BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Li C, Ouyang H, Tang X, Wen G, Liang A, Jiang Z. A surface enhanced Raman scattering quantitative analytical platform for detection of trace Cu coupled the catalytic reaction and gold nanoparticle aggregation with label-free Victoria blue B molecular probe. Biosensors and Bioelectronics 2017;87:888-93. [DOI: 10.1016/j.bios.2016.09.053] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 2.5] [Reference Citation Analysis]
Number Citing Articles
1 Ge S, Chen G, Deng J, Gu Y, Mao Y, Zhou X, Li G. Multiplex signal amplification strategy-based early-stage diagnosis of Parkinson's disease on a SERS-enabled LoC system. Analytica Chimica Acta 2023. [DOI: 10.1016/j.aca.2023.340890] [Reference Citation Analysis]
2 Xu G, Song P, Xia L. Examples in the detection of heavy metal ions based on surface-enhanced Raman scattering spectroscopy. Nanophotonics 2021;10:4419-45. [DOI: 10.1515/nanoph-2021-0363] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
3 Huo C, Han W, Tang W, Duan X. Stable SERS substrate based on highly reflective metal liquid-like films wrapped hydrogels for direct determination of small molecules in a high protein matrix. Talanta 2021;234:122678. [PMID: 34364478 DOI: 10.1016/j.talanta.2021.122678] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
4 Zhou H, Li X, Wang L, Liang Y, Jialading A, Wang Z, Zhang J. Application of SERS quantitative analysis method in food safety detection. Reviews in Analytical Chemistry 2021;40:173-86. [DOI: 10.1515/revac-2021-0132] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 8.5] [Reference Citation Analysis]
5 Li D, Yao D, Li C, Luo Y, Liang A, Wen G, Jiang Z. Nanosol SERS quantitative analytical method: A review. TrAC Trends in Analytical Chemistry 2020;127:115885. [DOI: 10.1016/j.trac.2020.115885] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 11.3] [Reference Citation Analysis]
6 Tang J, Chen W, Ju H. Sensitive surface-enhanced Raman scattering detection of atrazine based on aggregation of silver nanoparticles modified carbon dots. Talanta 2019;201:46-51. [DOI: 10.1016/j.talanta.2019.03.108] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 6.8] [Reference Citation Analysis]
7 Zhou M, Han L, He H, Deng D, Zhang L, Yan X, Wu Z, Zhu Y, Luo L. Sensitive and Selective Determination of Cu2+ Using Self-Assembly of 4-Mercaptobenzoic Acid on Gold Nanoparticles. J Anal Test 2019;3:306-12. [DOI: 10.1007/s41664-019-00102-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
8 Li C, Peng Y, Wang H, Liang A, Jiang Z. A nanosol SERS method for quantitative analysis of trace potassium based on aptamer recognition and silver nanorod catalysis of Ag(I)-glucose reaction. Sensors and Actuators B: Chemical 2019;281:53-9. [DOI: 10.1016/j.snb.2018.10.079] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 6.5] [Reference Citation Analysis]
9 Yan X, Wang Y, Shi G, Wang M, Zhang J, Sun X, Xu H. Flower-like Cu nanoislands decorated onto the cicada wing as SERS substrates for the rapid detection of crystal violet. Optik 2018;172:812-21. [DOI: 10.1016/j.ijleo.2018.07.088] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.4] [Reference Citation Analysis]
10 Senthilkumar S, Goswami R, Smith VJ, Bajaj HC, Neogi S. Pore Wall-Functionalized Luminescent Cd(II) Framework for Selective CO 2 Adsorption, Highly Specific 2,4,6-Trinitrophenol Detection, and Colorimetric Sensing of Cu 2+ Ions. ACS Sustainable Chem Eng 2018;6:10295-306. [DOI: 10.1021/acssuschemeng.8b01646] [Cited by in Crossref: 81] [Cited by in F6Publishing: 82] [Article Influence: 16.2] [Reference Citation Analysis]
11 Li C, Liu Y, Liang A, Jiang Z. SERS quantitative analysis of trace ferritin based on immunoreaction regulation of graphene oxide catalytic nanogold reaction. Sensors and Actuators B: Chemical 2018;263:183-9. [DOI: 10.1016/j.snb.2018.02.080] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
12 Ouyang H, Ling S, Liang A, Jiang Z. A facile aptamer-regulating gold nanoplasmonic SERS detection strategy for trace lead ions. Sensors and Actuators B: Chemical 2018;258:739-44. [DOI: 10.1016/j.snb.2017.12.009] [Cited by in Crossref: 36] [Cited by in F6Publishing: 26] [Article Influence: 7.2] [Reference Citation Analysis]
13 Luo Y, Jing Q, Li C, Liang A, Wen G, He X, Jiang Z. Simple and sensitive SERS quantitative analysis of sorbic acid in highly active gold nanosol substrate. Sensors and Actuators B: Chemical 2018;255:3187-93. [DOI: 10.1016/j.snb.2017.09.144] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
14 Liang A, Li C, Li D, Luo Y, Wen G, Jiang Z. A facile and sensitive peptide-modulating graphene oxide nanoribbon catalytic nanoplasmon analytical platform for human chorionic gonadotropin. Int J Nanomedicine 2017;12:8725-34. [PMID: 29276382 DOI: 10.2147/IJN.S149536] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
15 Cai Y, You J, You Z, Dong F, Du S, Zhang L. Profuse color-evolution-based fluorescent test paper sensor for rapid and visual monitoring of endogenous Cu2+ in human urine. Biosens Bioelectron 2018;99:332-7. [PMID: 28787679 DOI: 10.1016/j.bios.2017.07.072] [Cited by in Crossref: 53] [Cited by in F6Publishing: 56] [Article Influence: 8.8] [Reference Citation Analysis]
16 Ouyang H, Li C, Liu Q, Wen G, Liang A, Jiang Z. Resonance Rayleigh Scattering and SERS Spectral Detection of Trace Hg(II) Based on the Gold Nanocatalysis. Nanomaterials (Basel) 2017;7:E114. [PMID: 28513536 DOI: 10.3390/nano7050114] [Cited by in Crossref: 14] [Cited by in F6Publishing: 18] [Article Influence: 2.3] [Reference Citation Analysis]
17 Ma Y, Xu G, Wei F, Cen Y, Ma Y, Song Y, Xu X, Shi M, Muhammad S, Hu Q. A dual-emissive fluorescent sensor fabricated by encapsulating quantum dots and carbon dots into metal–organic frameworks for the ratiometric detection of Cu 2+ in tap water. J Mater Chem C 2017;5:8566-71. [DOI: 10.1039/c7tc01970j] [Cited by in Crossref: 63] [Cited by in F6Publishing: 65] [Article Influence: 10.5] [Reference Citation Analysis]