1 |
Kong AS, Lai KS, Lim SE, Sivalingam S, Loh JY, Maran S. miRNA in Ischemic Heart Disease and Its Potential as Biomarkers: A Comprehensive Review. Int J Mol Sci 2022;23:9001. [PMID: 36012267 DOI: 10.3390/ijms23169001] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
2 |
Wang Y, Liu X, Xia P, Li Z, FuChen X, Shen Y, Yu P, Zhang J. The Regulatory Role of MicroRNAs on Phagocytes: A Potential Therapeutic Target for Chronic Diseases. Front Immunol 2022;13:901166. [PMID: 35634335 DOI: 10.3389/fimmu.2022.901166] [Reference Citation Analysis]
|
3 |
Sheng X, Yang Y, Liu J, Yu J, Guo Q, Guan W, Liu F. Down-regulation of miR-18b-5p protects against splenic hemorrhagic shock by directly targeting HIF-1α/iNOS pathway. Immunobiology 2022. [DOI: 10.1016/j.imbio.2022.152188] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
|
4 |
Santos D, Carvalho E. Adipose-related microRNAs as modulators of the cardiovascular system: the role of epicardial adipose tissue. J Physiol 2021. [PMID: 34455587 DOI: 10.1113/JP280917] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
|
5 |
Rachmawati E, Sargowo D, Rohman MS, Widodo N, Kalsum U. miR-155-5p predictive role to decelerate foam cell atherosclerosis through CD36, VAV3, and SOCS1 pathway. Noncoding RNA Res 2021;6:59-69. [PMID: 33869908 DOI: 10.1016/j.ncrna.2021.02.003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
6 |
Javadifar A, Rastgoo S, Banach M, Jamialahmadi T, Johnston TP, Sahebkar A. Foam Cells as Therapeutic Targets in Atherosclerosis with a Focus on the Regulatory Roles of Non-Coding RNAs. Int J Mol Sci 2021;22:2529. [PMID: 33802600 DOI: 10.3390/ijms22052529] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
|
7 |
Ali Sheikh MS, Alduraywish A, Almaeen A, Alruwali M, Alruwaili R, Alomair BM, Salma U, Hedeab GM, Bugti N, A M Abdulhabeeb I. Therapeutic Value of miRNAs in Coronary Artery Disease. Oxid Med Cell Longev 2021;2021:8853748. [PMID: 33953838 DOI: 10.1155/2021/8853748] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
|
8 |
Zareba L, Fitas A, Wolska M, Junger E, Eyileten C, Wicik Z, De Rosa S, Siller-Matula JM, Postula M. MicroRNAs and Long Noncoding RNAs in Coronary Artery Disease: New and Potential Therapeutic Targets. Cardiol Clin 2020;38:601-17. [PMID: 33036721 DOI: 10.1016/j.ccl.2020.07.005] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
|
9 |
Lightbody RJ, Taylor JMW, Dempsie Y, Graham A. MicroRNA sequences modulating inflammation and lipid accumulation in macrophage "foam" cells: Implications for atherosclerosis. World J Cardiol 2020;12:303-33. [PMID: 32843934 DOI: 10.4330/wjc.v12.i7.303] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
|
10 |
Lian C, Wang Z, Qiu J, Jiang B, Lv J, He R, Liu R, Li W, Wang J, Wang S. TIM‑3 inhibits PDGF‑BB‑induced atherogenic responses in human artery vascular smooth muscle cells. Mol Med Rep 2020;22:886-94. [PMID: 32467985 DOI: 10.3892/mmr.2020.11167] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
|
11 |
Luo B, Zeng X, Liu P, Zhu H. Noncoding RNAs and Heart Failure. Adv Exp Med Biol 2020;1229:215-29. [PMID: 32285414 DOI: 10.1007/978-981-15-1671-9_12] [Reference Citation Analysis]
|
12 |
Gulei D, Raduly L, Broseghini E, Ferracin M, Berindan-Neagoe I. The extensive role of miR-155 in malignant and non-malignant diseases. Mol Aspects Med 2019;70:33-56. [PMID: 31558293 DOI: 10.1016/j.mam.2019.09.004] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 6.8] [Reference Citation Analysis]
|
13 |
Li J, Li K, Chen X. Inflammation‐regulatory microRNAs: Valuable targets for intracranial atherosclerosis. J Neurosci Res 2019;97:1242-52. [DOI: 10.1002/jnr.24487] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
|
14 |
Hueso M, Cruzado JM, Torras J, Navarro E. An Exonic Switch Regulates Differential Accession of microRNAs to the Cd34 Transcript in Atherosclerosis Progression. Genes (Basel) 2019;10:E70. [PMID: 30669689 DOI: 10.3390/genes10010070] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
|