BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang L, Du J. A sensitive and label-free trypsin colorimetric sensor with cytochrome c as a substrate. Biosens Bioelectron 2016;79:347-52. [PMID: 26724537 DOI: 10.1016/j.bios.2015.12.070] [Cited by in Crossref: 34] [Cited by in F6Publishing: 29] [Article Influence: 4.9] [Reference Citation Analysis]
Number Citing Articles
1 Wu M, Wang X, Wang K, Guo Z. An ultrasensitive fluorescent nanosensor for trypsin based on upconversion nanoparticles. Talanta 2017;174:797-802. [PMID: 28738656 DOI: 10.1016/j.talanta.2017.07.013] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
2 Dong Z, Cheng L, Zhang P, Zhao G. Label-free analytical performances of a peptide-based QCM biosensor for trypsin. Analyst 2020;145:3329-38. [DOI: 10.1039/d0an00308e] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
3 Wu YT, Shanmugam C, Tseng WB, Hiseh MM, Tseng WL. A gold nanocluster-based fluorescent probe for simultaneous pH and temperature sensing and its application to cellular imaging and logic gates. Nanoscale 2016;8:11210-6. [PMID: 27182741 DOI: 10.1039/c6nr02341j] [Cited by in Crossref: 55] [Cited by in F6Publishing: 6] [Article Influence: 9.2] [Reference Citation Analysis]
4 Yuan N, Jia L, Zhu J. Label-free Fluorescence Turn on Trypsin Assay Based on Gemini Surfactant/heparin/Nile Red Supramolecular Assembly. J Fluoresc 2021. [PMID: 34319555 DOI: 10.1007/s10895-021-02785-2] [Reference Citation Analysis]
5 Guan S, Yue J, Sun W, Xu W, Liang C, Xu S. Ultrasensitive detection of trypsin in serum via nanochannel device. Anal Bioanal Chem 2021. [PMID: 34212213 DOI: 10.1007/s00216-021-03491-5] [Reference Citation Analysis]
6 Wang Y, Zhou L, Kang Q, Yu L. Simple and label-free liquid crystal-based sensor for detecting trypsin coupled to the interaction between cationic surfactant and BSA. Talanta 2018;183:223-7. [PMID: 29567168 DOI: 10.1016/j.talanta.2018.02.082] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 3.8] [Reference Citation Analysis]
7 Zhang S, Chen C, Qin X, Zhang Q, Liu J, Zhu J, Gao Y, Li L, Huang W. Ultrasensitive detection of trypsin activity and inhibitor screening based on the electron transfer between phosphorescence copper nanocluster and cytochrome c. Talanta 2018;189:92-9. [PMID: 30086981 DOI: 10.1016/j.talanta.2018.06.026] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
8 Yan H, Gao Q, Liu Y, Ren W, Shangguan J, Yang X, Li K. Poly(β-cyclodextrin) enhanced fluorescence coupled with specific reaction for amplified detection of GSH and trypsin activity. New J Chem 2018;42:17682-9. [DOI: 10.1039/c8nj04325f] [Cited by in Crossref: 5] [Article Influence: 1.3] [Reference Citation Analysis]
9 Cui W, Wang Y, Yang D, Du J. Fluorometric determination of ascorbic acid by exploiting its deactivating effect on the oxidase–mimetic properties of cobalt oxyhydroxide nanosheets. Microchim Acta 2017;184:4749-55. [DOI: 10.1007/s00604-017-2525-4] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
10 Ling L, Xiao C, Wang S, Guo L, Guo X. A pyrene linked peptide probe for quantitative analysis of protease activity via MALDI-TOF-MS. Talanta 2019;200:236-41. [DOI: 10.1016/j.talanta.2019.03.055] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
11 Jannat M, Yang K. Continuous protease assays using liquid crystal as a reporter. Sensors and Actuators B: Chemical 2018;269:8-14. [DOI: 10.1016/j.snb.2018.04.125] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
