BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lorson T, Lübtow MM, Wegener E, Haider MS, Borova S, Nahm D, Jordan R, Sokolski-papkov M, Kabanov AV, Luxenhofer R. Poly(2-oxazoline)s based biomaterials: A comprehensive and critical update. Biomaterials 2018;178:204-80. [DOI: 10.1016/j.biomaterials.2018.05.022] [Cited by in Crossref: 200] [Cited by in F6Publishing: 204] [Article Influence: 40.0] [Reference Citation Analysis]
Number Citing Articles
1 Yao X, Qi C, Sun C, Huo F, Jiang X. Poly(ethylene glycol) alternatives in biomedical applications. Nano Today 2023;48:101738. [DOI: 10.1016/j.nantod.2022.101738] [Reference Citation Analysis]
2 Gubarev AS, Lezov AA, Podsevalnikova AN, Mikusheva NG, Fetin PA, Zorin IM, Aseyev VO, Sedlacek O, Hoogenboom R, Tsvetkov NV. Conformational Parameters and Hydrodynamic Behavior of Poly(2-Methyl-2-Oxazoline) in a Broad Molar Mass Range. Polymers 2023;15:623. [DOI: 10.3390/polym15030623] [Reference Citation Analysis]
3 Pashirova TN, Afonso AB, Terekhova NV, Kamalov MI, Masson P, Souto EB. Nanogels for drug delivery: physicochemical properties, biological behavior, and in vivo applications. Nanotechnology and Regenerative Medicine 2023. [DOI: 10.1016/b978-0-323-90471-1.00005-0] [Reference Citation Analysis]
4 Kim W, Ly NK, He Y, Li Y, Yuan Z, Yeo Y. Protein corona: Friend or foe? Co-opting serum proteins for nanoparticle delivery. Adv Drug Deliv Rev 2023;192:114635. [PMID: 36503885 DOI: 10.1016/j.addr.2022.114635] [Reference Citation Analysis]
5 Leiske MN. Poly(2-oxazoline)-derived star-shaped polymers as potential materials for biomedical applications: A review. European Polymer Journal 2023. [DOI: 10.1016/j.eurpolymj.2023.111832] [Reference Citation Analysis]
6 Belkhir K, Cerlati O, Heaugwane D, Tosi A, Benkhaled BT, Brient PL, Chatard C, Graillot A, Catrouillet S, Balor S, Goudounèche D, Payré B, Laborie P, Lim JH, Putaux JL, Vicendo P, Gibot L, Lonetti B, Mingotaud AF, Lapinte V. Synthesis and Self-Assembly of UV-Cross-Linkable Amphiphilic Polyoxazoline Block Copolymers: Importance of Multitechnique Characterization. Langmuir 2022;38:16144-55. [PMID: 36516233 DOI: 10.1021/acs.langmuir.2c02896] [Reference Citation Analysis]
7 Son S, Park H, Jang W, Ju S. Larger diameter selection of carbon nanotubes by two phase extraction using amphiphilic polymeric surfactant. Journal of Molecular Liquids 2022;367:120425. [DOI: 10.1016/j.molliq.2022.120425] [Reference Citation Analysis]
8 Kundeková B, Máčajová M, Meta M, Čavarga I, Huntošová V, Datta S, Miškovský P, Kronek J, Bilčík B. The Japanese quail chorioallantoic membrane as a model to study an amphiphilic gradient copoly(2-oxazoline)s- based drug delivery system for photodynamic diagnosis and therapy research. Photodiagnosis Photodyn Ther 2022;40:103046. [PMID: 35917905 DOI: 10.1016/j.pdpdt.2022.103046] [Reference Citation Analysis]
9 Soradech S, Kengkwasingh P, Williams AC, Khutoryanskiy VV. Synthesis and Evaluation of Poly(3-hydroxypropyl Ethylene-imine) and Its Blends with Chitosan Forming Novel Elastic Films for Delivery of Haloperidol. Pharmaceutics 2022;14. [PMID: 36559165 DOI: 10.3390/pharmaceutics14122671] [Reference Citation Analysis]
10 Datta S, Huntošová V, Jutková A, Seliga R, Kronek J, Tomkova A, Lenkavská L, Máčajová M, Bilčík B, Kundeková B, Čavarga I, Pavlova E, Šlouf M, Miškovský P, Jancura D. Influence of Hydrophobic Side-Chain Length in Amphiphilic Gradient Copoly(2-oxazoline)s on the Therapeutics Loading, Stability, Cellular Uptake and Pharmacokinetics of Nano-Formulation with Curcumin. Pharmaceutics 2022;14. [PMID: 36559069 DOI: 10.3390/pharmaceutics14122576] [Reference Citation Analysis]
11 Bardoula V, Leclercq L, Hoogenboom R, Nardello-rataj V. Amphiphilic nonionic block and gradient copoly(2-oxazoline)s based on 2-methyl-2-oxazoline and 2-phenyl-2-oxazoline as efficient stabilizers for the formulation of tailor-made emulsions. Journal of Colloid and Interface Science 2022. [DOI: 10.1016/j.jcis.2022.11.018] [Reference Citation Analysis]
12 Simon L, Bellard E, Jouanmiqueou B, Lapinte V, Marcotte N, Devoisselle J, Lamaze C, Rols M, Golzio M, Begu S. Interactions of amphiphilic polyoxazolines formulated or not in lipid nanocapsules with biological systems: Evaluation from membrane models up to in vivo mice epidermis. European Journal of Pharmaceutics and Biopharmaceutics 2022;180:308-318. [DOI: 10.1016/j.ejpb.2022.10.009] [Reference Citation Analysis]
13 Haider MS, Mahato AK, Kotliarova A, Forster S, Böttcher B, Stahlhut P, Sidorova Y, Luxenhofer R. Biological Activity In Vitro, Absorption, BBB Penetration, and Tolerability of Nanoformulation of BT44:RET Agonist with Disease-Modifying Potential for the Treatment of Neurodegeneration. Biomacromolecules 2022. [PMID: 36219820 DOI: 10.1021/acs.biomac.2c00761] [Reference Citation Analysis]
14 Lusina A, Nazim T, Cegłowski M. Poly(2-oxazoline)s as Stimuli-Responsive Materials for Biomedical Applications: Recent Developments of Polish Scientists. Polymers (Basel) 2022;14:4176. [PMID: 36236124 DOI: 10.3390/polym14194176] [Reference Citation Analysis]
15 Rajesh S, Leiske MN, Leitch V, Zhai J, Drummond CJ, Kempe K, Tran N. Lipidic poly(2-oxazoline)s as PEG replacement steric stabilisers for cubosomes. Journal of Colloid and Interface Science 2022;623:1142-50. [DOI: 10.1016/j.jcis.2022.04.158] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
16 Hoogenboom R. The future of poly(2-oxazoline)s. European Polymer Journal 2022;179:111521. [DOI: 10.1016/j.eurpolymj.2022.111521] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Becelaere J, Van Den Broeck E, Schoolaert E, Vanhoorne V, Van Guyse JFR, Vergaelen M, Borgmans S, Creemers K, Van Speybroeck V, Vervaet C, Hoogenboom R, De Clerck K. Stable amorphous solid dispersion of flubendazole with high loading via electrospinning. J Control Release 2022;351:123-36. [PMID: 36122898 DOI: 10.1016/j.jconrel.2022.09.028] [Reference Citation Analysis]
18 Sharma S, Mandhani A, Basu B. Contact-Active Layer-by-Layer Grafted TPU/PDMS Blends as an Antiencrustation and Antibacterial Platform for Next-Generation Urological Biomaterials: Validation in Artificial and Human Urine. ACS Biomater Sci Eng 2022. [PMID: 36094424 DOI: 10.1021/acsbiomaterials.2c00455] [Reference Citation Analysis]
19 Nemati Mahand S, Aliakbarzadeh S, Moghaddam A, Salehi Moghaddam A, Kruppke B, Nasrollahzadeh M, Khonakdar HA. Polyoxazoline: A review article from polymerization to smart behaviors and biomedical applications. European Polymer Journal 2022;178:111484. [DOI: 10.1016/j.eurpolymj.2022.111484] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
20 Chen Q, Kou M, He Y, Zhao Y, Chen L. Constructing hierarchical surface structure of hemodialysis membranes to intervene in oxidative stress through Michael addition reaction between tannic acid and PEtOx brushes. Journal of Membrane Science 2022;657:120700. [DOI: 10.1016/j.memsci.2022.120700] [Reference Citation Analysis]
21 Cai Y, Qi J, Lu Y, He H, Wu W. The in vivo fate of polymeric micelles. Adv Drug Deliv Rev 2022;:114463. [PMID: 35905947 DOI: 10.1016/j.addr.2022.114463] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
22 Yang M, Haider MS, Forster S, Hu C, Luxenhofer R. Synthesis and Investigation of Chiral Poly(2,4-disubstituted-2-oxazoline)-Based Triblock Copolymers, Their Self-Assembly, and Formulation with Chiral and Achiral Drugs. Macromolecules. [DOI: 10.1021/acs.macromol.2c00229] [Reference Citation Analysis]
23 Bendrea A, Cianga L, Ailiesei G, Göen Colak D, Popescu I, Cianga I. Thiophene α-Chain-End-Functionalized Oligo(2-methyl-2-oxazoline) as Precursor Amphiphilic Macromonomer for Grafted Conjugated Oligomers/Polymers and as a Multifunctional Material with Relevant Properties for Biomedical Applications. IJMS 2022;23:7495. [DOI: 10.3390/ijms23147495] [Reference Citation Analysis]
24 Feng S, Bandari S, Repka MA. Investigation of poly(2-ethyl-2-oxazoline) as a novel extended release polymer for hot-melt extrusion paired with fused deposition modeling 3D printing. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2022.103558] [Reference Citation Analysis]
25 Ismail R, Šeděnková I, Černochová Z, Romanenko I, Pop-georgievski O, Hrubý M, Tomšík E. Potentiometric Performance of Ion-Selective Electrodes Based on Polyaniline and Chelating Agents: Detection of Fe2+ or Fe3+ Ions. Biosensors 2022;12:446. [DOI: 10.3390/bios12070446] [Reference Citation Analysis]
