BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Habib HM, Ibrahim S, Zaim A, Ibrahim WH. The role of iron in the pathogenesis of COVID-19 and possible treatment with lactoferrin and other iron chelators. Biomed Pharmacother 2021;136:111228. [PMID: 33454595 DOI: 10.1016/j.biopha.2021.111228] [Cited by in Crossref: 91] [Cited by in F6Publishing: 99] [Article Influence: 91.0] [Reference Citation Analysis]
Number Citing Articles
1 Hadi JM, Mohammad HM, Ahmed AY, Tofiq SS, Abdalrahman LB, Qasm AA, Ameer AM. Investigation of Serum Ferritin for the Prediction of COVID-19 Severity and Mortality: A Cross-Sectional Study. Cureus 2022. [DOI: 10.7759/cureus.31982] [Reference Citation Analysis]
2 Krupa-kotara K, Grajek M, Murzyn A, Słoma-krześlak M, Sobczyk K, Białek-dratwa A, Kowalski O. Proper Dietary and Supplementation Patterns as a COVID-19 Protective Factor (Cross-Sectional Study-Silesia, Poland). Life 2022;12:1976. [DOI: 10.3390/life12121976] [Reference Citation Analysis]
3 Wang Y, Ma J, Jiang Y. Transcription factor Nrf2 as a potential therapeutic target for COVID-19. Cell Stress and Chaperones 2022. [DOI: 10.1007/s12192-022-01296-8] [Reference Citation Analysis]
4 Wang B, Shen W, Yang P, Turan S. SARS-CoV-2 infection induces activation of ferroptosis in human placenta. Front Cell Dev Biol 2022;10. [DOI: 10.3389/fcell.2022.1022747] [Reference Citation Analysis]
5 Mahala N, Mittal A, S. Dubey U. Medicinal Potential of Camel Milk Lactoferrin. Dairy Processing - From Basics to Advances [Working Title] 2022. [DOI: 10.5772/intechopen.108316] [Reference Citation Analysis]
6 Jamal QMS. Antiviral Potential of Plants against COVID-19 during Outbreaks—An Update. IJMS 2022;23:13564. [DOI: 10.3390/ijms232113564] [Reference Citation Analysis]
7 Ba T, Zhao D, Chen Y, Zeng C, Zhang C, Niu S, Dai H. L-Citrulline Supplementation Restrains Ferritinophagy-Mediated Ferroptosis to Alleviate Iron Overload-Induced Thymus Oxidative Damage and Immune Dysfunction. Nutrients 2022;14:4549. [DOI: 10.3390/nu14214549] [Reference Citation Analysis]
8 Sharipova MM, Romanov AO, Ivkina MV, Arkhangelskaia AN, Gurevich KG. Prospects for studying the role of some essential and toxic trace elements in the pathogenesis of COVID-19. Medicinskij sovet 2022;16:147-153. [DOI: 10.21518/2079-701x-2022-16-18-147-153] [Reference Citation Analysis]
9 Mohus RM, Flatby H, Liyanarachi KV, DeWan AT, Solligård E, Damås JK, Åsvold BO, Gustad LT, Rogne T. Iron status and the risk of sepsis and severe COVID-19: a two-sample Mendelian randomization study. Sci Rep 2022;12:16157. [PMID: 36171422 DOI: 10.1038/s41598-022-20679-6] [Reference Citation Analysis]
10 Romanov AO, Sharipova MМ, Ivkina MV, Arkhangelskaya AN, Gurevich KG. COVID-19 and trace elements (literature review). Russian Journal of Physiotherapy, Balneology and Rehabilitation 2022;20:535-549. [DOI: 10.17816/rjpbr108702] [Reference Citation Analysis]
11 Kell DB, Pretorius E. The potential role of ischaemia-reperfusion injury in chronic, relapsing diseases such as rheumatoid arthritis, Long COVID, and ME/CFS: evidence, mechanisms, and therapeutic implications. Biochem J 2022;479:1653-708. [PMID: 36043493 DOI: 10.1042/BCJ20220154] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