12 Cai M, Ding C, Cao X, Wang F, Zhang C, Xian Y. Label-free fluorometric assay for cytochrome c in apoptotic cells based on near infrared Ag2S quantum dots. Analytica Chimica Acta 2019;1056:153-60. [DOI: 10.1016/j.aca.2019.01.005] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 5.3] [Reference Citation Analysis]
13 Zhao D, Chen C, Zhao J, Sun J, Yang X. Label-free fluorescence turn-on strategy for trypsin activity based on thiolate-protected gold nanoclusters with bovine serum albumin as the substrate. Sensors and Actuators B: Chemical 2017;247:392-9. [DOI: 10.1016/j.snb.2017.03.031] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 6.0] [Reference Citation Analysis]
14 Li H, Yang M, Kong D, Jin R, Zhao X, Liu F, Yan X, Lin Y, Lu G. Sensitive fluorescence sensor for point-of-care detection of trypsin using glutathione-stabilized gold nanoclusters. Sensors and Actuators B: Chemical 2019;282:366-72. [DOI: 10.1016/j.snb.2018.11.077] [Cited by in Crossref: 20] [Cited by in F6Publishing: 12] [Article Influence: 6.7] [Reference Citation Analysis]
15 Roushani M, Hosseini H, Pakzad B, Rahmati Z. Two-Dimensional Mesoporous Copper Hydroxide Nanosheets Shelled on Hollow Nitrogen-Doped Carbon Nanoboxes as a High Performance Aptasensing Platform. ACS Sustainable Chem Eng 2021;9:11080-90. [DOI: 10.1021/acssuschemeng.1c02822] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
16 Ertürk G, Hedström M, Mattiasson B. A sensitive and real-time assay of trypsin by using molecular imprinting-based capacitive biosensor. Biosensors and Bioelectronics 2016;86:557-65. [DOI: 10.1016/j.bios.2016.07.046] [Cited by in Crossref: 44] [Cited by in F6Publishing: 38] [Article Influence: 7.3] [Reference Citation Analysis]
17 Zhang L, Qin H, Cui W, Zhou Y, Du J. Label–free, turn–on fluorescent sensor for trypsin activity assay and inhibitor screening. Talanta 2016;161:535-40. [DOI: 10.1016/j.talanta.2016.09.011] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 3.2] [Reference Citation Analysis]
18 Alvarez-paggi D, Hannibal L, Castro MA, Oviedo-rouco S, Demicheli V, Tórtora V, Tomasina F, Radi R, Murgida DH. Multifunctional Cytochrome c : Learning New Tricks from an Old Dog. Chem Rev 2017;117:13382-460. [DOI: 10.1021/acs.chemrev.7b00257] [Cited by in Crossref: 103] [Cited by in F6Publishing: 79] [Article Influence: 20.6] [Reference Citation Analysis]
19 Kaur J, Singh PK. Trypsin Detection Strategies: A Review. Critical Reviews in Analytical Chemistry. [DOI: 10.1080/10408347.2020.1846490] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
20 Li F, Chen Y, Lin R, Miao C, Ye J, Cai Q, Huang Z, Zheng Y, Lin X, Zheng Z, Weng S. Integration of fluorescent polydopamine nanoparticles on protamine for simple and sensitive trypsin assay. Anal Chim Acta 2021;1148:338201. [PMID: 33516383 DOI: 10.1016/j.aca.2021.338201] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Kong W, Li Q, Xia L, Li X, Sun H, Kong R, Qu F. Photoelectrochemical determination of trypsin by using an indium tin oxide electrode modified with a composite prepared from MoS2 nanosheets and TiO2 nanorods. Microchim Acta 2019;186. [DOI: 10.1007/s00604-019-3589-0] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
22 Chen S, Fu J, Zhou S, Wu X, Tang S, Zhao P, Zhang Z. An eco-friendly near infrared fluorescence molecularly imprinted sensor based on zeolite imidazolate framework-8 for rapid determination of trace trypsin. Microchemical Journal 2021;168:106449. [DOI: 10.1016/j.microc.2021.106449] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