26 Marikar SN, El-Osta A, Johnston A, Such G, Al-Hasani K. Microencapsulation-based cell therapies. Cell Mol Life Sci 2022;79:351. [PMID: 35674842 DOI: 10.1007/s00018-022-04369-0] [Reference Citation Analysis]
27 Javia A, Vanza J, Bardoliwala D, Ghosh S, Misra A, Patel M, Thakkar H. Polymer-drug conjugates: Design principles, emerging synthetic strategies and clinical overview. Int J Pharm 2022;:121863. [PMID: 35643347 DOI: 10.1016/j.ijpharm.2022.121863] [Reference Citation Analysis]
28 Floyd TG, Song JI, Hapeshi A, Laroque S, Hartlieb M, Perrier S. Bottlebrush copolymers for gene delivery: influence of architecture, charge density, and backbone length on transfection efficiency. J Mater Chem B 2022;10:3696-704. [PMID: 35441653 DOI: 10.1039/d2tb00490a] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
29 Beudert M, Hahn L, Horn AHC, Hauptstein N, Sticht H, Meinel L, Luxenhofer R, Gutmann M, Lühmann T. Merging bioresponsive release of insulin-like growth factor I with 3D printable thermogelling hydrogels. J Control Release 2022:S0168-3659(22)00224-3. [PMID: 35489547 DOI: 10.1016/j.jconrel.2022.04.028] [Reference Citation Analysis]
30 Jiang W, Zhou M, Cong Z, Xie J, Zhang W, Chen S, Zou J, Ji Z, Shao N, Chen X, Li M, Liu R. Short Guanidinium-Functionalized Poly(2-oxazoline)s Displaying Potent Therapeutic Efficacy on Drug-Resistant Fungal Infections. Angew Chem Int Ed Engl 2022;61:e202200778. [PMID: 35182092 DOI: 10.1002/anie.202200778] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
31 Khani A, Eskandani M, Derakhshankhah H, Soleimani K, Nakhjavani SA, Massoumi B, Jahanban-esfahlan R, Moloudi K, Jaymand M. A novel stimuli-responsive magnetic hydrogel based on nature-inspired tragacanth gum for chemo/hyperthermia treatment of cancerous cells. J Polym Res 2022;29. [DOI: 10.1007/s10965-022-03004-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
32 Van Guyse JFR, Hoogenboom R. Poly(2‐Oxazoline)s. Macromolecular Engineering 2022. [DOI: 10.1002/9783527815562.mme0012] [Reference Citation Analysis]
33 Sedlacek O, Bardoula V, Vuorimaa-Laukkanen E, Gedda L, Edwards K, Radulescu A, Mun GA, Guo Y, Zhou J, Zhang H, Nardello-Rataj V, Filippov S, Hoogenboom R. Influence of Chain Length of Gradient and Block Copoly(2-oxazoline)s on Self-Assembly and Drug Encapsulation. Small 2022;:e2106251. [PMID: 35212458 DOI: 10.1002/smll.202106251] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
34 Zakharchenko A, Xue Y, Keeney S, Rock CA, Alferiev IS, Stachelek SJ, Takano H, Thomas T, Nagaswami C, Krieger AM, Chorny M, Ferrari G, Levy RJ. Poly-2-methyl-2-oxazoline–modified bioprosthetic heart valve leaflets have enhanced biocompatibility and resist structural degeneration. Proc Natl Acad Sci USA 2022;119:e2120694119. [DOI: 10.1073/pnas.2120694119] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Madau M, Morandi G, Lapinte V, Le Cerf D, Dulong V, Picton L. Thermo-responsive hydrogels from hyaluronic acid functionalized with poly(2-alkyl-2-oxazoline) copolymers with tuneable transition temperature. Polymer 2022. [DOI: 10.1016/j.polymer.2022.124643] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
36 Kalinova R, Dimitrov I. Triblock Copolymer Micelles with Tunable Surface Charge as Drug Nanocarriers: Synthesis and Physico-Chemical Characterization. Nanomaterials (Basel) 2022;12:434. [PMID: 35159779 DOI: 10.3390/nano12030434] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Murakami D, Yamazoe K, Nishimura SN, Kurahashi N, Ueda T, Miyawaki J, Ikemoto Y, Tanaka M, Harada Y. Hydration Mechanism in Blood-Compatible Polymers Undergoing Phase Separation. Langmuir 2022;38:1090-8. [PMID: 34994566 DOI: 10.1021/acs.langmuir.1c02672] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
38 El-hammadi MM, Arias JL. Recent Advances in the Surface Functionalization of PLGA-Based Nanomedicines. Nanomaterials 2022;12:354. [DOI: 10.3390/nano12030354] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
39 Endres S, Karaev E, Hanio S, Schlauersbach J, Kraft C, Rasmussen T, Luxenhofer R, Böttcher B, Meinel L, Pöppler AC. Concentration and composition dependent aggregation of Pluronic- and Poly-(2-oxazolin)-Efavirenz formulations in biorelevant media. J Colloid Interface Sci 2022;606:1179-92. [PMID: 34487937 DOI: 10.1016/j.jcis.2021.08.040] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
40 Borova S, Schlutt C, Nickel J, Luxenhofer R. A Transient Initiator for Polypeptoids Postpolymerization α ‐Functionalization via Activation of a Thioester Group. Macro Chemistry & Physics. [DOI: 10.1002/macp.202100331] [Reference Citation Analysis]
41 Makhayeva DN, Filippov SK, Yestemes SS, Irmukhametova GS, Khutoryanskiy VV. Polymeric iodophors with poly(2-ethyl-2-oxazoline) and poly(N-vinylpyrrolidone): optical, hydrodynamic, thermodynamic, and antimicrobial properties. European Polymer Journal 2022. [DOI: 10.1016/j.eurpolymj.2022.111005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
42 Wang Y, Wang J, Sun M, Zhang J, Bi Y. Coating liposomes with ring-like PEG: the synthesis and stealth effect of cholesterol–PEG–cholesterol. Mater Adv 2022;3:2417-24. [DOI: 10.1039/d1ma01079d] [Reference Citation Analysis]
43 Aitken RA, Inwood RA. Oxazoles. Comprehensive Heterocyclic Chemistry IV 2022. [DOI: 10.1016/b978-0-12-818655-8.00157-8] [Reference Citation Analysis]
44 Zhu J, Zhou M, Jiang W, Zhou Y, Song G, Liu R. Facile one-pot synthesis of 2-oxazoline. Tetrahedron Letters 2022. [DOI: 10.1016/j.tetlet.2022.153637] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Polymeric Micelles: A Novel Approach towards Nano-Drug Delivery System.. [DOI: 10.13005/bbra/2947] [Reference Citation Analysis]
46 Švec P, Petrov OV, Lang J, Štěpnička P, Groborz O, Dunlop D, Blahut J, Kolouchová K, Loukotová L, Sedláček O, Heizer T, Tošner Z, Šlouf M, Beneš H, Hoogenboom R, Hrubý M. Fluorinated Ferrocene Moieties as a Platform for Redox-Responsive Polymer 19 F MRI Theranostics. Macromolecules 2022;55:658-71. [DOI: 10.1021/acs.macromol.1c01723] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
47 Babuka D, Kolouchova K, Loukotova L, Sedlacek O, Groborz O, Skarkova A, Zhigunov A, Pavlova E, Hoogenboom R, Hruby M, Stepanek P. Self-Assembly, Drug Encapsulation, and Cellular Uptake of Block and Gradient Copolymers of 2-Methyl-2-oxazine and 2- n -Propyl/butyl-2-oxazoline. Macromolecules 2021;54:10667-81. [DOI: 10.1021/acs.macromol.1c01794] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
48 Putra N, Tigrine A, Aksakal S, de la Rosa V, Taheri P, Fratila-apachitei L, Mol J, Zhou J, Zadpoor A. Poly(2-ethyl-2-oxazoline) coating of additively manufactured biodegradable porous iron. Materials Science and Engineering: C 2021. [DOI: 10.1016/j.msec.2021.112617] [Reference Citation Analysis]
49 Romio M, Grob B, Trachsel L, Mattarei A, Morgese G, Ramakrishna SN, Niccolai F, Guazzelli E, Paradisi C, Martinelli E, Spencer ND, Benetti EM. Dispersity within Brushes Plays a Major Role in Determining Their Interfacial Properties: The Case of Oligoxazoline-Based Graft Polymers. J Am Chem Soc 2021;143:19067-77. [PMID: 34738797 DOI: 10.1021/jacs.1c08383] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
50 Shan X, Aspinall S, Kaldybekov DB, Buang F, Williams AC, Khutoryanskiy VV. Synthesis and Evaluation of Methacrylated Poly(2-ethyl-2-oxazoline) as a Mucoadhesive Polymer for Nasal Drug Delivery. ACS Appl Polym Mater 2021;3:5882-92. [DOI: 10.1021/acsapm.1c01097] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
51 Hwang D, Vinod N, Skoczen SL, Ramsey JD, Snapp KS, Montgomery SA, Wang M, Lim C, Frank JE, Sokolsky-Papkov M, Li Z, Yuan H, Stern ST, Kabanov AV. Bioequivalence assessment of high-capacity polymeric micelle nanoformulation of paclitaxel and Abraxane® in rodent and non-human primate models using a stable isotope tracer assay. Biomaterials 2021;278:121140. [PMID: 34634661 DOI: 10.1016/j.biomaterials.2021.121140] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
52 Floyd TG, Häkkinen S, Hall SCL, Dalgliesh RM, Lehnen A, Hartlieb M, Perrier S. Cationic Bottlebrush Copolymers from Partially Hydrolyzed Poly(oxazoline)s. Macromolecules 2021;54:9461-73. [DOI: 10.1021/acs.macromol.1c01458] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
