3:100-110. [DOI: 10.30699/mmlj17.3.1.100] [Reference Citation Analysis]
146 Arya SK, Estrela P. Electrochemical ELISA Protein Biosensing in Undiluted Serum Using a Polypyrrole-Based Platform. Sensors (Basel) 2020;20:E2857. [PMID: 32443483 DOI: 10.3390/s20102857] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
147 Lu X, Cui M, Yi Q, kamrani A. Detection of mutant genes with different types of biosensor methods. TrAC Trends in Analytical Chemistry 2020;126:115860. [DOI: 10.1016/j.trac.2020.115860] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
148 Sun D, Fu Y, Yang Y. Label-free detection of breast cancer biomarker using silica microfiber interferometry. Optics Communications 2020;463:125375. [DOI: 10.1016/j.optcom.2020.125375] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
149 Song Y, Xu M, Li Z, He L, Hu M, He L, Zhang Z, Du M. A bimetallic CoNi-based metal−organic framework as efficient platform for label-free impedimetric sensing toward hazardous substances. Sensors and Actuators B: Chemical 2020;311:127927. [DOI: 10.1016/j.snb.2020.127927] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 7.3] [Reference Citation Analysis]
150 Han X, Ji X, Zhang Q, Sun J, Sun P, Pan W, Wang J, Yang C. Giant “molecular capacitor” arrays - portable sensors to determine ionizable compounds. Journal of Electroanalytical Chemistry 2020;865:114108. [DOI: 10.1016/j.jelechem.2020.114108] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
151 Bai Y, Shu T, Su L, Zhang X. Fluorescent Gold Nanoclusters for Biosensor and Bioimaging Application. Crystals 2020;10:357. [DOI: 10.3390/cryst10050357] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
152 Moemen LA, Abdel Hamid MA, Wahab SA, Kenawy MKM, Abuelela MH, Hassanin OA, Fouly MA, Abdelazeem AA, Noweir SR, Ismail SM, Abdel Gawad YHER, Refaat S, Amer AK, Khalaf NA, Aboelmakarem SH, Elsobky MS, Abdelrasool MR, Karawya SS, Osman ZM. Role of advanced glycation end products and sorbitol dehydrogenase in the pathogenesis of diabetic retinopathy. Bull Natl Res Cent 2020;44. [DOI: 10.1186/s42269-020-00304-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
153 Afzalinia A, Mirzaee M. Ultrasensitive Fluorescent miRNA Biosensor Based on a "Sandwich" Oligonucleotide Hybridization and Fluorescence Resonance Energy Transfer Process Using an Ln(III)-MOF and Ag Nanoparticles for Early Cancer Diagnosis: Application of Central Composite Design. ACS Appl Mater Interfaces 2020;12:16076-87. [PMID: 32207913 DOI: 10.1021/acsami.0c00891] [Cited by in Crossref: 51] [Cited by in F6Publishing: 57] [Article Influence: 17.0] [Reference Citation Analysis]
154 Wang X, Gong M, Li L, Lv L, Jin X, Wang Y. An Enzyme Electrocatalytic AGp16 INK4a Immunosensor Based on Polymethylene Blue Decorated on Functional Composite Electrode. J Electrochem Soc 2020;167:067501. [DOI: 10.1149/1945-7111/ab7e87] [Reference Citation Analysis]
155 Zhang D, Yan Y, Que H, Yang T, Cheng X, Ding S, Zhang X, Cheng W. CRISPR/Cas12a-Mediated Interfacial Cleaving of Hairpin DNA Reporter for Electrochemical Nucleic Acid Sensing. ACS Sens 2020;5:557-62. [PMID: 32013399 DOI: 10.1021/acssensors.9b02461] [Cited by in Crossref: 88] [Cited by in F6Publishing: 95] [Article Influence: 29.3] [Reference Citation Analysis]
156 Dai L, Wang Y, Zou X, Chen Z, Liu H, Ni Y. Ultrasensitive Physical, Bio, and Chemical Sensors Derived from 1-, 2-, and 3-D Nanocellulosic Materials. Small 2020;16:e1906567. [PMID: 32049432 DOI: 10.1002/smll.201906567] [Cited by in Crossref: 81] [Cited by in F6Publishing: 82] [Article Influence: 27.0] [Reference Citation Analysis]
157 Fu X, Peng F, Lee J, Yang Q, Zhang F, Xiong M, Kong G, Meng HM, Ke G, Zhang XB. Aptamer-Functionalized DNA Nanostructures for Biological Applications. Top Curr Chem (Cham) 2020;378:21. [PMID: 32030541 DOI: 10.1007/s41061-020-0283-y] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
158 Zhang Y, Chi K, Xiao J, Xu Y, Zhao A, Xu Y, Sun Y, Xiao F, Wang S. Coral-like hierarchical structured carbon nanoscaffold with improved sensitivity for biomolecular detection in cancer tissue. Biosensors and Bioelectronics 2020;150:111924. [DOI: 10.1016/j.bios.2019.111924] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
159 Dong S, Wang Z, Wang J, Asif M, Yao Y, Xiao F, Liu H. Sulfate-reducing bacteria respiration approach to fabricating flexible N,S-reduced graphene oxide thin film electrode for in situ cancer biomarker detection. Journal of Electroanalytical Chemistry 2020;859:113867. [DOI: 10.1016/j.jelechem.2020.113867] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
160 Lv W, Ye H, Yuan Z, Liu X, Chen X, Yang W. Recent advances in electrochemiluminescence-based simultaneous detection of multiple targets. TrAC Trends in Analytical Chemistry 2020;123:115767. [DOI: 10.1016/j.trac.2019.115767] [Cited by in Crossref: 63] [Cited by in F6Publishing: 69] [Article Influence: 21.0] [Reference Citation Analysis]