12 Li Y, Luo W, Liang B. Circulating trace elements status in COVID-19 disease: A meta-analysis. Front Nutr 2022;9:982032. [PMID: 36034929 DOI: 10.3389/fnut.2022.982032] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Sampaio SC, Sacramento GS, De Almeida JB. The role of iron and ferritin in pathophysiology and as a laboratory marker in COVID-19. Rev Cienc Saude 2022;12:12-21. [DOI: 10.21876/rcshci.v12i3.1275] [Reference Citation Analysis]
14 Uniyal N, Sethi Y, Chopra H, Dhawan M, Emran TB. Iron replacement therapy in iron deficiency anemia: A perspective revisited for low-and middle-income countries - Correspondence. Int J Surg 2022;:106871. [PMID: 36049619 DOI: 10.1016/j.ijsu.2022.106871] [Reference Citation Analysis]
15 Habib HM, El-fakharany EM, Souka UD, Elsebaee FM, El-ziney MG, Ibrahim WH. Polyphenol-Rich Date Palm Fruit Seed (Phoenix Dactylifera L.) Extract Inhibits Labile Iron, Enzyme, and Cancer Cell Activities, and DNA and Protein Damage. Nutrients 2022;14:3536. [DOI: 10.3390/nu14173536] [Reference Citation Analysis]
16 Sun C, Han Y, Zhang R, Liu S, Wang J, Zhang Y, Chen X, Jiang C, Wang J, Fan X, Wang J. Regulated necrosis in COVID-19: A double-edged sword. Front Immunol 2022;13:917141. [DOI: 10.3389/fimmu.2022.917141] [Reference Citation Analysis]
17 Lokesh KN, Raichur AM. Bioactive nutraceutical ligands and their efficiency to chelate elemental iron of varying dynamic oxidation states to mitigate associated clinical conditions. Crit Rev Food Sci Nutr 2022;:1-27. [PMID: 35943179 DOI: 10.1080/10408398.2022.2106936] [Reference Citation Analysis]
18 Karat S, Lobo AC, Satish D, Devaraj R, Manjooran RR, Nithyanandam S. Uncontrolled diabetes mellitus exacerbated by COVID-19-induced inflammation is the risk factor for COVID-19-associated rhino-orbito-cerebral mucormycosis: A matched pair case-control study. Indian J Ophthalmol 2022;70:3096-101. [PMID: 35918980 DOI: 10.4103/ijo.IJO_448_22] [Reference Citation Analysis]
19 Sun C, Zhao H, Han Y, Wang Y, Sun X. The Role of Inflammasomes in COVID-19: Potential Therapeutic Targets. J Interferon Cytokine Res 2022;42:406-20. [PMID: 35984324 DOI: 10.1089/jir.2022.0061] [Reference Citation Analysis]
20 Pachpatil PK, Kanojia SV, Ghosh A, Majumdar AG, Wadawale A, Mohapatra M, Patro BS, Ghanty TK, Goswami D. Stable, Triplet Ground State BODIPY-TEMPO Diradical as a Selective Turn on Fluorescence Sensor for Intracellular Labile Iron Pool. Sensors and Actuators B: Chemical 2022. [DOI: 10.1016/j.snb.2022.132474] [Reference Citation Analysis]
21 Engin AB, Engin ED, Engin A. Can Iron, Zinc, Copper and Selenium status be a prognostic determinant in COVID-19 patients? Environ Toxicol Pharmacol 2022;:103937. [PMID: 35882309 DOI: 10.1016/j.etap.2022.103937] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Habib HM, El-Fakharany EM, Kheadr E, Ibrahim WH. Grape seed proanthocyanidin extract inhibits DNA and protein damage and labile iron, enzyme, and cancer cell activities. Sci Rep 2022;12:12393. [PMID: 35859159 DOI: 10.1038/s41598-022-16608-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Zhang Y, Tian X, Teng A, Li Y, Jiao Y, Zhao K, Wang Y, Li R, Yang N, Wang W. Polyphenols and polyphenols-based biopolymer materials: Regulating iron absorption and availability from spontaneous to controllable. Critical Reviews in Food Science and Nutrition. [DOI: 10.1080/10408398.2022.2101092] [Reference Citation Analysis]
24 Liu J, Li Z, Lu Q, Yu Y, Zhang S, Ke P, Zhang F, Li J. Metabolite profile of COVID-19 revealed by UPLC-MS/MS-based widely targeted metabolomics. Front Immunol 2022;13:894170. [DOI: 10.3389/fimmu.2022.894170] [Reference Citation Analysis]