53 Huntošová V, Datta S, Lenkavská L, Máčajová M, Bilčík B, Kundeková B, Čavarga I, Kronek J, Jutková A, Miškovský P, Jancura D. Alkyl Chain Length in Poly(2-oxazoline)-Based Amphiphilic Gradient Copolymers Regulates the Delivery of Hydrophobic Molecules: A Case of the Biodistribution and the Photodynamic Activity of the Photosensitizer Hypericin. Biomacromolecules 2021;22:4199-216. [PMID: 34494830 DOI: 10.1021/acs.biomac.1c00768] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
54 Mommer S, Gehlen D, Akagi T, Akashi M, Keul H, Möller M. Thiolactone-Functional Pullulan for In Situ Forming Biogels. Biomacromolecules 2021;22:4262-73. [PMID: 34546742 DOI: 10.1021/acs.biomac.1c00807] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
55 Simon L, Picard C, Calixto L, Lapinte V, Devoisselle J, Bégu S. Study of the physicochemical interactions of nanoformulations based on polyoxazolines with a skin surface model. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021;626:127027. [DOI: 10.1016/j.colsurfa.2021.127027] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
56 Sharma V, Paramasivam G, Vergaelen M, Hoogenboom R, Sundaramurthy A. Tannic Acid-Stabilized Self-Degrading Temperature-Sensitive Poly(2-n-propyl-2-oxazoline)/Gellan Gum Capsules for Lipase Delivery. ACS Appl Bio Mater 2021;4:7134-7146. [DOI: 10.1021/acsabm.1c00697] [Reference Citation Analysis]
57 Warne NM, Finnegan JR, Feeney OM, Kempe K. Using 2‐isopropyl ‐2‐oxazine to explore the effect of monomer distribution and polymer architecture on the thermoresponsive behavior of copolymers. Journal of Polymer Science 2021;59:2783-96. [DOI: 10.1002/pol.20210551] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
58 Sano K, Suzuno N, Bao L, Haratake Y, Kijima K, Munekane M, Yamasaki T, Mukai T. Development of a Poly(2-ethyl-2-oxazoline)-Based Fluorescence Imaging Probe Targeting the Folate Receptor in Tumor Tissues. ACS Appl Polym Mater 2021;3:4889-95. [DOI: 10.1021/acsapm.1c00670] [Reference Citation Analysis]
59 Schoolaert E, Merckx R, Becelaere J, Rijssegem S, Hoogenboom R, De Clerck K. Eco‐Friendly Colorimetric Nanofiber Design: Halochromic Sensors with Tunable pH‐Sensing Regime Based on 2‐Ethyl‐2‐Oxazoline and 2‐ n ‐Butyl‐2‐Oxazoline Statistical Copolymers Functionalized with Alizarin Yellow R. Adv Funct Materials 2022;32:2106859. [DOI: 10.1002/adfm.202106859] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
60 Flemming P, Münch AS, Fery A, Uhlmann P. Constrained thermoresponsive polymers - new insights into fundamentals and applications. Beilstein J Org Chem 2021;17:2123-63. [PMID: 34476018 DOI: 10.3762/bjoc.17.138] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
61 Madau M, Morandi G, Rihouey C, Lapinte V, Oulyadi H, Le Cerf D, Dulong V, Picton L. A mild and straightforward one-pot hyaluronic acid functionalization through termination of poly-(2-alkyl-2-oxazoline). Polymer 2021;230:124059. [DOI: 10.1016/j.polymer.2021.124059] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
62 Torres-Obreque KM, Meneguetti GP, Muso-Cachumba JJ, Feitosa VA, Santos JHPM, Ventura SPM, Rangel-Yagui CO. Building better biobetters: From fundamentals to industrial application. Drug Discov Today 2021:S1359-6446(21)00369-X. [PMID: 34461236 DOI: 10.1016/j.drudis.2021.08.009] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
63 Hwang D, Vinod N, Skoczen SL, Ramsey JD, Snapp KS, Montgomery SA, Wang M, Lim C, Frank JE, Sokolsky-papkov M, Li Z, Yuan H, Stern ST, Kabanov AV. Bioequivalence Assessment of High-Capacity Polymeric Micelle Nanoformulation of Paclitaxel and Abraxane® in Rodent and Non-Human Primate Models Using a Stable Isotope Tracer Assay.. [DOI: 10.1101/2021.08.20.457164] [Reference Citation Analysis]
64 Hahn L, Keßler L, Polzin L, Fritze L, Forster S, Helten H, Luxenhofer R. ABA Type Amphiphiles with Poly(2‐benzhydryl‐2‐oxazine) Moieties: Synthesis, Characterization and Inverse Thermogelation. Macromol Chem Phys 2021;222:2100114. [DOI: 10.1002/macp.202100114] [Reference Citation Analysis]
65 Ryma M, Tylek T, Liebscher J, Blum C, Fernandez R, Böhm C, Kastenmüller W, Gasteiger G, Groll J. Translation of Collagen Ultrastructure to Biomaterial Fabrication for Material-Independent but Highly Efficient Topographic Immunomodulation. Adv Mater 2021;33:e2101228. [PMID: 34240485 DOI: 10.1002/adma.202101228] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
66 Hong J, Totani M, Yamamoto T, Dietrich PM, Thissen A, Matsuno H, Tanaka K. Near-ambient pressure X-ray photoelectron spectroscopy for a bioinert polymer film at a water interface. Polym J 2021;53:907-12. [DOI: 10.1038/s41428-021-00485-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
67 Smirnova A, Kirila T, Blokhin A, Kozina N, Kurlykin M, Tenkovtsev A, Filippov A. Linear and star-shaped poly(2-ethyl-2-oxazine)s. Synthesis, characterization and conformation in solution. European Polymer Journal 2021;156:110637. [DOI: 10.1016/j.eurpolymj.2021.110637] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
68 Loukotová L, Švec P, Groborz O, Heizer T, Beneš H, Raabová H, Bělinová T, Herynek V, Hrubý M. Direct Comparison of Analogous Amphiphilic Gradient and Block Polyoxazolines. Macromolecules 2021;54:8182-94. [DOI: 10.1021/acs.macromol.0c02674] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
69 Drago SE, Craparo EF, Luxenhofer R, Cavallaro G. Development of polymer-based nanoparticles for zileuton delivery to the lung: PMeOx and PMeOzi surface chemistry reduces interactions with mucins. Nanomedicine 2021;37:102451. [PMID: 34325034 DOI: 10.1016/j.nano.2021.102451] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
70 Hahn L, Beudert M, Gutmann M, Keßler L, Stahlhut P, Fischer L, Karakaya E, Lorson T, Thievessen I, Detsch R, Lühmann T, Luxenhofer R. From Thermogelling Hydrogels toward Functional Bioinks: Controlled Modification and Cytocompatible Crosslinking. Macromol Biosci 2021;:e2100122. [PMID: 34292657 DOI: 10.1002/mabi.202100122] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
71 Haider MS, Ahmad T, Groll J, Scherf-Clavel O, Kroiss M, Luxenhofer R. The Challenging Pharmacokinetics of Mitotane: An Old Drug in Need of New Packaging. Eur J Drug Metab Pharmacokinet 2021;46:575-93. [PMID: 34287806 DOI: 10.1007/s13318-021-00700-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
72 Chroni A, Mavromoustakos T, Pispas S. Poly(2-oxazoline)-Based Amphiphilic Gradient Copolymers as Nanocarriers for Losartan: Insights into Drug–Polymer Interactions. Macromol 2021;1:177-200. [DOI: 10.3390/macromol1030014] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
73 Kanamaru T, Araki M, Takahashi R, Fujii S, Shikata T, Murakami D, Tanaka M, Sakurai K. First Observation of the Hydration Layer around Polymer Chain by Scattering and Its Relationship to Thromboresistance: Dilute Solution Properties of PMEA in THF/Water. J Phys Chem B 2021;125:7251-61. [PMID: 34181418 DOI: 10.1021/acs.jpcb.1c01864] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
74 Biswas S. Polymeric micelles as drug-delivery systems in cancer: challenges and opportunities. Nanomedicine (Lond) 2021;16:1541-4. [PMID: 34169749 DOI: 10.2217/nnm-2021-0081] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
75 Haider MS, Ahmad T, Yang M, Hu C, Hahn L, Stahlhut P, Groll J, Luxenhofer R. Tuning the Thermogelation and Rheology of Poly(2-Oxazoline)/Poly(2-Oxazine)s Based Thermosensitive Hydrogels for 3D Bioprinting. Gels 2021;7:78. [PMID: 34202652 DOI: 10.3390/gels7030078] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
76 Hahn L, Karakaya E, Zorn T, Sochor B, Maier M, Stahlhut P, Forster S, Fischer K, Seiffert S, Pöppler AC, Detsch R, Luxenhofer R. An Inverse Thermogelling Bioink Based on an ABA-Type Poly(2-oxazoline) Amphiphile. Biomacromolecules 2021;22:3017-27. [PMID: 34100282 DOI: 10.1021/acs.biomac.1c00427] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
77 Hu C, Haider MS, Hahn L, Yang M, Luxenhofer R. Development of a 3D printable and highly stretchable ternary organic-inorganic nanocomposite hydrogel. J Mater Chem B 2021;9:4535-45. [PMID: 34037651 DOI: 10.1039/d1tb00484k] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