161 Ahmad NA, Rahim RA, Ismail NS, Rezek B. Fabrication of electrolyte-gate nanocrystalline diamond- based field effect transistor (NCD-EGFET) for HIV-1 Tat protein detection. IOP Conf Ser : Mater Sci Eng 2020;743:012038. [DOI: 10.1088/1757-899x/743/1/012038] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
162 Afreen S, He Z, Xiao Y, Zhu JJ. Nanoscale metal-organic frameworks in detecting cancer biomarkers. J Mater Chem B 2020;8:1338-49. [PMID: 31999289 DOI: 10.1039/c9tb02579k] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 9.0] [Reference Citation Analysis]
163 Bai Y, Xu T, Zhang X. Graphene-Based Biosensors for Detection of Biomarkers. Micromachines (Basel) 2020;11:E60. [PMID: 31947894 DOI: 10.3390/mi11010060] [Cited by in Crossref: 71] [Cited by in F6Publishing: 75] [Article Influence: 23.7] [Reference Citation Analysis]
164 Coroş M, Pruneanu S, Stefan-van Staden R. Review—Recent Progress in the Graphene-Based Electrochemical Sensors and Biosensors. J Electrochem Soc 2020;167:037528. [DOI: 10.1149/2.0282003jes] [Cited by in Crossref: 71] [Cited by in F6Publishing: 73] [Article Influence: 23.7] [Reference Citation Analysis]
165 Shen W, Wang C, Yang X, Wang C, Zhou Z, Liu X, Xiao R, Gu B, Wang S. Synthesis of raspberry-like nanogapped Fe 3 O 4 @Au nanocomposites for SERS-based lateral flow detection of multiple tumor biomarkers. J Mater Chem C 2020;8:12854-64. [DOI: 10.1039/d0tc03129a] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 8.7] [Reference Citation Analysis]
166 Gupta NP, Malik PK, Ram BS. A Review on Methods and Systems for Early Breast Cancer Detection. 2020 International Conference on Computation, Automation and Knowledge Management (ICCAKM) 2020. [DOI: 10.1109/iccakm46823.2020.9051554] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
167 Deepa, Pundir S, Pundir C. Detection of tumor suppressor protein p53 with special emphasis on biosensors: A review. Analytical Biochemistry 2020;588:113473. [DOI: 10.1016/j.ab.2019.113473] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
168 Wang X, Wu J, Mao W, He X, Ruan L, Zhu J, Shu P, Zhang Z, Jiang B, Zhang X. A tetrahedral DNA nanostructure-decorated electrochemical platform for simple and ultrasensitive EGFR genotyping of plasma ctDNA. Analyst 2020;145:4671-9. [DOI: 10.1039/d0an00591f] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
169 Wang B, Xia J, Zhou G, Li X, Dai M, Jiang D, Li Q. Tb( iii )-doped nanosheets as a fluorescent probe for the detection of dipicolinic acid. RSC Adv 2020;10:37500-6. [DOI: 10.1039/c9ra09695g] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
170 Keshavarz M, Kassanos P, Tan B, Venkatakrishnan K. Metal-oxide surface-enhanced Raman biosensor template towards point-of-care EGFR detection and cancer diagnostics. Nanoscale Horiz 2020;5:294-307. [DOI: 10.1039/c9nh00590k] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 9.7] [Reference Citation Analysis]
171 Rebelo R, Barbosa AI, Kundu SC, Reis RL, Correlo VM. Biodetection and sensing for cancer diagnostics. Biomaterials for 3D Tumor Modeling 2020. [DOI: 10.1016/b978-0-12-818128-7.00026-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
172 Ghosh G. Early detection of cancer: Focus on antibody coated metal and magnetic nanoparticle-based biosensors. Sensors International 2020;1:100050. [DOI: 10.1016/j.sintl.2020.100050] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
173 Shahidian A, Ghassemi M, Mohammadi J, Hashemi M. Immune assay assisted cancer diagnostic. Bio-Engineering Approaches to Cancer Diagnosis and Treatment 2020. [DOI: 10.1016/b978-0-12-817809-6.00003-0] [Reference Citation Analysis]
174 Lee KJ, Jeong SS, Roh DH, Kim DY, Choi H, Lee EH. A practical guide to the development of microneedle systems – In clinical trials or on the market. International Journal of Pharmaceutics 2020;573:118778. [DOI: 10.1016/j.ijpharm.2019.118778] [Cited by in Crossref: 54] [Cited by in F6Publishing: 59] [Article Influence: 18.0] [Reference Citation Analysis]
175 Deng S, Zhou B, Li W, Li H, Zhang F, Ming J. Label-free fluorescence DNA walker for protein analysis based on terminal protection and dual enzyme assisted cleavage induced G-quadruplex/berberine conformation. Analyst 2020;145:46-51. [DOI: 10.1039/c9an01853k] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
176 Lu L, Yu J, Liu X, Yang X, Zhou Z, Jin Q, Xiao R, Wang C. Rapid, quantitative and ultra-sensitive detection of cancer biomarker by a SERRS-based lateral flow immunoassay using bovine serum albumin coated Au nanorods. RSC Adv 2020;10:271-81. [DOI: 10.1039/c9ra09471g] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 6.7] [Reference Citation Analysis]
177 Zheng H, Liu M, Yan Z, Chen J. Highly selective and stable glucose biosensor based on incorporation of platinum nanoparticles into polyaniline-montmorillonite hybrid composites. Microchemical Journal 2020;152:104266. [DOI: 10.1016/j.microc.2019.104266] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 9.0] [Reference Citation Analysis]