25 Sharma R, Kumar P, Rauf A, Chaudhary A, Prajapati PK, Emran TB, Gonçalves Lima CM, Conte-junior CA. Mucormycosis in the COVID-19 Environment: A Multifaceted Complication. Front Cell Infect Microbiol 2022;12:937481. [DOI: 10.3389/fcimb.2022.937481] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
26 Suriawinata E, Mehta KJ. Iron and iron-related proteins in COVID-19. Clin Exp Med 2022. [PMID: 35849261 DOI: 10.1007/s10238-022-00851-y] [Reference Citation Analysis]
27 Szabo R, Petrisor C, Bodolea C, Simon R, Maries I, Tranca S, Mocan T. Hyperferritinemia, Low Circulating Iron and Elevated Hepcidin May Negatively Impact Outcome in COVID-19 Patients: A Pilot Study. Antioxidants 2022;11:1364. [DOI: 10.3390/antiox11071364] [Reference Citation Analysis]
28 Mahajan I, Ghose A, Gupta D, Manasvi M, Bhandari S, Das A, Sanchez E, Boussios S. COVID-19, Mucormycosis and Cancer: The Triple Threat-Hypothesis or Reality? J Pers Med 2022;12:1119. [PMID: 35887616 DOI: 10.3390/jpm12071119] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
29 Zeinivand M, jamali-Raeufy N, Zavvari F. The beneficial role of Hepcidin peptide inhibitor in improved the symptoms of COVID-19 in diabetics: anti-inflammatory and potential therapeutic effects. J Diabetes Metab Disord. [DOI: 10.1007/s40200-022-01053-9] [Reference Citation Analysis]
30 Lehmann C, Alizadeh-tabrizi N, Hall S, Faridi S, Euodia I, Holbein B, Zhou J, Chappe V. Anti-Inflammatory Effects of the Iron Chelator, DIBI, in Experimental Acute Lung Injury. Molecules 2022;27:4036. [DOI: 10.3390/molecules27134036] [Reference Citation Analysis]
31 Pang Z, Hu R, Tian L, Lou F, Chen Y, Wang S, He S, Zhu S, An X, Song L, Liu F, Tong Y, Fan H. Overview of Breastfeeding Under COVID-19 Pandemic. Front Immunol 2022;13:896068. [PMID: 35711421 DOI: 10.3389/fimmu.2022.896068] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
32 Farghly Youssif S, Abdelrady MM, Thabet AA, Abdelhamed MA, Gad MOA, Abu-Elfatth AM, Saied GM, Goda I, Algammal AM, Batiha GE, Abd El-Rady NM, Hetta HF, Kasem SM. COVID-19 associated mucormycosis in Assiut University Hospitals: a multidisciplinary dilemma. Sci Rep 2022;12:10494. [PMID: 35729170 DOI: 10.1038/s41598-022-13443-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Kontoghiorghes GJ. Deferiprone: A Forty-Year-Old Multi-Targeting Drug with Possible Activity against COVID-19 and Diseases of Similar Symptomatology. Int J Mol Sci 2022;23:6735. [PMID: 35743183 DOI: 10.3390/ijms23126735] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
34 Li X, Zhang Z, Wang Z, Gutiérrez-Castrellón P, Shi H. Cell deaths: Involvement in the pathogenesis and intervention therapy of COVID-19. Signal Transduct Target Ther 2022;7:186. [PMID: 35697684 DOI: 10.1038/s41392-022-01043-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
35 Mohus RM, Flatby H, Liyanarachi KV, Dewan AT, Solligård E, Damås JK, Åsvold BO, Gustad LT, Rogne T. Iron status and the risk of sepsis and severe COVID-19: A two-sample Mendelian randomization study.. [DOI: 10.1101/2022.06.02.22275901] [Reference Citation Analysis]
36 Batiha GE, Al-Gareeb AI, Qusti S, Alshammari EM, Kaushik D, Verma R, Al-Kuraishy HM. Deciphering the immunoboosting potential of macro and micronutrients in COVID support therapy. Environ Sci Pollut Res Int 2022;29:43516-31. [PMID: 35391642 DOI: 10.1007/s11356-022-20075-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