78 Dong S, Ma S, Liu Z, Ma L, Zhang Y, Tang Z, Deng M, Song W. Functional Amphiphilic Poly(2-oxazoline) Block Copolymers as Drug Carriers: the Relationship between Structure and Drug Loading Capacity. Chin J Polym Sci 2021;39:865-73. [DOI: 10.1007/s10118-021-2547-6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
79 Leiske MN, Lai M, Amarasena T, Davis TP, Thurecht KJ, Kent SJ, Kempe K. Interactions of core cross-linked poly(2-oxazoline) and poly(2-oxazine) micelles with immune cells in human blood. Biomaterials 2021;274:120843. [PMID: 33984635 DOI: 10.1016/j.biomaterials.2021.120843] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
80 Kitasono S, Yamamoto K, Kadokawa JI. Preparation and gelation behaviors of poly(2-oxazoline)-grafted chitin nanofibers. Carbohydr Polym 2021;259:117709. [PMID: 33673988 DOI: 10.1016/j.carbpol.2021.117709] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
81 Pizzi D, Mahmoud AM, Klein T, Morrow JP, Humphries J, Houston ZH, Fletcher NL, Bell CA, Thurecht KJ, Kempe K. Poly(2-ethyl-2-oxazoline) bottlebrushes: How nanomaterial dimensions can influence biological interactions. European Polymer Journal 2021;151:110447. [DOI: 10.1016/j.eurpolymj.2021.110447] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
82 Egghe T, Van Guyse JF, Ghobeira R, Morent R, Hoogenboom R, De Geyter N. Evaluation of cross-linking and degradation processes occurring at polymer surfaces upon plasma activation via size-exclusion chromatography. Polymer Degradation and Stability 2021;187:109543. [DOI: 10.1016/j.polymdegradstab.2021.109543] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
83 Bronzeri LB, Gauche C, Gudimard L, Courtial E, Marquette C, Felisberti MI. Amphiphilic and segmented polyurethanes based on poly(ε-caprolactone)diol and poly(2-ethyl-2-oxazoline)diol: Synthesis, properties, and a preliminary performance study of the 3D printing. European Polymer Journal 2021;151:110449. [DOI: 10.1016/j.eurpolymj.2021.110449] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
84 Trachsel L, Zenobi-Wong M, Benetti EM. The role of poly(2-alkyl-2-oxazoline)s in hydrogels and biofabrication. Biomater Sci 2021;9:2874-86. [PMID: 33729230 DOI: 10.1039/d0bm02217a] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
85 Devrim B, Bolat ZB, Telci D, Şahin F, Gulyuz S, Ozkose UU, Yilmaz O, Bozkır A. Design and evaluation of peptide-18-targeted nanoliposomes constructed by poly(2-oxazoline)-DOPE for doxorubicin delivery. J Microencapsul 2021;38:285-97. [PMID: 33853478 DOI: 10.1080/02652048.2021.1905094] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
86 Finnegan JR, Pilkington EH, Alt K, Rahim MA, Kent SJ, Davis TP, Kempe K. Stealth nanorods via the aqueous living crystallisation-driven self-assembly of poly(2-oxazoline)s. Chem Sci 2021;12:7350-60. [PMID: 34163824 DOI: 10.1039/d1sc00938a] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 8.5] [Reference Citation Analysis]
87 Dargaville TR, Harkin DG, Park JR, Cavalcanti A, Bolle ECL, Savi FM, Farrugia BL, Monnery BD, Bernhard Y, Van Guyse JFR, Podevyn A, Hoogenboom R. Poly(2-allylamidopropyl-2-oxazoline)-Based Hydrogels: From Accelerated Gelation Kinetics to In Vivo Compatibility in a Murine Subdermal Implant Model. Biomacromolecules 2021;22:1590-9. [PMID: 33764748 DOI: 10.1021/acs.biomac.1c00046] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
88 Paulovičová E, Kroneková Z, Paulovičová L, Majerčíková M, Kronek J. Cell-Mediated Immunoreactivity of Poly(2-isopropenyl-2-oxazoline) as Promising Formulation for Immunomodulation. Materials (Basel) 2021;14:1371. [PMID: 33809040 DOI: 10.3390/ma14061371] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
89 Varanaraja Z, Kim J, Becer CR. Poly(2-oxazine)s: A comprehensive overview of the polymer structures, physical properties and applications. European Polymer Journal 2021;147:110299. [DOI: 10.1016/j.eurpolymj.2021.110299] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
90 Zahoranová A, Luxenhofer R. Poly(2-oxazoline)- and Poly(2-oxazine)-Based Self-Assemblies, Polyplexes, and Drug Nanoformulations-An Update. Adv Healthc Mater 2021;10:e2001382. [PMID: 33448122 DOI: 10.1002/adhm.202001382] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 11.5] [Reference Citation Analysis]
91 Hong J, Totani M, Kawaguchi D, Yamada NL, Matsuno H, Tanaka K. Poly[oligo(2-ethyl-2-oxazoline) methacrylate] as a surface modifier for bioinertness. Polym J 2021;53:643-53. [DOI: 10.1038/s41428-020-00459-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
92 Bass GF, Epps TH. Recent developments towards performance-enhancing lignin-based polymers. Polym Chem 2021;12:4130-58. [DOI: 10.1039/d1py00694k] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
93 Abbrent S, Mahun A, Smrčková MD, Kobera L, Konefał R, Černoch P, Dušek K, Brus J. Copolymer chain formation of 2-oxazolines by in situ1H-NMR spectroscopy: dependence of sequential composition on substituent structure and monomer ratios. RSC Adv 2021;11:10468-10478. [DOI: 10.1039/d1ra01509e] [Reference Citation Analysis]
94 Zhao T, Drain B, Yilmaz G, Becer CR. One-pot synthesis of amphiphilic multiblock poly(2-oxazoline)s via para-fluoro-thiol click reactions. Polym Chem 2021;12:6392-6403. [DOI: 10.1039/d1py00944c] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
95 Halupczok S, Pfister M, Ringhand A, Fetsch C, Cubukova A, Appelt-menzel A, Luxenhofer R. Poly(2-ethyl-2-oxazoline-co-N-propylethylene imine)s by controlled partial reduction of poly(2-ethyl-2-oxazoline): synthesis, characterization and cytotoxicity. Polym Chem 2021;12:680-688. [DOI: 10.1039/d0py01258k] [Reference Citation Analysis]
96 Pásztói B, Trötschler TM, Szabó Á, Kerscher B, Tenhu H, Mülhaupt R, Iván B. Quasiliving cationic ring-opening polymerization of 2-ethyl-2-oxazoline in benzotrifluoride, as an alternative reaction medium. Polymer 2021;212:123165. [DOI: 10.1016/j.polymer.2020.123165] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
97 Tawfik SM, Azizov S, Elmasry MR, Sharipov M, Lee Y. Recent Advances in Nanomicelles Delivery Systems. Nanomaterials 2021;11:70. [DOI: 10.3390/nano11010070] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 8.7] [Reference Citation Analysis]
98 Trachsel L, Romio M, Zenobi-Wong M, Benetti EM. Hydrogels Generated from Cyclic Poly(2-Oxazoline)s Display Unique Swelling and Mechanical Properties. Macromol Rapid Commun 2021;42:e2000658. [PMID: 33326133 DOI: 10.1002/marc.202000658] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
99 Salmanpour M, Yousefi G, Mohammadi-samani S, Abedanzadeh M, Tamaddon AM. Hydrolytic stabilization of irinotecan active metabolite (SN38) against physiologic pH through self-assembly of conjugated poly (2-oxazoline) - poly (l-amino acid) block copolymer: A-synthesis and physicochemical characterization. Journal of Drug Delivery Science and Technology 2020;60:101933. [DOI: 10.1016/j.jddst.2020.101933] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
100 Hwang D, Dismuke T, Tikunov A, Rosen EP, Kagel JR, Ramsey JD, Lim C, Zamboni W, Kabanov AV, Gershon TR, Sokolsky-Papkov PhD M. Poly(2-oxazoline) nanoparticle delivery enhances the therapeutic potential of vismodegib for medulloblastoma by improving CNS pharmacokinetics and reducing systemic toxicity. Nanomedicine 2021;32:102345. [PMID: 33259959 DOI: 10.1016/j.nano.2020.102345] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
101 Bunker A, Róg T. Mechanistic Understanding From Molecular Dynamics Simulation in Pharmaceutical Research 1: Drug Delivery. Front Mol Biosci 2020;7:604770. [PMID: 33330633 DOI: 10.3389/fmolb.2020.604770] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
102 Wang X, Li Y, Wang D, Wang X, Yuan W, Zhao W, Xia G. Evaluation of antitumor efficacy of folate-poly(2-ethyl-2-oxazoline)-distearoyl phosphatidyl ethanolamine based liposome. Pharm Dev Technol 2021;26:110-8. [PMID: 33104406 DOI: 10.1080/10837450.2020.1842885] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
103 Iordache T, Banu ND, Giol ED, Vuluga DM, Jerca FA, Jerca VV. Factorial design optimization of polystyrene microspheres obtained by aqueous dispersion polymerization in the presence of poly(2‐ethyl‐2‐oxazoline) reactive stabilizer. Polym Int 2020;69:1122-1129. [DOI: 10.1002/pi.5974] [Reference Citation Analysis]
