BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Qian F, Han Y, Han Z, Zhang D, Zhang L, Zhao G, Li S, Jin G, Yu R, Liu H. In Situ implantable, post-trauma microenvironment-responsive, ROS Depletion Hydrogels for the treatment of Traumatic brain injury. Biomaterials 2021;270:120675. [PMID: 33548799 DOI: 10.1016/j.biomaterials.2021.120675] [Cited by in Crossref: 37] [Cited by in F6Publishing: 28] [Article Influence: 18.5] [Reference Citation Analysis]
Number Citing Articles
1 Liu X, Wu C, Zhang Y, Chen S, Ding J, Chen Z, Wu K, Wu X, Zhou T, Zeng M, Wei D, Sun J, Fan H, Zhou L. Hyaluronan-based hydrogel integrating exosomes for traumatic brain injury repair by promoting angiogenesis and neurogenesis. Carbohydr Polym 2023;306:120578. [PMID: 36746568 DOI: 10.1016/j.carbpol.2023.120578] [Reference Citation Analysis]
2 Gu G, Ren J, Zhu B, Shi Z, Feng S, Wei Z. Multiple mechanisms of curcumin targeting spinal cord injury. Biomed Pharmacother 2023;159:114224. [PMID: 36641925 DOI: 10.1016/j.biopha.2023.114224] [Reference Citation Analysis]
3 Shao Z, Yin T, Jiang J, He Y, Xiang T, Zhou S. Wound microenvironment self-adaptive hydrogel with efficient angiogenesis for promoting diabetic wound healing. Bioactive Materials 2023;20:561-73. [DOI: 10.1016/j.bioactmat.2022.06.018] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
4 Kumosa LS. Commonly Overlooked Factors in Biocompatibility Studies of Neural Implants. Adv Sci (Weinh) 2023;:e2205095. [PMID: 36596702 DOI: 10.1002/advs.202205095] [Reference Citation Analysis]
5 Huang T, Wu J, Mu J, Gao J. Advanced Therapies for Traumatic Central Nervous System Injury: Delivery Strategy Reinforced Efficient Microglial Manipulation. Mol Pharm 2023;20:41-56. [PMID: 36469398 DOI: 10.1021/acs.molpharmaceut.2c00605] [Reference Citation Analysis]
6 Hu Y, Jia Y, Wang S, Ma Y, Huang G, Ding T, Feng D, Genin GM, Wei Z, Xu F. An ECM-Mimicking, Injectable, Viscoelastic Hydrogel for Treatment of Brain Lesions. Adv Healthc Mater 2023;12:e2201594. [PMID: 36398536 DOI: 10.1002/adhm.202201594] [Reference Citation Analysis]
7 Zhou J, Fang C, Rong C, Luo T, Liu J, Zhang K. Reactive oxygen species-sensitive materials: A promising strategy for regulating inflammation and favoring tissue regeneration. Smart Materials in Medicine 2023. [DOI: 10.1016/j.smaim.2023.01.004] [Reference Citation Analysis]
8 Wang Z, Li Y, Sun C, Cui P, Han Y, Wu T, Xu B, Zhang C, Shi L, Dai J. Locally controlled release of immunosuppressive promotes survival of transplanted adult spinal cord tissue. Regen Biomater 2023;10:rbac097. [PMID: 36683735 DOI: 10.1093/rb/rbac097] [Reference Citation Analysis]
9 Zhou W, Duan Z, Zhao J, Fu R, Zhu C, Fan D. Glucose and MMP-9 dual-responsive hydrogel with temperature sensitive self-adaptive shape and controlled drug release accelerates diabetic wound healing. Bioactive Materials 2022;17:1-17. [DOI: 10.1016/j.bioactmat.2022.01.004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
10 Liu X, Zhang J, Cheng X, Liu P, Feng Q, Wang S, Li Y, Gu H, Zhong L, Chen M, Zhou L. Integrated printed BDNF-stimulated HUCMSCs-derived exosomes/collagen/chitosan biological scaffolds with 3D printing technology promoted the remodelling of neural networks after traumatic brain injury. Regen Biomater 2023;10:rbac085. [PMID: 36683754 DOI: 10.1093/rb/rbac085] [Reference Citation Analysis]