23 Lin X, Zhu Z, Zhao C, Li S, Liu Q, Liu A, Lin L, Lin X. Robust oxidase mimicking activity of protamine-stabilized platinum nanoparticles units and applied for colorimetric sensor of trypsin and inhibitor. Sensors and Actuators B: Chemical 2019;284:346-53. [DOI: 10.1016/j.snb.2018.12.109] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
24 Piovarci I, Melikishvili S, Tatarko M, Hianik T, Thompson M. Detection of Sub-Nanomolar Concentration of Trypsin by Thickness-Shear Mode Acoustic Biosensor and Spectrophotometry. Biosensors (Basel) 2021;11:117. [PMID: 33920444 DOI: 10.3390/bios11040117] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
25 Yang D, Zhou Q, Li L, Fu M, Tu Y, Yan J. Ready-to-Use Colorimetric Platform for Versatile Enzyme Assays through Copper Ion-Mediated Catalysis. Anal Chem 2022. [PMID: 35147407 DOI: 10.1021/acs.analchem.1c05096] [Reference Citation Analysis]
26 Lin Y, Shen R, Liu N, Yi H, Dai H, Lin J. A highly sensitive peptide-based biosensor using NiCo2O4 nanosheets and g-C3N4 nanocomposite to construct amplified strategy for trypsin detection. Analytica Chimica Acta 2018;1035:175-83. [DOI: 10.1016/j.aca.2018.06.040] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
27 Xia T, Ma Q, Hu T, Su X. A novel magnetic/photoluminescence bifunctional nanohybrid for the determination of trypsin. Talanta 2017;170:286-90. [DOI: 10.1016/j.talanta.2017.03.081] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
28 Tan Q, Zhang R, Kong W, Qu F, Lu L. Ascorbic Acid-Loaded Apoferritin-Assisted Carbon Dot-MnO 2 Nanocomposites for the Selective and Sensitive Detection of Trypsin. ACS Appl Bio Mater 2018;1:777-82. [DOI: 10.1021/acsabm.8b00235] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 2.8] [Reference Citation Analysis]
29 Zhao W, Li B, Xu S, Zhu Y, Liu X. A fabrication strategy for protein sensors based on an electroactive molecularly imprinted polymer: Cases of bovine serum albumin and trypsin sensing. Anal Chim Acta 2020;1117:25-34. [PMID: 32408951 DOI: 10.1016/j.aca.2020.04.023] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
30 Zhang Y, Li Y, Yang N, Yu X, He C, Niu N, Zhang C, Zhou H, Yu C, Jiang S. Histone controlled aggregation of tetraphenylethene probe: A new method for the detection of protease activity. Sensors and Actuators B: Chemical 2018;257:1143-9. [DOI: 10.1016/j.snb.2017.10.018] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
31 Hu Z, Li Y, Hussain E, Huang X, Zhang Y, Niu N, Shahzad SA, Yu C. Black phosphorus nanosheets based sensitive protease detection and inhibitor screening. Talanta 2019;197:270-6. [DOI: 10.1016/j.talanta.2019.01.023] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 5.7] [Reference Citation Analysis]
32 Miao X, Yu H, Gu Z, Yang L, Teng J, Cao Y, Zhao J. Peptide self-assembly assisted signal labeling for an electrochemical assay of protease activity. Anal Bioanal Chem 2017;409:6723-30. [PMID: 29026956 DOI: 10.1007/s00216-017-0636-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
33 Xu J, Haupt K, Tse Sum Bui B. Core-Shell Molecularly Imprinted Polymer Nanoparticles as Synthetic Antibodies in a Sandwich Fluoroimmunoassay for Trypsin Determination in Human Serum. ACS Appl Mater Interfaces 2017;9:24476-83. [PMID: 28678476 DOI: 10.1021/acsami.7b05844] [Cited by in Crossref: 44] [Cited by in F6Publishing: 30] [Article Influence: 8.8] [Reference Citation Analysis]