104 Zhang H, Liu X, Xu K, Du B, Zhu C, Li Y. Biodegradable polyurethane PMeOx-PU(SS)-PMeOx micelles with redox and pH-sensitivity for efficient delivery of doxorubicin. European Polymer Journal 2020;140:110054. [DOI: 10.1016/j.eurpolymj.2020.110054] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
105 Shan X, Williams AC, Khutoryanskiy VV. Polymer structure and property effects on solid dispersions with haloperidol: Poly(N-vinyl pyrrolidone) and poly(2-oxazolines) studies. International Journal of Pharmaceutics 2020;590:119884. [DOI: 10.1016/j.ijpharm.2020.119884] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
106 Achazi K, Haag R, Ballauff M, Dernedde J, Kizhakkedathu JN, Maysinger D, Multhaup G. Understanding the Interaction of Polyelectrolyte Architectures with Proteins and Biosystems. Angew Chem Int Ed Engl 2021;60:3882-904. [PMID: 32589355 DOI: 10.1002/anie.202006457] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 9.3] [Reference Citation Analysis]
107 Achazi K, Haag R, Ballauff M, Dernedde J, Kizhakkedathu JN, Maysinger D, Multhaup G. Wechselwirkung von Polyelektrolyt‐Architekturen mit Proteinen und Biosystemen. Angew Chem 2021;133:3926-50. [DOI: 10.1002/ange.202006457] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
108 Chountoulesi M, Perinelli DR, Forys A, Bonacucina G, Trzebicka B, Pispas S, Demetzos C. Liquid crystalline nanoparticles for drug delivery: The role of gradient and block copolymers on the morphology, internal organisation and release profile. Eur J Pharm Biopharm 2021;158:21-34. [PMID: 33098976 DOI: 10.1016/j.ejpb.2020.08.008] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
109 Landry MR, DuRoss AN, Neufeld MJ, Hahn L, Sahay G, Luxenhofer R, Sun C. Low dose novel PARP-PI3K inhibition via nanoformulation improves colorectal cancer immunoradiotherapy. Mater Today Bio 2020;8:100082. [PMID: 33294836 DOI: 10.1016/j.mtbio.2020.100082] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
110 Benkhaled BT, Montheil T, Lapinte V, Monge S. Hydrosoluble phosphonic acid functionalized poly(2‐ethyl‐2‐oxazoline) chelating polymers for the sorption of metallic cations. Journal of Polymer Science 2020;58:2875-2886. [DOI: 10.1002/pol.20200487] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
111 Borova S, Tokarev V, Stahlhut P, Luxenhofer R. Crosslinking of hydrophilic polymers using polyperoxides. Colloid Polym Sci 2020;298:1699-713. [DOI: 10.1007/s00396-020-04738-w] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
112 Hu C, Hahn L, Yang M, Altmann A, Stahlhut P, Groll J, Luxenhofer R. Improving printability of a thermoresponsive hydrogel biomaterial ink by nanoclay addition. J Mater Sci 2021;56:691-705. [DOI: 10.1007/s10853-020-05190-5] [Cited by in Crossref: 17] [Cited by in F6Publishing: 9] [Article Influence: 5.7] [Reference Citation Analysis]
113 Hwang D, Ramsey JD, Kabanov AV. Polymeric micelles for the delivery of poorly soluble drugs: From nanoformulation to clinical approval. Adv Drug Deliv Rev 2020;156:80-118. [PMID: 32980449 DOI: 10.1016/j.addr.2020.09.009] [Cited by in Crossref: 100] [Cited by in F6Publishing: 111] [Article Influence: 33.3] [Reference Citation Analysis]
114 Hijazi M, Türkmen E, Tiller JC. Full Thermal Switching of Enzymes by Thermoresponsive Poly(2-oxazoline)-Based Enzyme Inhibitors. Chemistry 2020;26:13367-71. [PMID: 32706128 DOI: 10.1002/chem.202001909] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
115 You Y, Kobayashi K, Colak B, Luo P, Cozens E, Fields L, Suzuki K, Gautrot J. Engineered cell-degradable poly(2-alkyl-2-oxazoline) hydrogel for epicardial placement of mesenchymal stem cells for myocardial repair. Biomaterials 2021;269:120356. [PMID: 33189358 DOI: 10.1016/j.biomaterials.2020.120356] [Cited by in Crossref: 24] [Cited by in F6Publishing: 29] [Article Influence: 8.0] [Reference Citation Analysis]
116 El Jundi A, Buwalda SJ, Bakkour Y, Garric X, Nottelet B. Double hydrophilic block copolymers self-assemblies in biomedical applications. Adv Colloid Interface Sci 2020;283:102213. [PMID: 32739324 DOI: 10.1016/j.cis.2020.102213] [Cited by in Crossref: 14] [Cited by in F6Publishing: 18] [Article Influence: 4.7] [Reference Citation Analysis]
117 Schoolaert E, Merckx R, Becelaere J, Everaerts M, Van Guyse JFR, Sedlacek O, De Geest BG, Van den Mooter G, D’hooge DR, De Clerck K, Hoogenboom R. Immiscibility of Chemically Alike Amorphous Polymers: Phase Separation of Poly(2-ethyl-2-oxazoline) and Poly(2- n -propyl-2-oxazoline). Macromolecules 2020;53:7590-600. [DOI: 10.1021/acs.macromol.0c00970] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
118 Bernhard Y, Sedlacek O, Van Guyse JFR, Bender J, Zhong Z, De Geest BG, Hoogenboom R. Poly(2-ethyl-2-oxazoline) Conjugates with Salicylic Acid via Degradable Modular Ester Linkages. Biomacromolecules 2020;21:3207-15. [PMID: 32639725 DOI: 10.1021/acs.biomac.0c00659] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
119 Jung N, Diehl F, Jonas U. Thiol-Substituted Poly(2-oxazoline)s with Photolabile Protecting Groups-Tandem Network Formation by Light. Polymers (Basel) 2020;12:E1767. [PMID: 32784610 DOI: 10.3390/polym12081767] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
120 Trachsel L, Romio M, Ramakrishna SN, Benetti EM. Fabrication of Biopassive Surfaces Using Poly(2‐alkyl‐2‐oxazoline)s: Recent Progresses and Applications. Adv Mater Interfaces 2020;7:2000943. [DOI: 10.1002/admi.202000943] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
121 Kang J, Shehu K, Sachse C, Jung FA, Ko C, Barnsley LC, Jordan R, Papadakis CM. A molecular brush with thermoresponsive poly(2-ethyl-2-oxazoline) side chains: a structural investigation. Colloid Polym Sci 2021;299:193-203. [DOI: 10.1007/s00396-020-04704-6] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
122 Boerman MA, Roozen EA, Franssen GM, Bender JC, Hoogenboom R, Leeuwenburgh SC, Laverman P, van Hest JC, van Goor H, Félix Lanao RP. Degradation and excretion of poly(2-oxazoline) based hemostatic materials. Materialia 2020;12:100763. [DOI: 10.1016/j.mtla.2020.100763] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
123 Oleszko-Torbus N, Mendrek B, Kowalczuk A, Utrata-Wesołek A, Dworak A, Wałach W. Selective Partial Hydrolysis of 2-isopropyl-2-oxazoline Copolymers towards Decreasing the Ability to Crystallize. Materials (Basel) 2020;13:E3403. [PMID: 32752250 DOI: 10.3390/ma13153403] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
124 Di J, Gao X, Du Y, Zhang H, Gao J, Zheng A. Size, shape, charge and “stealthy” surface: Carrier properties affect the drug circulation time in vivo. Asian Journal of Pharmaceutical Sciences 2020. [DOI: 10.1016/j.ajps.2020.07.005] [Cited by in Crossref: 31] [Cited by in F6Publishing: 36] [Article Influence: 10.3] [Reference Citation Analysis]
125 Sedlacek O, Jirak D, Vit M, Ziołkowska N, Janouskova O, Hoogenboom R. Fluorinated Water-Soluble Poly(2-oxazoline)s as Highly Sensitive 19 F MRI Contrast Agents. Macromolecules 2020;53:6387-95. [DOI: 10.1021/acs.macromol.0c01228] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
126 Humphries J, Pizzi D, Sonderegger SE, Fletcher NL, Houston ZH, Bell CA, Kempe K, Thurecht KJ. Hyperbranched Poly(2-oxazoline)s and Poly(ethylene glycol): A Structure–Activity Comparison of Biodistribution. Biomacromolecules 2020;21:3318-31. [DOI: 10.1021/acs.biomac.0c00765] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
127 Park JM, Kim YJ, Jang W. Multimodal Stimuli-Responsive Fluorophore-Functionalized Heterotelechelic Poly(2-isopropyl-2-oxazoline). ACS Appl Polym Mater 2020;2:3535-42. [DOI: 10.1021/acsapm.0c00543] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
128 Schoolaert E, Cossu L, Becelaere J, Van Guyse JF, Tigrine A, Vergaelen M, Hoogenboom R, De Clerck K. Nanofibers with a tunable wettability by electrospinning and physical crosslinking of poly(2-n-propyl-2-oxazoline). Materials & Design 2020;192:108747. [DOI: 10.1016/j.matdes.2020.108747] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 6.3] [Reference Citation Analysis]
129 Dirauf M, Grune C, Weber C, Schubert US, Fischer D. Poly(ethylene glycol) or poly(2-ethyl-2-oxazoline) – A systematic comparison of PLGA nanoparticles from the bottom up. European Polymer Journal 2020;134:109801. [DOI: 10.1016/j.eurpolymj.2020.109801] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