11 Li B, Li N, Chen L, Ren S, Gao D, Geng H, Fu J, Zhou M, Xing C. Alleviating Neuroinflammation through Photothermal Conjugated Polymer Nanoparticles by Regulating Reactive Oxygen Species and Ca2+ Signaling. ACS Appl Mater Interfaces 2022. [PMID: 36268893 DOI: 10.1021/acsami.2c13322] [Reference Citation Analysis]
12 Sun H, Zhan M, Mignani S, Shcharbin D, Majoral J, Rodrigues J, Shi X, Shen M. Modulation of Macrophages Using Nanoformulations with Curcumin to Treat Inflammatory Diseases: A Concise Review. Pharmaceutics 2022;14:2239. [DOI: 10.3390/pharmaceutics14102239] [Reference Citation Analysis]
13 Zhang X, Wang B, Hong H, Wang Y, Liu J, Liu C, Chen X. Decellularized extracellular matrix and mesenchymal stem cells promote recovery in traumatic brain injury by synergistically enhancing neurogenesis and attenuating neuroinflammation. Journal of Materials Science & Technology 2022. [DOI: 10.1016/j.jmst.2022.08.028] [Reference Citation Analysis]
14 Mashabela LT, Maboa MM, Miya NF, Ajayi TO, Chasara RS, Milne M, Mokhele S, Demana PH, Witika BA, Siwe-noundou X, Poka MS. A Comprehensive Review of Cross-Linked Gels as Vehicles for Drug Delivery to Treat Central Nervous System Disorders. Gels 2022;8:563. [DOI: 10.3390/gels8090563] [Reference Citation Analysis]
15 Wei W, Hao M, Zhou K, Wang Y, Lu Q, Zhang H, Wu Y, Zhang T, Liu Y. In situ multimodal transparent electrophysiological hydrogel for in vivo miniature two-photon neuroimaging and electrocorticogram analysis. Acta Biomater 2022:S1742-7061(22)00525-6. [PMID: 36041650 DOI: 10.1016/j.actbio.2022.08.053] [Reference Citation Analysis]
16 Cheng H, Wang N, Ma X, Wang P, Dong W, Chen Z, Wu M, Wang Z, Wang L, Guan D, Zhao R. Spatial-temporal changes of iron deposition and iron metabolism after traumatic brain injury in mice. Front Mol Neurosci 2022;15:949573. [DOI: 10.3389/fnmol.2022.949573] [Reference Citation Analysis]
17 Zhang D, Chang R, Ren Y, He Y, Guo S, Guan F, Yao M. Injectable and reactive oxygen species-scavenging gelatin hydrogel promotes neural repair in experimental traumatic brain injury. Int J Biol Macromol 2022;219:844-63. [PMID: 35961554 DOI: 10.1016/j.ijbiomac.2022.08.027] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
18 Li X, Duan L, Kong M, Wen X, Guan F, Ma S. Applications and Mechanisms of Stimuli-Responsive Hydrogels in Traumatic Brain Injury. Gels 2022;8:482. [DOI: 10.3390/gels8080482] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Yilmaz İ, Karaarslan N, Somay H, Ozbek H, Ates O. Curcumin-Impregnated Drug Delivery Systems May Show Promise in the Treatment of Diseases Secondary to Traumatic Brain Injury: Systematic Review. Journal of Pharmacology and Pharmacotherapeutics. [DOI: 10.1177/0976500x221112479] [Reference Citation Analysis]
20 Song W, You J, Zhang Y, Yang Q, Jiao J, Zhang H. Recent Studies on Hydrogels Based on H2O2-Responsive Moieties: Mechanism, Preparation and Application. Gels 2022;8:361. [PMID: 35735705 DOI: 10.3390/gels8060361] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