37 Naidu SA, Clemens RA, Naidu AS. SARS-CoV-2 Infection Dysregulates Host Iron (Fe)-Redox Homeostasis (Fe-R-H): Role of Fe-Redox Regulators, Ferroptosis Inhibitors, Anticoagulants, and Iron-Chelators in COVID-19 Control. Journal of Dietary Supplements. [DOI: 10.1080/19390211.2022.2075072] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Gu SX, Dayal S. Redox Mechanisms of Platelet Activation in Aging. Antioxidants 2022;11:995. [DOI: 10.3390/antiox11050995] [Reference Citation Analysis]
39 Isinkaralar K. The large-scale period of atmospheric trace metal deposition to urban landscape trees as a biomonitor. Biomass Conv Bioref . [DOI: 10.1007/s13399-022-02796-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
40 Darmawan KK, Karagiannis TC, Hughes JG, Small DM, Hung A. Molecular modeling of lactoferrin for food and nutraceutical applications: insights from in silico techniques. Crit Rev Food Sci Nutr 2022;:1-24. [PMID: 35503258 DOI: 10.1080/10408398.2022.2067824] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Mocan M, Szabo R, Constantinescu C, Cucoreanu C, Chira RI. Association between Severe SARS-CoV-2 Infection and Severe Acute Pancreatitis in Pregnancy and Postpartum. J Clin Med 2022;11:2554. [PMID: 35566679 DOI: 10.3390/jcm11092554] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
42 Narmuratova Z, Hentati F, Girardet J, Narmuratova M, Cakir-kiefer C. Equine lactoferrin: Antioxidant properties related to divalent metal chelation. LWT 2022;161:113426. [DOI: 10.1016/j.lwt.2022.113426] [Reference Citation Analysis]
43 Ertuğrul G, Aktaş H. Lower Levels of Vitamin B12 Among Patients with Viral Warts Compared with Control Subjects: A Retrospective Study. Düzce Tıp Fakültesi Dergisi 2022. [DOI: 10.18678/dtfd.1053249] [Reference Citation Analysis]
44 Zhang R, Sun C, Chen X, Han Y, Zang W, Jiang C, Wang J, Wang J. COVID-19-Related Brain Injury: The Potential Role of Ferroptosis. JIR 2022;Volume 15:2181-98. [DOI: 10.2147/jir.s353467] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
45 Mendonça MM, da Cruz KR, Pinheiro DDS, Moraes GCA, Ferreira PM, Ferreira-neto ML, da Silva ES, Gonçalves RV, Pedrino GR, Fajemiroye JO, Xavier CH. Dysregulation in erythrocyte dynamics caused by SARS-CoV-2 infection: possible role in shuffling the homeostatic puzzle during COVID-19. Hematology, Transfusion and Cell Therapy 2022;44:235-245. [DOI: 10.1016/j.htct.2022.01.005] [Reference Citation Analysis]
46 Bianconi V, Mannarino MR, Figorilli F, Cosentini E, Batori G, Marini E, Banach M, Sahebkar A, Pirro M. The detrimental impact of elevated Ferritin to Iron ratio on in-hospital prognosis of patients with COVID-19. Expert Rev Mol Diagn 2022. [PMID: 35260036 DOI: 10.1080/14737159.2022.2052047] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
47 Krolitzki E, Schwaminger SP, Pagel M, Ostertag F, Hinrichs J, Berensmeier S. Current practices with commercial scale bovine lactoferrin production and alternative approaches. International Dairy Journal 2022;126:105263. [DOI: 10.1016/j.idairyj.2021.105263] [Reference Citation Analysis]
48 Zhao C, Chen N, Ashaolu TJ. Whey proteins and peptides in health-promoting functions – A review. International Dairy Journal 2022;126:105269. [DOI: 10.1016/j.idairyj.2021.105269] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