178 Shait Mohammed MR, Ahmad V, Ahmad A, Tabrez S, Choudhry H, Zamzami MA, Bakhrebah MA, Ahmad A, Wasi S, Mukhtar H, Khan MI. Prospective of nanoscale metal organic frameworks [NMOFs] for cancer therapy. Semin Cancer Biol 2021;69:129-39. [PMID: 31866477 DOI: 10.1016/j.semcancer.2019.12.015] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
179 Sun X, Yao L, Fu C, Luo L, Wang J, Xiao J. Detection of target collagen peptides with single amino acid mutation using two fluorescent peptide probes. J Mater Chem B 2019;7:7676-82. [PMID: 31566640 DOI: 10.1039/c9tb00610a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
180 Cennamo N, Pasquardini L, Arcadio F, Vanzetti LE, Bossi AM, Zeni L. D-shaped plastic optical fibre aptasensor for fast thrombin detection in nanomolar range. Sci Rep 2019;9:18740. [PMID: 31822733 DOI: 10.1038/s41598-019-55248-x] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 6.5] [Reference Citation Analysis]
181 Li M, Jiao L, Liu S, Zhang L, Li H. A new ratiometric electrochemical immunoassay for reliable detection of nuclear matrix protein 22. Analytica Chimica Acta 2019;1086:103-9. [DOI: 10.1016/j.aca.2019.08.017] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 2.3] [Reference Citation Analysis]
182 Carneiro MC, Sousa-castillo A, Correa-duarte MA, Sales MGF. Dual biorecognition by combining molecularly-imprinted polymer and antibody in SERS detection. Application to carcinoembryonic antigen. Biosensors and Bioelectronics 2019;146:111761. [DOI: 10.1016/j.bios.2019.111761] [Cited by in Crossref: 38] [Cited by in F6Publishing: 42] [Article Influence: 9.5] [Reference Citation Analysis]
183 Shende P, Prabhakar B, Patil A. Color changing sensors: A multimodal system for integrated screening. TrAC Trends in Analytical Chemistry 2019;121:115687. [DOI: 10.1016/j.trac.2019.115687] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
184 Tobore TO. On the need for the development of a cancer early detection, diagnostic, prognosis, and treatment response system. Future Sci OA 2019;6:FSO439. [PMID: 32025328 DOI: 10.2144/fsoa-2019-0028] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
185 Broza YY, Zhou X, Yuan M, Qu D, Zheng Y, Vishinkin R, Khatib M, Wu W, Haick H. Disease Detection with Molecular Biomarkers: From Chemistry of Body Fluids to Nature-Inspired Chemical Sensors. Chem Rev 2019;119:11761-817. [DOI: 10.1021/acs.chemrev.9b00437] [Cited by in Crossref: 150] [Cited by in F6Publishing: 164] [Article Influence: 37.5] [Reference Citation Analysis]
186 Chen Y, Liu J, Yang Z, Wilkinson JS, Zhou X. Optical biosensors based on refractometric sensing schemes: A review. Biosensors and Bioelectronics 2019;144:111693. [DOI: 10.1016/j.bios.2019.111693] [Cited by in Crossref: 75] [Cited by in F6Publishing: 55] [Article Influence: 18.8] [Reference Citation Analysis]
187 Yang X, Qiu P, Yang J, Fan Y, Wang L, Jiang W, Cheng X, Deng Y, Luo W. Mesoporous Materials–Based Electrochemical Biosensors from Enzymatic to Nonenzymatic. Small 2021;17:1904022. [DOI: 10.1002/smll.201904022] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 8.3] [Reference Citation Analysis]
188 Sanjabi M, Jahanian A. Multi-threshold and multi-input DNA logic design style for profiling the microRNA biomarkers of real cancers. IET Nanobiotechnol 2019;13:665-73. [PMID: 31573534 DOI: 10.1049/iet-nbt.2018.5275] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
189 Chen J, Wu Y, Fu C, Cao H, Tan X, Shi W, Wu Z. Ratiometric SERS biosensor for sensitive and reproducible detection of microRNA based on mismatched catalytic hairpin assembly. Biosensors and Bioelectronics 2019;143:111619. [DOI: 10.1016/j.bios.2019.111619] [Cited by in Crossref: 44] [Cited by in F6Publishing: 44] [Article Influence: 11.0] [Reference Citation Analysis]
190 Li Y, Xu Z, Tan S, Fang F, Yang L, Yuan B, Sun Q. Recent advances in microfiber sensors for highly sensitive biochemical detection. J Phys D: Appl Phys 2019;52:493002. [DOI: 10.1088/1361-6463/ab3d4e] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
191 Wen D, Liu Q, Li L, Yang H, Kong J. Ultrasensitive aptamer fluorometric detection of IFN-γ by dual atom transfer radical polymerization amplification. Sensors and Actuators B: Chemical 2019;295:40-8. [DOI: 10.1016/j.snb.2019.05.036] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
192 Bellassai N, D'Agata R, Jungbluth V, Spoto G. Surface Plasmon Resonance for Biomarker Detection: Advances in Non-invasive Cancer Diagnosis. Front Chem 2019;7:570. [PMID: 31448267 DOI: 10.3389/fchem.2019.00570] [Cited by in Crossref: 75] [Cited by in F6Publishing: 77] [Article Influence: 18.8] [Reference Citation Analysis]
193 McKeating KS, Hinman SS, Rais NA, Zhou Z, Cheng Q. Antifouling Lipid Membranes over Protein A for Orientation-Controlled Immunosensing in Undiluted Serum and Plasma. ACS Sens 2019;4:1774-82. [PMID: 31262175 DOI: 10.1021/acssensors.9b00257] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 3.5] [Reference Citation Analysis]