21 Chen Y, Lin J, Yan W. A Prosperous Application of Hydrogels With Extracellular Vesicles Release for Traumatic Brain Injury. Front Neurol 2022;13:908468. [DOI: 10.3389/fneur.2022.908468] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Han Z, Han Y, Huang X, Ma H, Zhang X, Song J, Dong J, Li S, Yu R, Liu H. A Novel Targeted Nanoparticle for Traumatic Brain Injury Treatment: Combined Effect of ROS Depletion and Calcium Overload Inhibition. Adv Healthc Mater 2022;11:e2102256. [PMID: 35118827 DOI: 10.1002/adhm.202102256] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
23 Yi X, Xu Z, Liu Q, Zhou H, Yuan L, Li D, Zhao L, Mu C, Ge L. Matrix metalloproteinase-responsive collagen-oxidized hyaluronic acid injectable hydrogels for osteoarthritic therapy. Biomaterials Advances 2022;137:212804. [DOI: 10.1016/j.bioadv.2022.212804] [Reference Citation Analysis]
24 Zhang D, Ren Y, He Y, Chang R, Guo S, Ma S, Guan F, Yao M. In situ forming and biocompatible hyaluronic acid hydrogel with reactive oxygen species-scavenging activity to improve traumatic brain injury repair by suppressing oxidative stress and neuroinflammation. Materials Today Bio 2022;15:100278. [DOI: 10.1016/j.mtbio.2022.100278] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
25 Chong-boon Ong, Mohamad Suffian Mohamad Annuar. Hydrogels Responsive Towards Important Biological-Based Stimuli. Polym Sci Ser B 2022;64:271-286. [DOI: 10.1134/s1560090422200015] [Reference Citation Analysis]
26 Dong X, Li C, Zhang M, Zhao Y, Zhao Z, Li W, Zhang X. Multifunctional injectable hydrogel for effective promotion of cartilage regeneration and protection against osteoarthritis: combined chondroinductive, antioxidative and anti-inflammatory strategy. Science and Technology of Advanced Materials. [DOI: 10.1080/14686996.2022.2076568] [Reference Citation Analysis]
27 Hu Y, Jia Y, Wang S, Ma Y, Huang G, Ding T, Feng D, Genin GM, Wei Z, Xu F. A Self-Healing, Viscoelastic Hydrogel Promotes Healing of Brain Lesions.. [DOI: 10.1101/2022.05.05.490746] [Reference Citation Analysis]
28 Lv B, Shen N, Cheng Z, Chen Y, Ding H, Yuan J, Zhao K, Zhang Y. Strategies for Biomaterial-Based Spinal Cord Injury Repair via the TLR4-NF-κB Signaling Pathway. Front Bioeng Biotechnol 2022;9:813169. [DOI: 10.3389/fbioe.2021.813169] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Ma X, Wang M, Ran Y, Wu Y, Wang J, Gao F, Liu Z, Xi J, Ye L, Feng Z. Design and Fabrication of Polymeric Hydrogel Carrier for Nerve Repair. Polymers 2022;14:1549. [DOI: 10.3390/polym14081549] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Grimaudo MA, Krishnakumar GS, Giusto E, Furlani F, Bassi G, Rossi A, Molinari F, Lista F, Montesi M, Panseri S. Bioactive injectable hydrogels for on demand molecule/cell delivery and for tissue regeneration in the central nervous system. Acta Biomater 2022;140:88-101. [PMID: 34852302 DOI: 10.1016/j.actbio.2021.11.038] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
31 Li Q, Shao X, Dai X, Guo Q, Yuan B, Liu Y, Jiang W. Recent trends in the development of hydrogel therapeutics for the treatment of central nervous system disorders. NPG Asia Mater 2022;14. [DOI: 10.1038/s41427-022-00362-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