49 Zhang X, Fu L, Hou Y, Long N, Zhu G, Liao X, Zhou L, Lu J, Kong W. A nitrogen-doped carbon dots based fluorescent nanosensor for sensitive assay of Fe3+ ions in Dioscorea opposita Thunb. Industrial Crops and Products 2022;177:114439. [DOI: 10.1016/j.indcrop.2021.114439] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
50 Cavezzi A, Menicagli R, Troiani E, Corrao S. COVID-19, Cation Dysmetabolism, Sialic Acid, CD147, ACE2, Viroporins, Hepcidin and Ferroptosis: A Possible Unifying Hypothesis. F1000Res 2022;11:102. [DOI: 10.12688/f1000research.108667.2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
51 Kozlova E, Sherstyukova E, Sergunova V, Kozlov A, Gudkova O, Inozemtsev V, Chernysh A, Hseu Y. The Toxic Influence of Excess Free Iron on Red Blood Cells in the Biophysical Experiment: An In Vitro Study. Journal of Toxicology 2022;2022:1-16. [DOI: 10.1155/2022/7113958] [Reference Citation Analysis]
52 Vasanthapuram VH, Gupta R, Adulkar N, Nair AG, Bradoo RA, Hegde R, Singh U, Tadepalli S, Mukherjee B, Kamal S, Alam MS, Rao R, Ananthakrishna S, Backiavathy V, Murthy AK, D’cunha L, Dudeja G, Joji A, Kiran A, Koka K, Goswami Mukhopadhyay M, Nisar SP, Rao PR, Shinde CA. A fungal epidemic amidst a viral pandemic: Risk factors for development of COVID-19 associated rhino-orbital-cerebral mucormycosis in India. Orbit. [DOI: 10.1080/01676830.2021.2020851] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
53 Liu X, Zhang J, Xie W. The role of ferroptosis in acute lung injury. Mol Cell Biochem 2022. [PMID: 35166985 DOI: 10.1007/s11010-021-04327-7] [Reference Citation Analysis]
54 Singh J, Panwar A, Anantharaj A, Rani C, Bhardwaj M, Kumar P, Pargai K, Chattopadhyay P, Devi P, Maurya R, Mishra P, Pandey AK, Pandey R, Medigeshi GR. BA.1 and BA.2 sub-lineages of Omicron variant have comparable replication kinetics and susceptibility to neutralization by antibodies.. [DOI: 10.1101/2022.01.28.22269990] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
55 Ścibior A, Wnuk E. Elements and COVID-19: A Comprehensive Overview of Studies on Their Blood/Urinary Levels and Supplementation with an Update on Clinical Trials. Biology 2022;11:215. [DOI: 10.3390/biology11020215] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
56 Cavezzi A, Menicagli R, Troiani E, Corrao S. COVID-19, Cation Dysmetabolism, Sialic Acid, CD147, ACE2, Viroporins, Hepcidin and Ferroptosis: A Possible Unifying Hypothesis. F1000Res 2022;11:102. [DOI: 10.12688/f1000research.108667.1] [Reference Citation Analysis]
57 Djordjevic B, Milenkovic J, Stojanovic D, Velickov A, Djindjic B, Jevtovic Stoimenov T. Vitamins, microelements and the immune system: current standpoint in the fight against coronavirus disease 2019. Br J Nutr 2022;:1-16. [PMID: 35057876 DOI: 10.1017/S0007114522000083] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
58 Ni Y, Zeng H, Song X, Zheng J, Wu H, Liu C, Zhang Y. Potential metal-related strategies for prevention and treatment of COVID-19. Rare Met . [DOI: 10.1007/s12598-021-01894-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
59 Gallo V, Giansanti F, Arienzo A, Antonini G. Antiviral properties of whey proteins and their activity against SARS-CoV-2 infection. J Funct Foods 2022;89:104932. [PMID: 35003332 DOI: 10.1016/j.jff.2022.104932] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
60 Dutta S, Mukherjee A, Nongthomba U. Before the "cytokine storm": Boosting efferocytosis as an effective strategy against SARS-CoV-2 infection and associated complications. Cytokine Growth Factor Rev 2022:S1359-6101(22)00002-8. [PMID: 35039221 DOI: 10.1016/j.cytogfr.2022.01.002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