194 Weisheng B, Nezhat CH, Huang GF, Mao YQ, Sidell N, Huang RP. Discovering endometriosis biomarkers with multiplex cytokine arrays. Clin Proteomics 2019;16:28. [PMID: 31333337 DOI: 10.1186/s12014-019-9248-y] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
195 Ghorbani F, Abbaszadeh H, Dolatabadi JEN, Aghebati-Maleki L, Yousefi M. Application of various optical and electrochemical aptasensors for detection of human prostate specific antigen: A review. Biosens Bioelectron 2019;142:111484. [PMID: 31284103 DOI: 10.1016/j.bios.2019.111484] [Cited by in Crossref: 62] [Cited by in F6Publishing: 52] [Article Influence: 15.5] [Reference Citation Analysis]
196 Chang CC, Chen CP, Wu TH, Yang CH, Lin CW, Chen CY. Gold Nanoparticle-Based Colorimetric Strategies for Chemical and Biological Sensing Applications. Nanomaterials (Basel) 2019;9:E861. [PMID: 31174348 DOI: 10.3390/nano9060861] [Cited by in Crossref: 133] [Cited by in F6Publishing: 139] [Article Influence: 33.3] [Reference Citation Analysis]
197 Yu L, Cui X, Li H, Lu J, Kang Q, Shen D. A ratiometric electrochemical sensor for multiplex detection of cancer biomarkers using bismuth as an internal reference and metal sulfide nanoparticles as signal tags. Analyst 2019;144:4073-80. [PMID: 31165805 DOI: 10.1039/c9an00775j] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
198 Zhang T, Xu Z, Xu H, Gu Y, Xing Y, Yan X, Liu H, Lu N, Song Y, Zhang S, Zhang Z, Yang M. Catechol and zwitterion-bifunctionalized poly(ethylene glycol) based ultrasensitive antifouling electrochemical aptasensor for the quantification of adenosine triphosphate in biological media. Sensors and Actuators B: Chemical 2019;288:469-75. [DOI: 10.1016/j.snb.2019.03.027] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
199 Shafi N, Sahu C, Periasamy C. Fabrication and pH Sensitivity Analysis of In-Situ Doped Polycrystalline Silicon Thin-Film Junctionless BioFET. IEEE Electron Device Lett 2019;40:997-1000. [DOI: 10.1109/led.2019.2911334] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
200 Fu Z, Lu YC, Lai JJ. Recent Advances in Biosensors for Nucleic Acid and Exosome Detection. Chonnam Med J 2019;55:86-98. [PMID: 31161120 DOI: 10.4068/cmj.2019.55.2.86] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 9.0] [Reference Citation Analysis]
201 Abrao Nemeir I, Saab J, Hleihel W, Errachid A, Jafferzic-Renault N, Zine N. The Advent of Salivary Breast Cancer Biomarker Detection Using Affinity Sensors. Sensors (Basel) 2019;19:E2373. [PMID: 31126047 DOI: 10.3390/s19102373] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
202 Tavares APM, Truta LAANA, Moreira FTC, Minas G, Sales MGF. Photovoltaics, plasmonics, plastic antibodies and electrochromism combined for a novel generation of self-powered and self-signalled electrochemical biomimetic sensors. Biosens Bioelectron 2019;137:72-81. [PMID: 31082647 DOI: 10.1016/j.bios.2019.04.055] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
203 Garcia-melo LF, Álvarez-gonzález I, Madrigal-bujaidar E, Madrigal-santillán EO, Morales-gonzález JA, Pineda Cruces RN, Campoy Ramírez JA, Matsumura PD, Aguilar-santamaría MDLA, Batina N. Construction of an electrochemical genosensor based on screen-printed gold electrodes (SPGE) for detection of a mutation in the adenomatous polyposis coli gene. Journal of Electroanalytical Chemistry 2019;840:93-100. [DOI: 10.1016/j.jelechem.2019.03.048] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
204 Johnson AD, Curtis RM, Wallace KJ. Low Molecular Weight Fluorescent Probes (LMFPs) to Detect the Group 12 Metal Triad. Chemosensors 2019;7:22. [DOI: 10.3390/chemosensors7020022] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 5.3] [Reference Citation Analysis]
205 Putnin T, Ngamaroonchote A, Wiriyakun N, Ounnunkad K, Laocharoensuk R. Dually functional polyethylenimine-coated gold nanoparticles: a versatile material for electrode modification and highly sensitive simultaneous determination of four tumor markers. Mikrochim Acta 2019;186:305. [PMID: 31030268 DOI: 10.1007/s00604-019-3370-4] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
206 Dong W, Ren Y, Bai Z, Yang Y, Chen Q. Fabrication of hexahedral Au-Pd/graphene nanocomposites biosensor and its application in cancer cell H2O2 detection. Bioelectrochemistry 2019;128:274-82. [PMID: 31059967 DOI: 10.1016/j.bioelechem.2019.04.018] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 8.8] [Reference Citation Analysis]
207 Zheng F, Wang P, Du Q, Chen Y, Liu N. Simultaneous and Ultrasensitive Detection of Foodborne Bacteria by Gold Nanoparticles-Amplified Microcantilever Array Biosensor. Front Chem 2019;7:232. [PMID: 31065549 DOI: 10.3389/fchem.2019.00232] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 6.5] [Reference Citation Analysis]