32 Yang X, Ling S, Zhou M, Deng H, Qi M, Liu X, Zhen C, Chen Y, Fan X, Wu Z, Ma F, Rong J, Di G, Jiang X. Inhibition of TRPA1 attenuates oxidative stress-induced damage after traumatic brain injury via the ERK/AKT signaling pathway. Neuroscience 2022. [DOI: 10.1016/j.neuroscience.2022.02.003] [Reference Citation Analysis]
33 Xing X, Huang H, Gao X, Yang J, Tang Q, Xu X, Wu Y, Li M, Liang C, Tan L, Liao L, Tian W. Local Elimination of Senescent Cells Promotes Bone Defect Repair during Aging. ACS Appl Mater Interfaces 2022;14:3885-99. [PMID: 35014784 DOI: 10.1021/acsami.1c22138] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
34 Yu G, Zhang Y, Ning B. Reactive Astrocytes in Central Nervous System Injury: Subgroup and Potential Therapy. Front Cell Neurosci 2021;15:792764. [PMID: 35002629 DOI: 10.3389/fncel.2021.792764] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
35 Du M, Wu C, Yu R, Cheng Y, Tang Z, Wu B, Fu J, Tan W, Zhou Q, Zhu Z, Balawi E, Huang X, Ma J, Liao ZB. A novel circular RNA, circIgfbp2, links neural plasticity and anxiety through targeting mitochondrial dysfunction and oxidative stress-induced synapse dysfunction after traumatic brain injury. Mol Psychiatry 2022;27:4575-89. [PMID: 35918398 DOI: 10.1038/s41380-022-01711-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Zhao J, Zhang Q, Wang J, Zhang Q, Li H, Du Y. Advances in the Scavenging Materials for Reactive Oxygen Species. Acta Chimica Sinica 2022;80:570. [DOI: 10.6023/a21120586] [Reference Citation Analysis]
37 Kim YE, Kim J. ROS-Scavenging Therapeutic Hydrogels for Modulation of the Inflammatory Response. ACS Appl Mater Interfaces 2021. [PMID: 34962774 DOI: 10.1021/acsami.1c18261] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
38 Khan ZM, Wilts E, Vlaisavljevich E, Long TE, Verbridge SS. Electroresponsive Hydrogels for Therapeutic Applications in the Brain. Macromol Biosci 2021;:e2100355. [PMID: 34800348 DOI: 10.1002/mabi.202100355] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
39 Sharma R, Casillas-Espinosa PM, Dill LK, Rewell SSJ, Hudson MR, O'Brien TJ, Shultz SR, Semple BD. Pediatric traumatic brain injury and a subsequent transient immune challenge independently influenced chronic outcomes in male mice. Brain Behav Immun 2021;100:29-47. [PMID: 34808288 DOI: 10.1016/j.bbi.2021.11.013] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
40 Li Q, Liu Y, Dai X, Jiang W, Zhao H. Nanozymes Regulate Redox Homeostasis in ROS-Related Inflammation. Front Chem 2021;9:740607. [PMID: 34746091 DOI: 10.3389/fchem.2021.740607] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
41 Chen W, Zhou Z, Chen D, Li Y, Zhang Q, Su J. Bone Regeneration Using MMP-Cleavable Peptides-Based Hydrogels. Gels 2021;7:199. [PMID: 34842679 DOI: 10.3390/gels7040199] [Cited by in Crossref: 5] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
42 Huang X, He D, Pan Z, Luo G, Deng J. Reactive-oxygen-species-scavenging nanomaterials for resolving inflammation. Mater Today Bio 2021;11:100124. [PMID: 34458716 DOI: 10.1016/j.mtbio.2021.100124] [Cited by in Crossref: 9] [Cited by in F6Publishing: 13] [Article Influence: 4.5] [Reference Citation Analysis]
43 Gradišnik L, Bošnjak R, Maver T, Velnar T. Advanced Bio-Based Polymers for Astrocyte Cell Models. Materials (Basel) 2021;14:3664. [PMID: 34209194 DOI: 10.3390/ma14133664] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]