61 De Sanctis JB, Garmendia JV, Hajdúch M. Overview of Memory NK Cells in Viral Infections: Possible Role in SARS-CoV-2 Infection. Immuno 2022;2:52-67. [DOI: 10.3390/immuno2010005] [Reference Citation Analysis]
62 Belykh N, Solovieva O, Anikeeva N. Importance of trace elements in modulating the immune response to SARS-CoV-2 and other viral infections. Profil med 2022;25:100. [DOI: 10.17116/profmed202225021100] [Reference Citation Analysis]
63 Jendrzejewska I, Musioł R, Goryczka T, Pietrasik E, Klimontko J, Jampilek J. The Usefulness of X-ray Diffraction and Thermal Analysis to Study Dietary Supplements Containing Iron. Molecules 2021;27:197. [DOI: 10.3390/molecules27010197] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
64 Kowalczyk P, Sulejczak D, Kleczkowska P, Bukowska-Ośko I, Kucia M, Popiel M, Wietrak E, Kramkowski K, Wrzosek K, Kaczyńska K. Mitochondrial Oxidative Stress-A Causative Factor and Therapeutic Target in Many Diseases. Int J Mol Sci 2021;22:13384. [PMID: 34948180 DOI: 10.3390/ijms222413384] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
65 Wang X, Zhao Y, Wang T, Liang Y, Zhao X, Tang K, Guan Y, Wang H. Carboxyl-Rich Carbon Dots as Highly Selective and Sensitive Fluorescent Sensor for Detection of Fe3+ in Water and Lactoferrin. Polymers (Basel) 2021;13:4317. [PMID: 34960868 DOI: 10.3390/polym13244317] [Reference Citation Analysis]
66 Amin A, Vartanian A, Poladian N, Voloshko A, Yegiazaryan A, Al-Kassir AL, Venketaraman V. Root Causes of Fungal Coinfections in COVID-19 Infected Patients. Infect Dis Rep 2021;13:1018-35. [PMID: 34940403 DOI: 10.3390/idr13040093] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 16.0] [Reference Citation Analysis]
67 Bhadania S, Bhalodiya N, Sethi Y, Kaka N, Mishra S, Patel N, Wasim AU, Joshi SS, Shah K. Hyperferritinemia and the Extent of Mucormycosis in COVID-19 Patients. Cureus 2021;13:e20569. [PMID: 35103148 DOI: 10.7759/cureus.20569] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
68 Alloush TK, Mansour O, Alloush AT, Roushdy T, Hamid E, El-Shamy M, Shokri HM. Rhino-orbito-cerebral mucormycosis during the COVID-19 third wave in 2021: an Egyptian preliminary report from a single tertiary hospital. Neurol Sci 2021. [PMID: 34787754 DOI: 10.1007/s10072-021-05740-y] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
69 Leiser OP, Hobbs EC, Sims AC, Korch GW, Taylor KL. Beyond the List: Bioagent-Agnostic Signatures Could Enable a More Flexible and Resilient Biodefense Posture Than an Approach Based on Priority Agent Lists Alone. Pathogens 2021;10:1497. [PMID: 34832652 DOI: 10.3390/pathogens10111497] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
70 Rastogi A, Jude EB. Diabetes, COVID-19 and Mucormycosis: Unanswered Questions! Indian J Endocrinol Metab 2021;25:191-2. [PMID: 34760671 DOI: 10.4103/ijem.ijem_284_21] [Reference Citation Analysis]
71 Smethurst DGJ, Shcherbik N. Interchangeable utilization of metals: New perspectives on the impacts of metal ions employed in ancient and extant biomolecules. J Biol Chem 2021;297:101374. [PMID: 34732319 DOI: 10.1016/j.jbc.2021.101374] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 8.0] [Reference Citation Analysis]
