BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wang SH, Yu J. Structure-based design for binding peptides in anti-cancer therapy. Biomaterials 2018;156:1-15. [PMID: 29182932 DOI: 10.1016/j.biomaterials.2017.11.024] [Cited by in Crossref: 32] [Cited by in F6Publishing: 42] [Article Influence: 6.4] [Reference Citation Analysis]
Number Citing Articles
1 Chis AA, Arseniu AM, Morgovan C, Dobrea CM, Frum A, Juncan AM, Butuca A, Ghibu S, Gligor FG, Rus LL. Biopolymeric Prodrug Systems as Potential Antineoplastic Therapy. Pharmaceutics 2022;14:1773. [DOI: 10.3390/pharmaceutics14091773] [Reference Citation Analysis]
2 Chen Z, Yue Z, Wang R, Yang K, Li S. Nanomaterials: A powerful tool for tumor immunotherapy. Front Immunol 2022;13:979469. [DOI: 10.3389/fimmu.2022.979469] [Reference Citation Analysis]
3 Avila H, Yu J, Boddu G, Phan A, Truong A, Peddi S, Guo H, Lee SJ, Alba M, Canfield E, Yamamoto V, Paton JC, Paton AW, Lee AS, MacKay JA. Hydra-Elastin-like Polypeptides Increase Rapamycin Potency When Targeting Cell Surface GRP78. Biomacromolecules 2022. [PMID: 35786858 DOI: 10.1021/acs.biomac.2c00048] [Reference Citation Analysis]
4 Romero-Molina S, Ruiz-Blanco YB, Mieres-Perez J, Harms M, Münch J, Ehrmann M, Sanchez-Garcia E. PPI-Affinity: A Web Tool for the Prediction and Optimization of Protein-Peptide and Protein-Protein Binding Affinity. J Proteome Res 2022. [PMID: 35654412 DOI: 10.1021/acs.jproteome.2c00020] [Reference Citation Analysis]
5 Lv F, Li X, Wang Y. An extraction from Trametes robiniophila Murr. (Huaier) inhibits non-small cell lung cancer proliferation via targeting to epidermal growth factor receptor. Bioengineered 2022;13:10931-43. [PMID: 35470770 DOI: 10.1080/21655979.2022.2066757] [Reference Citation Analysis]
6 Wang L, Wang N, Zhang W, Cheng X, Yan Z, Shao G, Wang X, Wang R, Fu C. Therapeutic peptides: current applications and future directions. Sig Transduct Target Ther 2022;7. [DOI: 10.1038/s41392-022-00904-4] [Cited by in Crossref: 40] [Cited by in F6Publishing: 29] [Article Influence: 40.0] [Reference Citation Analysis]
7 Han X, Alu A, Liu H, Shi Y, Wei X, Cai L, Wei Y. Biomaterial-assisted biotherapy: A brief review of biomaterials used in drug delivery, vaccine development, gene therapy, and stem cell therapy. Bioactive Materials 2022. [DOI: 10.1016/j.bioactmat.2022.01.011] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
8 Trinidad-Calderón PA, Varela-Chinchilla CD, García-Lara S. Natural Peptides Inducing Cancer Cell Death: Mechanisms and Properties of Specific Candidates for Cancer Therapeutics. Molecules 2021;26:7453. [PMID: 34946535 DOI: 10.3390/molecules26247453] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
9 Trinidad-calderón PA, Varela-chinchilla CD, García-lara S. Natural Peptides Inducing Cancer Cell Death: Mechanisms and Properties of Specific Candidates for Cancer Therapeutics. Molecules 2021;26:7453. [DOI: 10.3390/molecules26247453] [Reference Citation Analysis]
10 Zhao R, Zhang R, Feng L, Dong Y, Zhou J, Qu S, Gai S, Yang D, Ding H, Yang P. Constructing virus-like SiOx/CeO2/VOx nanozymes for 1064 nm light-triggered mild-temperature photothermal therapy and nanozyme catalytic therapy. Nanoscale 2021. [PMID: 34878482 DOI: 10.1039/d1nr06128c] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
11 Ganie SA, Rather LJ, Li Q. A review on anticancer applications of pullulan and pullulan derivative nanoparticles. Carbohydrate Polymer Technologies and Applications 2021;2:100115. [DOI: 10.1016/j.carpta.2021.100115] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
12 Ren E, Liu C, Lv P, Wang J, Liu G. Genetically Engineered Cellular Membrane Vesicles as Tailorable Shells for Therapeutics. Adv Sci (Weinh) 2021;8:e2100460. [PMID: 34494387 DOI: 10.1002/advs.202100460] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
13 Veerappan R, Daniels A, Singh M. Polymeric Silver Nanoparticles: Potential for Folate-Targeted Delivery of Cisplatin In Vitro. Int J Nanosci 2021;20:2150041. [DOI: 10.1142/s0219581x21500411] [Reference Citation Analysis]