130 Jana S, Uchman M. Poly(2-oxazoline)-based stimulus-responsive (Co)polymers: An overview of their design, solution properties, surface-chemistries and applications. Progress in Polymer Science 2020;106:101252. [DOI: 10.1016/j.progpolymsci.2020.101252] [Cited by in Crossref: 28] [Cited by in F6Publishing: 17] [Article Influence: 9.3] [Reference Citation Analysis]
131 Sedlacek O, Van Driessche A, Uvyn A, De Geest BG, Hoogenboom R. Poly(2-methyl-2-oxazoline) conjugates with doxorubicin: From synthesis of high drug loading water-soluble constructs to in vitro anti-cancer properties. J Control Release 2020;326:53-62. [PMID: 32565042 DOI: 10.1016/j.jconrel.2020.06.018] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
132 Oleszko-Torbus N, Bochenek M, Utrata-Wesołek A, Kowalczuk A, Marcinkowski A, Dworak A, Fus-Kujawa A, Sieroń AL, Wałach W. Poly(2-oxazoline) Matrices with Temperature-Dependent Solubility-Interactions with Water and Use for Cell Culture. Materials (Basel) 2020;13:E2702. [PMID: 32545841 DOI: 10.3390/ma13122702] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
133 Šrámková P, Zahoranová A, Kelar J, Kelar Tučeková Z, Stupavská M, Krumpolec R, Jurmanová J, Kováčik D, Černák M. Cold atmospheric pressure plasma: simple and efficient strategy for preparation of poly(2-oxazoline)-based coatings designed for biomedical applications. Sci Rep 2020;10:9478. [PMID: 32528062 DOI: 10.1038/s41598-020-66423-w] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
134 Simon L, Marcotte N, Devoisselle JM, Begu S, Lapinte V. Recent advances and prospects in nano drug delivery systems using lipopolyoxazolines. Int J Pharm 2020;585:119536. [PMID: 32531447 DOI: 10.1016/j.ijpharm.2020.119536] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
135 Haider MS, Lübtow MM, Endres S, Forster S, Flegler VJ, Böttcher B, Aseyev V, Pöppler A, Luxenhofer R. Think Beyond the Core: Impact of the Hydrophilic Corona on Drug Solubilization Using Polymer Micelles. ACS Appl Mater Interfaces 2020;12:24531-43. [DOI: 10.1021/acsami.9b22495] [Cited by in Crossref: 29] [Cited by in F6Publishing: 33] [Article Influence: 9.7] [Reference Citation Analysis]
136 Zhou M, Qian Y, Xie J, Zhang W, Jiang W, Xiao X, Chen S, Dai C, Cong Z, Ji Z, Shao N, Liu L, Wu Y, Liu R. Poly(2‐Oxazoline)‐Based Functional Peptide Mimics: Eradicating MRSA Infections and Persisters while Alleviating Antimicrobial Resistance. Angew Chem 2020;132:6474-81. [DOI: 10.1002/ange.202000505] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
137 Zhou M, Qian Y, Xie J, Zhang W, Jiang W, Xiao X, Chen S, Dai C, Cong Z, Ji Z, Shao N, Liu L, Wu Y, Liu R. Poly(2‐Oxazoline)‐Based Functional Peptide Mimics: Eradicating MRSA Infections and Persisters while Alleviating Antimicrobial Resistance. Angew Chem Int Ed 2020;59:6412-9. [DOI: 10.1002/anie.202000505] [Cited by in Crossref: 102] [Cited by in F6Publishing: 103] [Article Influence: 34.0] [Reference Citation Analysis]
138 Simon L, Lapinte V, Lionnard L, Marcotte N, Morille M, Aouacheria A, Kissa K, Devoisselle J, Bégu S. Polyoxazolines based lipid nanocapsules for topical delivery of antioxidants. International Journal of Pharmaceutics 2020;579:119126. [DOI: 10.1016/j.ijpharm.2020.119126] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
139 Raus V, Hološ A, Kronek J, Mosnáček J. Well-Defined Linear and Grafted Poly(2-isopropenyl-2-oxazoline)s Prepared via Copper-Mediated Reversible-Deactivation Radical Polymerization Methods. Macromolecules 2020;53:2077-87. [DOI: 10.1021/acs.macromol.9b02662] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
140 Hahn L, Maier M, Stahlhut P, Beudert M, Flegler V, Forster S, Altmann A, Töppke F, Fischer K, Seiffert S, Böttcher B, Lühmann T, Luxenhofer R. Inverse Thermogelation of Aqueous Triblock Copolymer Solutions into Macroporous Shear-Thinning 3D Printable Inks. ACS Appl Mater Interfaces 2020;12:12445-56. [DOI: 10.1021/acsami.9b21282] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 6.7] [Reference Citation Analysis]
141 Cvek M, Zahoranova A, Mrlik M, Sramkova P, Minarik A, Sedlacik M. Poly(2-oxazoline)-based magnetic hydrogels: Synthesis, performance and cytotoxicity. Colloids Surf B Biointerfaces 2020;190:110912. [PMID: 32172162 DOI: 10.1016/j.colsurfb.2020.110912] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 5.3] [Reference Citation Analysis]
142 Du Y, Zhang T, Gieseler D, Schneider M, Hafner D, Sheng W, Li W, Lange F, Wegener E, Amin I, Jordan R. Facile Fabrication of Bio- and Dual-Functional Poly(2-oxazoline) Bottle-Brush Brush Surfaces. Chemistry 2020;26:2749-53. [PMID: 31826315 DOI: 10.1002/chem.201905326] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
143 Hoang Thi TT, Pilkington EH, Nguyen DH, Lee JS, Park KD, Truong NP. The Importance of Poly(ethylene glycol) Alternatives for Overcoming PEG Immunogenicity in Drug Delivery and Bioconjugation. Polymers (Basel) 2020;12:E298. [PMID: 32024289 DOI: 10.3390/polym12020298] [Cited by in Crossref: 203] [Cited by in F6Publishing: 219] [Article Influence: 67.7] [Reference Citation Analysis]
144 Saxena V, Merrilees MGL, Lau KHA. Antifouling Peptoid Biointerfaces. Biointerface Engineering: Prospects in Medical Diagnostics and Drug Delivery 2020. [DOI: 10.1007/978-981-15-4790-4_3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
145 Cordero FM, Lascialfari L, Machetti F. Five-Membered Ring Systems: With O & N Atoms. Progress in Heterocyclic Chemistry 2020. [DOI: 10.1016/b978-0-12-819962-6.00011-7] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
146 Oleszko-torbus N, Utrata-wesołek A, Bochenek M, Lipowska-kur D, Dworak A, Wałach W. Thermal and crystalline properties of poly(2-oxazoline)s. Polym Chem 2020;11:15-33. [DOI: 10.1039/c9py01316d] [Cited by in Crossref: 16] [Cited by in F6Publishing: 20] [Article Influence: 5.3] [Reference Citation Analysis]
147 Vergaelen M, Verbraeken B, Van Guyse JFR, Podevyn A, Tigrine A, de la Rosa VR, Monnery BD, Hoogenboom R. Ethyl acetate as solvent for the synthesis of poly(2-ethyl-2-oxazoline). Green Chem 2020;22:1747-53. [DOI: 10.1039/c9gc03872h] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
148 Zhang H, Liu X, Xu T, Xu K, Du B, Li Y. Biodegradable reduction and pH dual-sensitive polymer micelles based on poly(2-ethyl-2-oxazoline) for efficient delivery of curcumin. RSC Adv 2020;10:25435-45. [DOI: 10.1039/d0ra02779k] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
149 Sedlacek O, de la Rosa VR, Hoogenboom R. Poly(2-oxazoline)–protein conjugates. Polymer-Protein Conjugates 2020. [DOI: 10.1016/b978-0-444-64081-9.00018-8] [Reference Citation Analysis]
150 Merckx R, Swift T, Rees R, Van Guyse JFR, Schoolaert E, De Clerck K, Ottevaere H, Thienpont H, Jerca VV, Hoogenboom R. Förster resonance energy transfer in fluorophore labeled poly(2-ethyl-2-oxazoline)s. J Mater Chem C 2020;8:14125-37. [DOI: 10.1039/d0tc02830d] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
151 Sedlacek O, Hoogenboom R. Drug Delivery Systems Based on Poly(2‐Oxazoline)s and Poly(2‐Oxazine)s. Adv Therap 2020;3:1900168. [DOI: 10.1002/adtp.201900168] [Cited by in Crossref: 50] [Cited by in F6Publishing: 50] [Article Influence: 12.5] [Reference Citation Analysis]
152 Lezov A, Gubarev A, Mikhailova M, Lezova A, Mikusheva N, Kalganov V, Dudkina M, Ten'kovtsev A, Nekrasova T, Andreeva L, Saprykina N, Smyslov R, Gorshkova Y, Romanov D, Höppener S, Perevyazko I, Tsvetkov N. Star-Shaped Poly(2-ethyl-2-oxazoline) and Poly(2-isopropyl-2-oxazoline) with Central Thiacalix[4]Arene Fragments: Reduction and Stabilization of Silver Nanoparticles. Polymers (Basel) 2019;11:E2006. [PMID: 31817077 DOI: 10.3390/polym11122006] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
153 Yan YH, Atif M, Liu RY, Zhu HK, Chen LJ. Design of comb-like poly(2-methyl-2-oxazoline) and its rapid co-deposition with dopamine for the study of antifouling properties. J Biomater Sci Polym Ed 2020;31:423-38. [PMID: 31791188 DOI: 10.1080/09205063.2019.1697169] [Reference Citation Analysis]
154 Pizzi D, Humphries J, Morrow JP, Fletcher NL, Bell CA, Thurecht KJ, Kempe K. Poly(2-oxazoline) macromonomers as building blocks for functional and biocompatible polymer architectures. European Polymer Journal 2019;121:109258. [DOI: 10.1016/j.eurpolymj.2019.109258] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 7.5] [Reference Citation Analysis]