208 Loyez M, Larrieu J, Chevineau S, Remmelink M, Leduc D, Bondue B, Lambert P, Devière J, Wattiez R, Caucheteur C. In situ cancer diagnosis through online plasmonics. Biosensors and Bioelectronics 2019;131:104-12. [DOI: 10.1016/j.bios.2019.01.062] [Cited by in Crossref: 48] [Cited by in F6Publishing: 48] [Article Influence: 12.0] [Reference Citation Analysis]
209 Quintero-Jaime AF, Berenguer-Murcia Á, Cazorla-Amorós D, Morallón E. Carbon Nanotubes Modified With Au for Electrochemical Detection of Prostate Specific Antigen: Effect of Au Nanoparticle Size Distribution. Front Chem 2019;7:147. [PMID: 30972319 DOI: 10.3389/fchem.2019.00147] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 5.8] [Reference Citation Analysis]
210 Yamaguchi M, Okamura S, Yamaji T, Iwasaki M, Tsugane S, Shetty V, Koizumi T. Plasma cytokine levels and the presence of colorectal cancer. PLoS One 2019;14:e0213602. [PMID: 30883594 DOI: 10.1371/journal.pone.0213602] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 6.0] [Reference Citation Analysis]
211 Idris AO, Mabuba N, Arotiba OA. An Exfoliated Graphite-Based Electrochemical Immunosensor on a Dendrimer/Carbon Nanodot Platform for the Detection of Carcinoembryonic Antigen Cancer Biomarker. Biosensors (Basel) 2019;9:E39. [PMID: 30857164 DOI: 10.3390/bios9010039] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
212 Chen Z, Wang C, Hao L, Gao R, Li F, Liu S. Proximity recognition and polymerase-powered DNA walker for one-step and amplified electrochemical protein analysis. Biosensors and Bioelectronics 2019;128:104-12. [DOI: 10.1016/j.bios.2018.12.053] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 6.3] [Reference Citation Analysis]
213 Gui R, Jin H, Bu X, Fu Y, Wang Z, Liu Q. Recent advances in dual-emission ratiometric fluorescence probes for chemo/biosensing and bioimaging of biomarkers. Coordination Chemistry Reviews 2019;383:82-103. [DOI: 10.1016/j.ccr.2019.01.004] [Cited by in Crossref: 236] [Cited by in F6Publishing: 247] [Article Influence: 59.0] [Reference Citation Analysis]
214 Liu Z, Lei S, Zou L, Li G, Xu L, Ye B. A label-free and double recognition-amplification novel strategy for sensitive and accurate carcinoembryonic antigen assay. Biosens Bioelectron 2019;131:113-8. [PMID: 30826645 DOI: 10.1016/j.bios.2019.02.020] [Cited by in Crossref: 41] [Cited by in F6Publishing: 36] [Article Influence: 10.3] [Reference Citation Analysis]
215 Wang J, Hui N. Zwitterionic poly(carboxybetaine) functionalized conducting polymer polyaniline nanowires for the electrochemical detection of carcinoembryonic antigen in undiluted blood serum. Bioelectrochemistry 2019;125:90-6. [DOI: 10.1016/j.bioelechem.2018.09.006] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 6.8] [Reference Citation Analysis]
216 Venkatraman P, Sureka CS. An In-Vitro Study for Early Detection and to Distinguish Breast and Lung Malignancies Using the Pcb Technology Based Nanodosimeter. Sci Rep 2019;9:380. [PMID: 30674939 DOI: 10.1038/s41598-018-36805-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
217 Contreras-Naranjo JE, Aguilar O. Suppressing Non-Specific Binding of Proteins onto Electrode Surfaces in the Development of Electrochemical Immunosensors. Biosensors (Basel) 2019;9:E15. [PMID: 30669262 DOI: 10.3390/bios9010015] [Cited by in Crossref: 52] [Cited by in F6Publishing: 53] [Article Influence: 13.0] [Reference Citation Analysis]
218 Kim WJ, Kim J. Innovative technologies for the smart E-Healthcare system. Investig Clin Urol 2019;60:1-3. [PMID: 30637354 DOI: 10.4111/icu.2019.60.1.1] [Reference Citation Analysis]
219 Cui F, Ji J, Sun J, Wang J, Wang H, Zhang Y, Ding H, Lu Y, Xu D, Sun X. A novel magnetic fluorescent biosensor based on graphene quantum dots for rapid, efficient, and sensitive separation and detection of circulating tumor cells. Anal Bioanal Chem 2019;411:985-95. [PMID: 30612176 DOI: 10.1007/s00216-018-1501-0] [Cited by in Crossref: 43] [Cited by in F6Publishing: 38] [Article Influence: 10.8] [Reference Citation Analysis]
220 Krishnan SK, Singh E, Singh P, Meyyappan M, Nalwa HS. A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors. RSC Adv 2019;9:8778-881. [DOI: 10.1039/c8ra09577a] [Cited by in Crossref: 351] [Cited by in F6Publishing: 361] [Article Influence: 87.8] [Reference Citation Analysis]
221 Mishra RK, Rajakumari R. Nanobiosensors for Biomedical Application. Characterization and Biology of Nanomaterials for Drug Delivery 2019. [DOI: 10.1016/b978-0-12-814031-4.00001-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
222 Sinha A, Dhanjai, Mugo SM, Zhao H, Chen J, Jain R. Electrochemical Immunosensors for Rapid Detection of Breast Cancer Biomarkers. Advanced Biosensors for Health Care Applications 2019. [DOI: 10.1016/b978-0-12-815743-5.00005-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
223 Wen D, Liu Q, Cui Y, Kong J, Yang H, Liu Q. DNA based click polymerization for ultrasensitive IFN-γ fluorescent detection. Sensors and Actuators B: Chemical 2018;276:279-87. [DOI: 10.1016/j.snb.2018.08.122] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