14 Aili A, Wen J, Xue L, Wang J. Mutational Analysis of PBRM1 and Significance of PBRM1 Mutation in Anti-PD-1 Immunotherapy of Clear Cell Renal Cell Carcinoma. Front Oncol 2021;11:712765. [PMID: 34447697 DOI: 10.3389/fonc.2021.712765] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
15 Chen J, Cheong HH, Siu SWI. xDeep-AcPEP: Deep Learning Method for Anticancer Peptide Activity Prediction Based on Convolutional Neural Network and Multitask Learning. J Chem Inf Model 2021;61:3789-803. [PMID: 34327990 DOI: 10.1021/acs.jcim.1c00181] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
16 Ilangala AB, Lechanteur A, Fillet M, Piel G. Therapeutic peptides for chemotherapy: Trends and challenges for advanced delivery systems. Eur J Pharm Biopharm 2021;167:140-58. [PMID: 34311093 DOI: 10.1016/j.ejpb.2021.07.010] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
17 Hong H, Zou Q, Liu Y, Wang S, Shen G, Yan X. Supramolecular Nanodrugs Based on Covalent Assembly of Therapeutic Peptides toward In Vitro Synergistic Anticancer Therapy. ChemMedChem 2021;16:2381-5. [PMID: 33908190 DOI: 10.1002/cmdc.202100236] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
18 Xiao L, Hou Y, He H, Cheng S, Hou Y, Jin H, Song X, Nie G, Hou Y. A novel targeted delivery system for drug-resistant hepatocellular carcinoma therapy. Nanoscale 2020;12:17029-44. [PMID: 32780053 DOI: 10.1039/d0nr01908a] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
19 Zhang Y, Wu BJ, Yu X, Luo P, Ye H, Yu Y, Han W, Li J. Development of an Antigen-Antibody Co-Display System for Detecting Interaction of G-Protein-Coupled Receptors and Single-Chain Variable Fragments. Int J Mol Sci 2021;22:4711. [PMID: 33946798 DOI: 10.3390/ijms22094711] [Reference Citation Analysis]
20 Zhang S, Wang L, Gao Y, Fan Y, Zhang G, Zhang Y. Molecular Mechanism of 73HOXC-AS1-Activated Wntβ-Catenin Signaling and eIF4AIII in Promoting Progression of Gastric Cancer. Biomed Res Int 2021;2021:8814843. [PMID: 33954199 DOI: 10.1155/2021/8814843] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
21 Timur SS, Gürsoy RN. The role of peptide-based therapeutics in oncotherapy. J Drug Target 2021;:1-15. [PMID: 33775190 DOI: 10.1080/1061186X.2021.1906884] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
22 Temml V, Kutil Z. Structure-based molecular modeling in SAR analysis and lead optimization. Comput Struct Biotechnol J 2021;19:1431-44. [PMID: 33777339 DOI: 10.1016/j.csbj.2021.02.018] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
23 Lv X, Li R, Li Z, Wang J. Purification of Gekko Small Peptide Fraction and Its Effect of Inducing Apoptosis of EC 9706 Esophageal Cancer Cells by Inhibiting PI3K/Akt/GLUT1 Signaling Pathway. Chem Biodivers 2021;18:e2000720. [PMID: 33534194 DOI: 10.1002/cbdv.202000720] [Reference Citation Analysis]
24 Tang S, Wei H, Yu C. Peptide-functionalized delivery vehicles for enhanced cancer therapy. International Journal of Pharmaceutics 2021;593:120141. [DOI: 10.1016/j.ijpharm.2020.120141] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
25 Farshbaf M, Khosroushahi AY, Mojarad-jabali S, Zarebkohan A, Valizadeh H, Walker PR. Cell surface GRP78: An emerging imaging marker and therapeutic target for cancer. Journal of Controlled Release 2020;328:932-41. [DOI: 10.1016/j.jconrel.2020.10.055] [Cited by in Crossref: 4] [Cited by in F6Publishing: 19] [Article Influence: 2.0] [Reference Citation Analysis]
26 Sui J, He M, Yang Y, Ma M, Guo Z, Zhao M, Liang J, Sun Y, Fan Y, Zhang X. Reversing P-Glycoprotein-Associated Multidrug Resistance of Breast Cancer by Targeted Acid-Cleavable Polysaccharide Nanoparticles with Lapatinib Sensitization. ACS Appl Mater Interfaces 2020;12:51198-211. [PMID: 33147005 DOI: 10.1021/acsami.0c13986] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
27 Wang SH, Wu TJ, Lee CW, Yu J. Dissecting the conformation of glycans and their interactions with proteins. J Biomed Sci 2020;27:93. [PMID: 32900381 DOI: 10.1186/s12929-020-00684-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
28 Lv F, Deng M, Bai J, Zou D, Wang J, Li H, Zhang Y, Ji X. Piperlongumine inhibits head and neck squamous cell carcinoma proliferation by docking to Akt. Phytother Res 2020;34:3345-58. [PMID: 32798277 DOI: 10.1002/ptr.6788] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