155 Delaittre G. Telechelic poly(2-oxazoline)s. European Polymer Journal 2019;121:109281. [DOI: 10.1016/j.eurpolymj.2019.109281] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 6.8] [Reference Citation Analysis]
156 Van Guyse JFR, Xu X, Hoogenboom R. Acyl guanidine functional poly(2‐oxazoline)s as reactive intermediates and stimuli‐responsive materials. J Polym Sci Part A: Polym Chem 2019;57:2616-24. [DOI: 10.1002/pola.29542] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
157 Mathivanan N, Paramasivam G, Vergaelen M, Rajendran J, Hoogenboom R, Sundaramurthy A. Hydrogen-Bonded Multilayer Thin Films and Capsules Based on Poly(2-n-propyl-2-oxazoline) and Tannic Acid: Investigation on Intermolecular Forces, Stability, and Permeability. Langmuir 2019;35:14712-24. [PMID: 31622110 DOI: 10.1021/acs.langmuir.9b02938] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
158 Lübtow MM, Lorson T, Finger T, Gröber‐becker F, Luxenhofer R. Combining Ultra‐High Drug‐Loaded Micelles and Injectable Hydrogel Drug Depots for Prolonged Drug Release. Macromol Chem Phys 2020;221:1900341. [DOI: 10.1002/macp.201900341] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
159 Sedlacek O, de la Rosa VR, Hoogenboom R. Poly(2-oxazoline)-protein conjugates. European Polymer Journal 2019;120:109246. [DOI: 10.1016/j.eurpolymj.2019.109246] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 5.8] [Reference Citation Analysis]
160 Boel E, Smeets A, Vergaelen M, De la Rosa VR, Hoogenboom R, Van den Mooter G. Comparative study of the potential of poly(2-ethyl-2-oxazoline) as carrier in the formulation of amorphous solid dispersions of poorly soluble drugs. European Journal of Pharmaceutics and Biopharmaceutics 2019;144:79-90. [DOI: 10.1016/j.ejpb.2019.09.005] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 5.3] [Reference Citation Analysis]
161 Wolf MP, Liu K, Horn TFW, Hunziker P. FRET in a Polymeric Nanocarrier: IR-780 and IR-780-PDMS. Biomacromolecules 2019;20:4065-74. [DOI: 10.1021/acs.biomac.9b00823] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
162 Haider MS, Schreiner J, Kendl S, Kroiss M, Luxenhofer R. A Micellar Mitotane Formulation with High Drug-Loading and Solubility: Physico-Chemical Characterization and Cytotoxicity Studies in 2D and 3D In Vitro Tumor Models. Macromol Biosci 2020;20:e1900178. [PMID: 31596553 DOI: 10.1002/mabi.201900178] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
163 Chen Z, Visalakshan RM, Guo J, Wei F, Zhang L, Chen L, Lin Z, Vasilev K, Xiao Y. Plasma deposited poly-oxazoline nanotextured surfaces dictate osteoimmunomodulation towards ameliorative osteogenesis. Acta Biomater 2019;96:568-81. [PMID: 31271882 DOI: 10.1016/j.actbio.2019.06.058] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 5.8] [Reference Citation Analysis]
164 Lübtow MM, Marciniak H, Schmiedel A, Roos M, Lambert C, Luxenhofer R. Ultra-High to Ultra-Low Drug-Loaded Micelles: Probing Host-Guest Interactions by Fluorescence Spectroscopy. Chemistry 2019;25:12601-10. [PMID: 31291028 DOI: 10.1002/chem.201902619] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 4.3] [Reference Citation Analysis]
165 Joe JH, Park JM, Lee H, Jang W. A dendritic-linear block copolymer as a thermoresponsive non-ionic polymer surfactant. European Polymer Journal 2019;118:320-6. [DOI: 10.1016/j.eurpolymj.2019.06.007] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
166 Zhang P, Zhang X, Li C, Zhou S, Wu W, Jiang X. Target-Amplified Drug Delivery of Polymer Micelles Bearing Staudinger Ligation. ACS Appl Mater Interfaces 2019;11:32697-705. [DOI: 10.1021/acsami.9b10295] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
167 Van Steenberge PHM, Sedlacek O, Hernández-Ortiz JC, Verbraeken B, Reyniers MF, Hoogenboom R, D'hooge DR. Visualization and design of the functional group distribution during statistical copolymerization. Nat Commun 2019;10:3641. [PMID: 31409782 DOI: 10.1038/s41467-019-11368-6] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 7.3] [Reference Citation Analysis]
168 Fu Y, Perales C, Eliason T, Bergbreiter DE. 110th Anniversary: Reversible Solubilization of Polar Polymers and Polymeric Catalysts in Nonpolar Solvents. Ind Eng Chem Res 2019;58:14579-14587. [DOI: 10.1021/acs.iecr.9b02373] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
169 Lübtow MM, Mrlik M, Hahn L, Altmann A, Beudert M, Lühmann T, Luxenhofer R. Temperature-Dependent Rheological and Viscoelastic Investigation of a Poly(2-methyl-2-oxazoline)-b-poly(2-iso-butyl-2-oxazoline)-b-poly(2-methyl-2-oxazoline)-Based Thermogelling Hydrogel. J Funct Biomater 2019;10:E36. [PMID: 31394886 DOI: 10.3390/jfb10030036] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 5.8] [Reference Citation Analysis]
170 Wu YM, Swager TM. Living Polymerization of 2-Ethylthio-2-oxazoline and Postpolymerization Diversification. J Am Chem Soc 2019;141:12498-501. [PMID: 31365245 DOI: 10.1021/jacs.9b06009] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
171 Svoboda J, Sedláček O, Riedel T, Hrubý M, Pop-georgievski O. Poly(2-oxazoline)s One-Pot Polymerization and Surface Coating: From Synthesis to Antifouling Properties Out-Performing Poly(ethylene oxide). Biomacromolecules 2019;20:3453-63. [DOI: 10.1021/acs.biomac.9b00751] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
172 Simon L, Vincent M, Le Saux S, Lapinte V, Marcotte N, Morille M, Dorandeu C, Devoisselle JM, Bégu S. Polyoxazolines based mixed micelles as PEG free formulations for an effective quercetin antioxidant topical delivery. Int J Pharm 2019;570:118516. [PMID: 31319148 DOI: 10.1016/j.ijpharm.2019.118516] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 3.8] [Reference Citation Analysis]
173 Abilova GK, Kaldybekov DB, Ozhmukhametova EK, Saimova AZ, Kazybayeva DS, Irmukhametova GS, Khutoryanskiy VV. Chitosan/poly(2-ethyl-2-oxazoline) films for ocular drug delivery: Formulation, miscibility, in vitro and in vivo studies. European Polymer Journal 2019;116:311-20. [DOI: 10.1016/j.eurpolymj.2019.04.016] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 8.3] [Reference Citation Analysis]
174 Lübtow MM, Nelke LC, Seifert J, Kühnemundt J, Sahay G, Dandekar G, Nietzer SL, Luxenhofer R. Drug induced micellization into ultra-high capacity and stable curcumin nanoformulations: Physico-chemical characterization and evaluation in 2D and 3D in vitro models. Journal of Controlled Release 2019;303:162-80. [DOI: 10.1016/j.jconrel.2019.04.014] [Cited by in Crossref: 45] [Cited by in F6Publishing: 42] [Article Influence: 11.3] [Reference Citation Analysis]
175 Arraez FJ, Xu X, Van Steenberge PHM, Jerca V, Hoogenboom R, D’hooge DR. Macropropagation Rate Coefficients and Branching Levels in Cationic Ring-Opening Polymerization of 2-Ethyl-2-oxazoline through Prediction of Size Exclusion Chromatography Data. Macromolecules 2019;52:4067-78. [DOI: 10.1021/acs.macromol.9b00544] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
176 Sedlacek O, Lava K, Verbraeken B, Kasmi S, De Geest BG, Hoogenboom R. Unexpected Reactivity Switch in the Statistical Copolymerization of 2-Oxazolines and 2-Oxazines Enabling the One-Step Synthesis of Amphiphilic Gradient Copolymers. J Am Chem Soc 2019;141:9617-22. [DOI: 10.1021/jacs.9b02607] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 6.0] [Reference Citation Analysis]
177 Zhu X, Duan X, Bai T, Zhang X, Wang T, Cao T, Fan X. Synthesis of Novel pH-Tunable Thermoresponsive Hydroxyl-Terminated Hyperbranched Polyether. Polymers (Basel) 2019;11:E895. [PMID: 31100869 DOI: 10.3390/polym11050895] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
178 Benetti EM, Spencer ND. Using Polymers to Impart Lubricity and Biopassivity to Surfaces: Are These Properties Linked? HCA 2019;102:e1900071. [DOI: 10.1002/hlca.201900071] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
179 Roy M, Wilsens CHRM, Leoné N, Rastogi S. Use of Bis(pyrrolidone)-Based Dicarboxylic Acids in Poly(ester–amide)-Based Thermosets: Synthesis, Characterization, and Potential Route for Their Chemical Recycling. ACS Sustainable Chem Eng 2019;7:8842-52. [DOI: 10.1021/acssuschemeng.9b00850] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