224 Balzerová A, Opletalová A, Ranc V, Zbořil R. Multiplex competitive analysis of HER2 and EpCAM cancer markers in whole human blood using Fe2O3@Ag nanocomposite. Applied Materials Today 2018;13:166-73. [DOI: 10.1016/j.apmt.2018.08.016] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
225 Krivenkov V, Goncharov S, Nabiev I, Rakovich YP. Induced Transparency in Plasmon-Exciton Nanostructures for Sensing Applications. Laser & Photonics Reviews 2019;13:1800176. [DOI: 10.1002/lpor.201800176] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 5.6] [Reference Citation Analysis]
226 Song Y, Lin B, Tian T, Xu X, Wang W, Ruan Q, Guo J, Zhu Z, Yang C. Recent Progress in Microfluidics-Based Biosensing. Anal Chem 2019;91:388-404. [DOI: 10.1021/acs.analchem.8b05007] [Cited by in Crossref: 59] [Cited by in F6Publishing: 61] [Article Influence: 11.8] [Reference Citation Analysis]
227 Sun Y, Lu X, Xie P. Label-free detection of the carcinoembryonic antibody protein based MoS2 nanosheets using terahertz spectroscopy. Infrared, Millimeter-Wave, and Terahertz Technologies V 2018. [DOI: 10.1117/12.2500373] [Reference Citation Analysis]
228 Tran DT, Hoa VH, Tuan LH, Kim NH, Lee JH. Cu-Au nanocrystals functionalized carbon nanotube arrays vertically grown on carbon spheres for highly sensitive detecting cancer biomarker. Biosensors and Bioelectronics 2018;119:134-40. [DOI: 10.1016/j.bios.2018.08.022] [Cited by in Crossref: 29] [Cited by in F6Publishing: 23] [Article Influence: 5.8] [Reference Citation Analysis]
229 Lara S, Perez-Potti A. Applications of Nanomaterials for Immunosensing. Biosensors (Basel) 2018;8:E104. [PMID: 30388865 DOI: 10.3390/bios8040104] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 5.8] [Reference Citation Analysis]
230 Roointan A, Ahmad Mir T, Ibrahim Wani S, Mati-Ur-Rehman, Hussain KK, Ahmed B, Abrahim S, Savardashtaki A, Gandomani G, Gandomani M, Chinnappan R, Akhtar MH. Early detection of lung cancer biomarkers through biosensor technology: A review. J Pharm Biomed Anal 2019;164:93-103. [PMID: 30366148 DOI: 10.1016/j.jpba.2018.10.017] [Cited by in Crossref: 82] [Cited by in F6Publishing: 61] [Article Influence: 16.4] [Reference Citation Analysis]
231 Vlăsceanu GM, Amărandi R, Ioniță M, Tite T, Iovu H, Pilan L, Burns JS. Versatile graphene biosensors for enhancing human cell therapy. Biosensors and Bioelectronics 2018;117:283-302. [DOI: 10.1016/j.bios.2018.04.053] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 3.6] [Reference Citation Analysis]
232 Zhang K, Liu X, Man B, Yang C, Zhang C, Liu M, Zhang Y, Liu L, Chen C. Label-free and stable serum analysis based on Ag-NPs/PSi surface-enhanced Raman scattering for noninvasive lung cancer detection. Biomed Opt Express. 2018;9:4345-4358. [PMID: 30615731 DOI: 10.1364/boe.9.004345] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 4.8] [Reference Citation Analysis]
233 Shi Y, Zhang J, He J, Liu D, Meng X, Huang T, He H. A method of detecting two tumor markers (p-hydroxybenzoic acid and p-cresol) in human urine using a porous magnetic <beta>-cyclodextrine polymer as solid phase extractant, an alternative for early gastric cancer diagnosis. Talanta 2019;191:133-40. [PMID: 30262042 DOI: 10.1016/j.talanta.2018.08.036] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
234 Wysokiński K, Budnicki D, Fidelus J, Szostkiewicz Ł, Ostrowski Ł, Murawski M, Staniszewski M, Staniszewska M, Napierała M, Nasiłowski T. Dual-core all-fiber integrated immunosensor for detection of protein antigens. Biosensors and Bioelectronics 2018;114:22-9. [DOI: 10.1016/j.bios.2018.05.008] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
235 Wang H, Ma Z. A novel strategy for improving amperometric biosensor sensitivity using dual-signal synergistic effect for ultrasensitive detection of matrix metalloproteinase-2. Sensors and Actuators B: Chemical 2018;266:46-51. [DOI: 10.1016/j.snb.2018.03.119] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
236 Guo R, Yin F, Sun Y, Mi L, Shi L, Tian Z, Li T. Ultrasensitive Simultaneous Detection of Multiplex Disease-Related Nucleic Acids Using Double-Enhanced Surface-Enhanced Raman Scattering Nanosensors. ACS Appl Mater Interfaces 2018;10:25770-8. [PMID: 29979030 DOI: 10.1021/acsami.8b06757] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 5.4] [Reference Citation Analysis]
237 Shao K, Wang B, Nie A, Ye S, Ma J, Li Z, Lv Z, Han H. Target-triggered signal-on ratiometric electrochemiluminescence sensing of PSA based on MOF/Au/G-quadruplex. Biosens Bioelectron 2018;118:160-6. [PMID: 30075386 DOI: 10.1016/j.bios.2018.07.029] [Cited by in Crossref: 74] [Cited by in F6Publishing: 75] [Article Influence: 14.8] [Reference Citation Analysis]
238 Moreira FTC, Truta LAANA, Sales MGF. Biomimetic materials assembled on a photovoltaic cell as a novel biosensing approach to cancer biomarker detection. Sci Rep 2018;8:10205. [PMID: 29977025 DOI: 10.1038/s41598-018-27884-2] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