72 Sen A. Deficient synthesis of melatonin in COVID-19 can impair the resistance of coronavirus patients to mucormycosis. Med Hypotheses 2021;158:110722. [PMID: 34753008 DOI: 10.1016/j.mehy.2021.110722] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
73 Riederer P, Monoranu C, Strobel S, Iordache T, Sian-Hülsmann J. Iron as the concert master in the pathogenic orchestra playing in sporadic Parkinson's disease. J Neural Transm (Vienna) 2021;128:1577-98. [PMID: 34636961 DOI: 10.1007/s00702-021-02414-z] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 14.0] [Reference Citation Analysis]
74 Ma TL, Zhou Y, Wang C, Wang L, Chen JX, Yang HH, Zhang CY, Zhou Y, Guan CX. Targeting Ferroptosis for Lung Diseases: Exploring Novel Strategies in Ferroptosis-Associated Mechanisms. Oxid Med Cell Longev 2021;2021:1098970. [PMID: 34630843 DOI: 10.1155/2021/1098970] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
75 Wang X, Wei Z, Xue C. The past and future of ovotransferrin: Physicochemical properties, assembly and applications. Trends in Food Science & Technology 2021;116:47-62. [DOI: 10.1016/j.tifs.2021.07.003] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
76 Soni S, Namdeo Pudake R, Jain U, Chauhan N. A systematic review on SARS-CoV-2-associated fungal coinfections. J Med Virol 2022;94:99-109. [PMID: 34570905 DOI: 10.1002/jmv.27358] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 8.0] [Reference Citation Analysis]
77 Orlova SV, Nikitina EA, Prokopenko EV, Volkova LY, Vodolazkaya AN. Immune properties of lactoferrin and its protective role in new coronavirus infection COVID-19. Medicinskij alfavit 2021. [DOI: 10.33667/2078-5631-2021-21-22-26] [Reference Citation Analysis]
78 Martinez-Boubeta C, Simeonidis K. Airborne magnetic nanoparticles may contribute to COVID-19 outbreak: Relationships in Greece and Iran. Environ Res 2021;204:112054. [PMID: 34547249 DOI: 10.1016/j.envres.2021.112054] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
79 Duca L, Ottolenghi S, Coppola S, Rinaldo R, Dei Cas M, Rubino FM, Paroni R, Samaja M, Chiumello DA, Motta I. Differential Redox State and Iron Regulation in Chronic Obstructive Pulmonary Disease, Acute Respiratory Distress Syndrome and Coronavirus Disease 2019. Antioxidants (Basel) 2021;10:1460. [PMID: 34573092 DOI: 10.3390/antiox10091460] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
80 Simjanoska M, Mitrev Z, Villa G, Griffin DO, Rosalia RA. Severe COVID-19 is associated with sustained biochemical disturbances and prolonged symptomatology; A retrospective single-centre cohort study.. [DOI: 10.1101/2021.09.02.21262599] [Reference Citation Analysis]
81 Polushin YS, Shlyk IV, Gavrilova EG, Parshin EV, Ginzburg AM. The Role of Ferritin in Assessing COVID-19 Severity. Vestn anesteziol reanimatol 2021;18:20-28. [DOI: 10.21292/2078-5658-2021-18-4-20-28] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
82 Dayaramani C, De Leon J, Reiss AB. Cardiovascular Disease Complicating COVID-19 in the Elderly. Medicina (Kaunas) 2021;57:833. [PMID: 34441038 DOI: 10.3390/medicina57080833] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
83 Zinchenko AI, Birichevskaya LL, Kazlouski IS, Bulatovski AB. Possible response of molecular biotechnology to call SARS-CoV-2. Vescì Akademìì navuk Belarusì Seryâ biâlagičnyh navuk 2021;66:357-369. [DOI: 10.29235/1029-8940-2021-66-3-357-369] [Reference Citation Analysis]