180 Engel N, Dirauf M, Seupel S, Leiske MN, Schubert S, Schubert US. Utilization of 4-(trifluoromethyl)benzenesulfonates as Counter Ions Tunes the Initiator Efficiency of Sophisticated Initiators for the Preparation of Well-Defined poly(2-oxazoline)s. Macromol Rapid Commun 2019;40:e1900094. [PMID: 30968504 DOI: 10.1002/marc.201900094] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
181 Zhang T, Benetti EM, Jordan R. Surface-Initiated Cu(0)-Mediated CRP for the Rapid and Controlled Synthesis of Quasi-3D Structured Polymer Brushes. ACS Macro Lett 2019;8:145-53. [PMID: 35619435 DOI: 10.1021/acsmacrolett.8b00912] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 6.8] [Reference Citation Analysis]
182 Klein T, Parkin J, Jongh PAJM, Esser L, Sepehrizadeh T, Zheng G, Veer M, Alt K, Hagemeyer CE, Haddleton DM, Davis TP, Thelakkat M, Kempe K. Functional Brush Poly(2‐ethyl‐2‐oxazine)s: Synthesis by CROP and RAFT, Thermoresponsiveness and Grafting onto Iron Oxide Nanoparticles. Macromol Rapid Commun 2019;40:1800911. [DOI: 10.1002/marc.201800911] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
183 Ramakrishna SN, Morgese G, Zenobi-wong M, Benetti EM. Comblike Polymers with Topologically Different Side Chains for Surface Modification: Assembly Process and Interfacial Physicochemical Properties. Macromolecules 2019;52:1632-41. [DOI: 10.1021/acs.macromol.8b02549] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
184 Delage B, Briou B, Brossier T, Catrouillet S, Robin J, Lapinte V. Polyoxazoline associated with cardanol for bio‐based linear alkyl benzene surfactants. Polym Int 2018;68:755-63. [DOI: 10.1002/pi.5763] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
185 Lezov AA, Gubarev AS, Podsevalnikova AN, Senchukova AS, Lebedeva EV, Dudkina MM, Tenkovtsev AV, Nekrasova TN, Andreeva LN, Smyslov RY, Gorshkova YE, Kopitsa GP, Rǎdulescu A, Pipich V, Tsvetkov NV. Temperature-responsive star-shaped poly(2-ethyl-2-oxazoline) and poly(2-isopropyl-2-oxazoline) with central thiacalix[4]arene fragments: structure and properties in solutions. Colloid Polym Sci 2019;297:285-296. [DOI: 10.1007/s00396-018-4458-9] [Cited by in Crossref: 4] [Article Influence: 1.0] [Reference Citation Analysis]
186 Moustafine RI, Viktorova AS, Khutoryanskiy VV. Interpolymer complexes of carbopol® 971 and poly(2-ethyl-2-oxazoline): Physicochemical studies of complexation and formulations for oral drug delivery. Int J Pharm 2019;558:53-62. [PMID: 30634031 DOI: 10.1016/j.ijpharm.2019.01.002] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
187 Sedlacek O, Monnery BD, Hoogenboom R. Synthesis of defined high molar mass poly(2-methyl-2-oxazoline). Polym Chem 2019;10:1286-90. [DOI: 10.1039/c9py00013e] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
188 Sedlacek O, Bera D, Hoogenboom R. Poly(2-amino-2-oxazoline)s: a new class of thermoresponsive polymers. Polym Chem 2019;10:4683-9. [DOI: 10.1039/c9py00943d] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
189 Van Guyse JFR, Mees MA, Vergaelen M, Baert M, Verbraeken B, Martens PJ, Hoogenboom R. Amidation of methyl ester side chain bearing poly(2-oxazoline)s with tyramine: a quest for a selective and quantitative approach. Polym Chem 2019;10:954-62. [DOI: 10.1039/c9py00014c] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 5.8] [Reference Citation Analysis]
190 Lee J, Park JM, Jang W. Fructose-sensitive thermal transition behaviour of boronic ester-bearing telechelic poly(2-isopropyl-2-oxazoline). Chem Commun 2019;55:3343-6. [DOI: 10.1039/c8cc09835b] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
191 Oudin A, Chauvin J, Gibot L, Rols M, Balor S, Goudounèche D, Payré B, Lonetti B, Vicendo P, Mingotaud A, Lapinte V. Amphiphilic polymers based on polyoxazoline as relevant nanovectors for photodynamic therapy. J Mater Chem B 2019;7:4973-82. [DOI: 10.1039/c9tb00118b] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
192 Divandari M, Morgese G, Ramakrishna SN, Benetti EM. Surface-grafted assemblies of cyclic polymers: Shifting between high friction and extreme lubricity. European Polymer Journal 2019;110:301-6. [DOI: 10.1016/j.eurpolymj.2018.11.039] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 5.3] [Reference Citation Analysis]
193 Le D, Wagner F, Takamiya M, Hsiao I, Gil Alvaradejo G, Strähle U, Weiss C, Delaittre G. Straightforward access to biocompatible poly(2-oxazoline)-coated nanomaterials by polymerization-induced self-assembly. Chem Commun 2019;55:3741-4. [DOI: 10.1039/c9cc00407f] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 8.3] [Reference Citation Analysis]
194 Shats I, Liu J, Williams JG, Deterding LJ, Lim C, Lee E, Fan W, Sokolsky M, Kabanov AV, Locasale JW, Li X. Bacteria boost mammalian host NAD metabolism by engaging the deamidated biosynthesis pathway.. [DOI: 10.1101/489674] [Reference Citation Analysis]
195 Sedlacek O, Janouskova O, Verbraeken B, Hoogenboom R. Straightforward Route to Superhydrophilic Poly(2-oxazoline)s via Acylation of Well-Defined Polyethylenimine. Biomacromolecules 2019;20:222-30. [DOI: 10.1021/acs.biomac.8b01366] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 4.2] [Reference Citation Analysis]
196 Englert C, Brendel JC, Majdanski TC, Yildirim T, Schubert S, Gottschaldt M, Windhab N, Schubert US. Pharmapolymers in the 21st century: Synthetic polymers in drug delivery applications. Progress in Polymer Science 2018;87:107-64. [DOI: 10.1016/j.progpolymsci.2018.07.005] [Cited by in Crossref: 113] [Cited by in F6Publishing: 70] [Article Influence: 22.6] [Reference Citation Analysis]
197 Macgregor M, Sinha U, Visalakshan RM, Cavallaro A, Vasilev K. Preserving the reactivity of coatings plasma deposited from oxazoline precursors − An in depth study. Plasma Process Polym 2019;16:1800130. [DOI: 10.1002/ppap.201800130] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
198 Monnery BD, Jerca VV, Sedlacek O, Verbraeken B, Cavill R, Hoogenboom R. Defined High Molar Mass Poly(2‐Oxazoline)s. Angew Chem Int Ed 2018;57:15400-4. [DOI: 10.1002/anie.201807796] [Cited by in Crossref: 52] [Cited by in F6Publishing: 55] [Article Influence: 10.4] [Reference Citation Analysis]
199 Monnery BD, Jerca VV, Sedlacek O, Verbraeken B, Cavill R, Hoogenboom R. Defined High Molar Mass Poly(2‐Oxazoline)s. Angew Chem 2018;130:15626-30. [DOI: 10.1002/ange.201807796] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
200 Morgese G, Gombert Y, Ramakrishna SN, Benetti EM. Mixing Poly(ethylene glycol) and Poly(2-alkyl-2-oxazoline)s Enhances Hydration and Viscoelasticity of Polymer Brushes and Determines Their Nanotribological and Antifouling Properties. ACS Appl Mater Interfaces 2018;10:41839-48. [DOI: 10.1021/acsami.8b17193] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 5.2] [Reference Citation Analysis]
201 Jerca FA, Anghelache AM, Ghibu E, Cecoltan S, Stancu I, Trusca R, Vasile E, Teodorescu M, Vuluga DM, Hoogenboom R, Jerca VV. Poly(2-isopropenyl-2-oxazoline) Hydrogels for Biomedical Applications. Chem Mater 2018;30:7938-49. [DOI: 10.1021/acs.chemmater.8b03545] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 6.0] [Reference Citation Analysis]
202 de Melo-diogo D, Costa EC, Alves CG, Lima-sousa R, Ferreira P, Louro RO, Correia IJ. POxylated graphene oxide nanomaterials for combination chemo-phototherapy of breast cancer cells. European Journal of Pharmaceutics and Biopharmaceutics 2018;131:162-9. [DOI: 10.1016/j.ejpb.2018.08.008] [Cited by in Crossref: 40] [Cited by in F6Publishing: 41] [Article Influence: 8.0] [Reference Citation Analysis]
203 Lübtow MM, Keßler L, Appelt-Menzel A, Lorson T, Gangloff N, Kirsch M, Dahms S, Luxenhofer R. More Is Sometimes Less: Curcumin and Paclitaxel Formulations Using Poly(2-oxazoline) and Poly(2-oxazine)-Based Amphiphiles Bearing Linear and Branched C9 Side Chains. Macromol Biosci 2018;18:e1800155. [PMID: 30256527 DOI: 10.1002/mabi.201800155] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 5.0] [Reference Citation Analysis]
204 Trachsel L, Broguiere N, Rosenboom J, Zenobi-wong M, Benetti EM. Enzymatically crosslinked poly(2-alkyl-2-oxazoline) networks for 3D cell culture. J Mater Chem B 2018;6:7568-72. [DOI: 10.1039/c8tb02382d] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]