239 Jeong Y, Kook Y, Lee K, Koh W. Metal enhanced fluorescence (MEF) for biosensors: General approaches and a review of recent developments. Biosensors and Bioelectronics 2018;111:102-16. [DOI: 10.1016/j.bios.2018.04.007] [Cited by in Crossref: 202] [Cited by in F6Publishing: 209] [Article Influence: 40.4] [Reference Citation Analysis]
240 Arya SK, Estrela P. Recent Advances in Enhancement Strategies for Electrochemical ELISA-Based Immunoassays for Cancer Biomarker Detection. Sensors (Basel) 2018;18:E2010. [PMID: 29932161 DOI: 10.3390/s18072010] [Cited by in Crossref: 49] [Cited by in F6Publishing: 50] [Article Influence: 9.8] [Reference Citation Analysis]
241 Dong W, Ren Y, Bai Z, Yang Y, Wang Z, Zhang C, Chen Q. Trimetallic AuPtPd nanocomposites platform on graphene: Applied to electrochemical detection and breast cancer diagnosis. Talanta 2018;189:79-85. [PMID: 30086978 DOI: 10.1016/j.talanta.2018.06.067] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 4.8] [Reference Citation Analysis]
242 Mohammadi S, Salimi A, Hamd-Ghadareh S, Fathi F, Soleimani F. A FRET immunosensor for sensitive detection of CA 15-3 tumor marker in human serum sample and breast cancer cells using antibody functionalized luminescent carbon-dots and AuNPs-dendrimer aptamer as donor-acceptor pair. Anal Biochem 2018;557:18-26. [PMID: 29908158 DOI: 10.1016/j.ab.2018.06.008] [Cited by in Crossref: 63] [Cited by in F6Publishing: 66] [Article Influence: 12.6] [Reference Citation Analysis]
243 Tripathy S, Gangwar R, Supraja P, Rao AN, Vanjari SRK, Singh SG. Graphene Doped Mn 2 O 3 Nanofibers as a Facile Electroanalytical DNA Point Mutation Detection Platform for Early Diagnosis of Breast/Ovarian Cancer. Electroanalysis 2018;30:2110-20. [DOI: 10.1002/elan.201800220] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 4.0] [Reference Citation Analysis]
244 Huang R, He N, Li Z. Recent progresses in DNA nanostructure-based biosensors for detection of tumor markers. Biosensors and Bioelectronics 2018;109:27-34. [DOI: 10.1016/j.bios.2018.02.053] [Cited by in Crossref: 108] [Cited by in F6Publishing: 110] [Article Influence: 21.6] [Reference Citation Analysis]
245 Tian T, Li L, Zhang Y, Liu H, Zhang L, Yan M, Yu J. Dual-mode fluorescence biosensor platform based on T-shaped duplex structure for detection of microRNA and folate receptor. Sensors and Actuators B: Chemical 2018;261:44-50. [DOI: 10.1016/j.snb.2018.01.129] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
246 Kannan S, Begoyan VV, Fedie JR, Xia S, Weseliński ŁJ, Tanasova M, Rao S. Metabolism-Driven High-Throughput Cancer Identification with GLUT5-Specific Molecular Probes. Biosensors (Basel) 2018;8:E39. [PMID: 29642606 DOI: 10.3390/bios8020039] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
247 Cai X, Liu Z, Zhao S, Song C, Dong S, Xiao J. A single stranded fluorescent peptide probe for targeting collagen in connective tissues. Chem Commun (Camb) 2017;53:11905-8. [PMID: 29043304 DOI: 10.1039/c7cc06056d] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
248 Vikrant K, Tsang DCW, Raza N, Giri BS, Kukkar D, Kim KH. Potential Utility of Metal-Organic Framework-Based Platform for Sensing Pesticides. ACS Appl Mater Interfaces 2018;10:8797-817. [PMID: 29465977 DOI: 10.1021/acsami.8b00664] [Cited by in Crossref: 143] [Cited by in F6Publishing: 146] [Article Influence: 28.6] [Reference Citation Analysis]
249 Wei Y, Ma H, Ren X, Ding C, Wang H, Sun X, Du B, Zhang Y, Wei Q. A dual-signaling electrochemical ratiometric method for sensitive detection of carcinoembryonic antigen based on Au-Cu2S-CuS/graphene and Au-CeO2 supported toluidine blue complex. Sensors and Actuators B: Chemical 2018;256:504-11. [DOI: 10.1016/j.snb.2017.10.136] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 5.8] [Reference Citation Analysis]
250 Wang L. Microwave Sensors for Breast Cancer Detection. Sensors (Basel) 2018;18:E655. [PMID: 29473867 DOI: 10.3390/s18020655] [Cited by in Crossref: 54] [Cited by in F6Publishing: 58] [Article Influence: 10.8] [Reference Citation Analysis]
251 Salari A, Thompson M. Recent advances in AC electrokinetic sample enrichment techniques for biosensor development. Sensors and Actuators B: Chemical 2018;255:3601-15. [DOI: 10.1016/j.snb.2017.09.069] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 6.8] [Reference Citation Analysis]
252 Zhang Y, Xiao J, Sun Y, Wang L, Dong X, Ren J, He W, Xiao F. Flexible nanohybrid microelectrode based on carbon fiber wrapped by gold nanoparticles decorated nitrogen doped carbon nanotube arrays: In situ electrochemical detection in live cancer cells. Biosensors and Bioelectronics 2018;100:453-61. [DOI: 10.1016/j.bios.2017.09.038] [Cited by in Crossref: 59] [Cited by in F6Publishing: 64] [Article Influence: 11.8] [Reference Citation Analysis]