84 Prakash H, Skiada A, Paul RA, Chakrabarti A, Rudramurthy SM. Connecting the Dots: Interplay of Pathogenic Mechanisms between COVID-19 Disease and Mucormycosis. J Fungi (Basel) 2021;7:616. [PMID: 34436155 DOI: 10.3390/jof7080616] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 21.0] [Reference Citation Analysis]
85 Hu H, Chen Y, Jing L, Zhai C, Shen L. The Link Between Ferroptosis and Cardiovascular Diseases: A Novel Target for Treatment. Front Cardiovasc Med 2021;8:710963. [PMID: 34368260 DOI: 10.3389/fcvm.2021.710963] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 15.0] [Reference Citation Analysis]
86 Jain A, Jain A, Purohit S. COVID-19, Diabetes Mellitus, Corticosteroids: A Recipe for Disaster. Ear Nose Throat J 2021;:1455613211033687. [PMID: 34281417 DOI: 10.1177/01455613211033687] [Reference Citation Analysis]
87 Li YQ, Guo C. A Review on Lactoferrin and Central Nervous System Diseases. Cells 2021;10:1810. [PMID: 34359979 DOI: 10.3390/cells10071810] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
88 Meng F, Siu GK, Mok BW, Sun J, Fung KSC, Lam JY, Wong NK, Gedefaw L, Luo S, Lee TMH, Yip SP, Huang CL. Viral MicroRNAs Encoded by Nucleocapsid Gene of SARS-CoV-2 Are Detected during Infection, and Targeting Metabolic Pathways in Host Cells. Cells 2021;10:1762. [PMID: 34359932 DOI: 10.3390/cells10071762] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 14.0] [Reference Citation Analysis]
89 Pal R, Singh B, Bhadada SK, Banerjee M, Bhogal RS, Hage N, Kumar A. COVID-19-associated mucormycosis: An updated systematic review of literature. Mycoses 2021. [PMID: 34133798 DOI: 10.1111/myc.13338] [Cited by in Crossref: 82] [Cited by in F6Publishing: 94] [Article Influence: 82.0] [Reference Citation Analysis]
90 Kucia M, Wietrak E, Szymczak M, Majchrzak M, Kowalczyk P. Protective Action of L. salivarius SGL03 and Lactoferrin against COVID-19 Infections in Human Nasopharynx. Materials (Basel) 2021;14:3086. [PMID: 34200055 DOI: 10.3390/ma14113086] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
91 Bukowska-Ośko I, Popiel M, Kowalczyk P. The Immunological Role of the Placenta in SARS-CoV-2 Infection-Viral Transmission, Immune Regulation, and Lactoferrin Activity. Int J Mol Sci 2021;22:5799. [PMID: 34071527 DOI: 10.3390/ijms22115799] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
92 Carota G, Ronsisvalle S, Panarello F, Tibullo D, Nicolosi A, Li Volti G. Role of Iron Chelation and Protease Inhibition of Natural Products on COVID-19 Infection. J Clin Med 2021;10:2306. [PMID: 34070628 DOI: 10.3390/jcm10112306] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 12.0] [Reference Citation Analysis]
93 Mattar EH, Elrashdy F, Almehdar HA, Uversky VN, Redwan EM. Natural resources to control COVID-19: could lactoferrin amend SARS-CoV-2 infectivity? PeerJ 2021;9:e11303. [PMID: 33954061 DOI: 10.7717/peerj.11303] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
94 Domingo JL, Marquès M. The effects of some essential and toxic metals/metalloids in COVID-19: A review. Food Chem Toxicol 2021;152:112161. [PMID: 33794307 DOI: 10.1016/j.fct.2021.112161] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 18.0] [Reference Citation Analysis]
95 Morniroli D, Consales A, Crippa BL, Vizzari G, Ceroni F, Cerasani J, Colombo L, Mosca F, Giannì ML. The Antiviral Properties of Human Milk: A Multitude of Defence Tools from Mother Nature. Nutrients 2021;13:694. [PMID: 33671491 DOI: 10.3390/nu13020694] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 13.0] [Reference Citation Analysis]