253 Gui R, He W, Jin H, Sun J, Wang Y. DNA assembly of carbon dots and 5-fluorouracil used for room-temperature phosphorescence turn-on sensing of AFP and AFP-triggered simultaneous release of dual-drug. Sensors and Actuators B: Chemical 2018;255:1623-30. [DOI: 10.1016/j.snb.2017.08.178] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 4.2] [Reference Citation Analysis]
254 Zolfaghari P, Arzhang V, Zolfaghari M. A low loss and power efficient micro-electro-thermally actuated RF MEMS switch for low power and low loss applications. Microsyst Technol 2018;24:3019-32. [DOI: 10.1007/s00542-017-3684-2] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
255 S. S, Shetti VS, Hegde G. Conjugated systems of porphyrin–carbon nanoallotropes: a review. New J Chem 2018;42:12328-48. [DOI: 10.1039/c8nj02254b] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 5.4] [Reference Citation Analysis]
256 Gao H, Liu S, Wang Z, Si L, Dai Z. A novel electrochemiluminescence biosensor based on S-doped yttrium oxide ultrathin nanosheets for the detection of anti-Dig antibodies. Analyst 2018;143:2997-3000. [DOI: 10.1039/c8an00667a] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
257 Liu X, Jiang H. Construction and Potential Applications of Biosensors for Proteins in Clinical Laboratory Diagnosis. Sensors (Basel) 2017;17:E2805. [PMID: 29207528 DOI: 10.3390/s17122805] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.8] [Reference Citation Analysis]
258 Mandli J, Amine A. Impedimetric genosensor for miRNA-34a detection in cell lysates using polypyrrole. J Solid State Electrochem 2018;22:1007-14. [DOI: 10.1007/s10008-017-3819-5] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
259 Huertas CS, Lechuga LM. Simple, Low-Cost, and Timely Optical Biosensors for the Detection of Epigenetic Biomarkers: The Future of Cancer Diagnosis. EMJ Oncol 2017. [DOI: 10.33590/emjoncol/10311704] [Reference Citation Analysis]
260 Liu D, Liu X, Zhang Y, Wang Q, Lu J, Sun J. Imitation-tumor targeting based on continuous-wave near-infrared tomography. Comput Assist Surg (Abingdon) 2017;22:157-62. [PMID: 29041839 DOI: 10.1080/24699322.2017.1389393] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
261 Kalyoncu D, Tepeli Y, Kirgöz UC, Buyraç A, Anik Ü. Electro-nano Diagnostic Platforms for Simultaneous Detection of Multiple Cancer Biomarkers. Electroanalysis 2017;29:2832-8. [DOI: 10.1002/elan.201700556] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
262 Chen L, Yang G, Wu P, Cai C. Real-time fluorescence assay of alkaline phosphatase in living cells using boron-doped graphene quantum dots as fluorophores. Biosensors and Bioelectronics 2017;96:294-9. [DOI: 10.1016/j.bios.2017.05.022] [Cited by in Crossref: 57] [Cited by in F6Publishing: 47] [Article Influence: 9.5] [Reference Citation Analysis]
263 Minati L, Migliaresi C, Lunelli L, Viero G, Dalla Serra M, Speranza G. Plasma assisted surface treatments of biomaterials. Biophysical Chemistry 2017;229:151-64. [DOI: 10.1016/j.bpc.2017.07.003] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 4.5] [Reference Citation Analysis]
264 Sugumaran S, Jamlos MF, Ahmad MN, Bellan CS, Schreurs D. Nanostructured materials with plasmonic nanobiosensors for early cancer detection: A past and future prospect. Biosens Bioelectron 2018;100:361-73. [PMID: 28946108 DOI: 10.1016/j.bios.2017.08.044] [Cited by in Crossref: 44] [Cited by in F6Publishing: 45] [Article Influence: 7.3] [Reference Citation Analysis]
265 Jin CE, Yeom SS, Koo B, Lee TY, Lee JH, Shin Y, Lim SB. Rapid and accurate detection of KRAS mutations in colorectal cancers using the isothermal-based optical sensor for companion diagnostics. Oncotarget 2017;8:83860-71. [PMID: 29137388 DOI: 10.18632/oncotarget.20038] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
266 Wei Y, Li X, Sun X, Ma H, Zhang Y, Wei Q. Dual-responsive electrochemical immunosensor for prostate specific antigen detection based on Au-CoS/graphene and CeO2/ionic liquids doped with carboxymethyl chitosan complex. Biosensors and Bioelectronics 2017;94:141-7. [DOI: 10.1016/j.bios.2017.03.001] [Cited by in Crossref: 59] [Cited by in F6Publishing: 60] [Article Influence: 9.8] [Reference Citation Analysis]
267 Wang B, Akiba U, Anzai JI. Recent Progress in Nanomaterial-Based Electrochemical Biosensors for Cancer Biomarkers: A Review. Molecules 2017;22:E1048. [PMID: 28672780 DOI: 10.3390/molecules22071048] [Cited by in Crossref: 73] [Cited by in F6Publishing: 74] [Article Influence: 12.2] [Reference Citation Analysis]
268 Mercier MC, Dontenwill M, Choulier L. Selection of Nucleic Acid Aptamers Targeting Tumor Cell-Surface Protein Biomarkers. Cancers (Basel) 2017;9:E69. [PMID: 28635657 DOI: 10.3390/cancers9060069] [Cited by in Crossref: 56] [Cited by in F6Publishing: 58] [Article Influence: 9.3] [Reference Citation Analysis]
269 Moreno M. Aptasensors. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering 2017. [DOI: 10.1016/b978-0-12-409547-2.13934-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]