29 Chiangjong W, Chutipongtanate S, Hongeng S. Anticancer peptide: Physicochemical property, functional aspect and trend in clinical application (Review). Int J Oncol 2020;57:678-96. [PMID: 32705178 DOI: 10.3892/ijo.2020.5099] [Cited by in Crossref: 26] [Cited by in F6Publishing: 70] [Article Influence: 13.0] [Reference Citation Analysis]
30 Li Y, Ji X, Yao W, Pan H, Li P, Liu Y, Yuan J, Xu Q, Ni C. M10 peptide attenuates silica-induced pulmonary fibrosis by inhibiting Smad2 phosphorylation. Toxicology and Applied Pharmacology 2019;376:46-57. [DOI: 10.1016/j.taap.2019.05.015] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
31 Shamsi M, Mohammadi A, Manshadi MK, Sanati-nezhad A. Mathematical and computational modeling of nano-engineered drug delivery systems. Journal of Controlled Release 2019;307:150-65. [DOI: 10.1016/j.jconrel.2019.06.014] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 7.3] [Reference Citation Analysis]
32 Zhang P, Ma J, Zhang Q, Jian S, Sun X, Liu B, Nie L, Liu M, Liang S, Zeng Y, Liu Z. Monosaccharide Analogues of Anticancer Peptide R-Lycosin-I: Role of Monosaccharide Conjugation in Complexation and the Potential of Lung Cancer Targeting and Therapy. J Med Chem 2019;62:7857-73. [DOI: 10.1021/acs.jmedchem.9b00634] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
33 Ning L, He B, Zhou P, Derda R, Huang J. Molecular Design of Peptide-Fc Fusion Drugs. CDM 2019;20:203-8. [DOI: 10.2174/1389200219666180821095355] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
34 Ghadari R, Sabri A. In silico study on core-shell pseudodendrimeric glycoside structures in drug delivery related usages. Polyhedron 2019;160:10-9. [DOI: 10.1016/j.poly.2018.12.013] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
35 Bailly C, Waring MJ. Pharmacological effectors of GRP78 chaperone in cancers. Biochem Pharmacol 2019;163:269-78. [PMID: 30831072 DOI: 10.1016/j.bcp.2019.02.038] [Cited by in Crossref: 17] [Cited by in F6Publishing: 26] [Article Influence: 5.7] [Reference Citation Analysis]
36 Naz S, Shamoon M, Wang R, Zhang L, Zhou J, Chen J. Advances in Therapeutic Implications of Inorganic Drug Delivery Nano-Platforms for Cancer. Int J Mol Sci 2019;20:E965. [PMID: 30813333 DOI: 10.3390/ijms20040965] [Cited by in Crossref: 20] [Cited by in F6Publishing: 28] [Article Influence: 6.7] [Reference Citation Analysis]
37 Munder A, Moskovitz Y, Meir A, Kahremany S, Levy L, Kolitz-Domb M, Cohen G, Shtriker E, Viskind O, Lellouche JP, Senderowitz H, Chessler SD, Korshin EE, Ruthstein S, Gruzman A. Neuroligin-2-derived peptide-covered polyamidoamine-based (PAMAM) dendrimers enhance pancreatic β-cells' proliferation and functions. Medchemcomm 2019;10:280-93. [PMID: 30881615 DOI: 10.1039/c8md00419f] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
38 Jeong WJ, Bu J, Kubiatowicz LJ, Chen SS, Kim Y, Hong S. Peptide-nanoparticle conjugates: a next generation of diagnostic and therapeutic platforms? Nano Converg 2018;5:38. [PMID: 30539365 DOI: 10.1186/s40580-018-0170-1] [Cited by in Crossref: 58] [Cited by in F6Publishing: 71] [Article Influence: 14.5] [Reference Citation Analysis]
39 Inaba H, Matsuura K. Peptide Nanomaterials Designed from Natural Supramolecular Systems. Chem Rec 2019;19:843-58. [PMID: 30375148 DOI: 10.1002/tcr.201800149] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 6.3] [Reference Citation Analysis]
40 Pavithrra G, Rajasekaran R. Identification of Effective Dimeric Gramicidin-D Peptide as Antimicrobial Therapeutics over Drug Resistance: In-Silico Approach. Interdiscip Sci 2019;11:575-83. [PMID: 30182355 DOI: 10.1007/s12539-018-0304-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
41 Jakubczyk A, Świeca M, Gawlik-dziki U, Dziki D. Nutritional potential and inhibitory activity of bread fortified with green coffee beans against enzymes involved in metabolic syndrome pathogenesis. LWT 2018;95:78-84. [DOI: 10.1016/j.lwt.2018.04.071] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
42 Falanga A, Galdiero S. Peptide chemistry encounters nanomedicine: recent applications and upcoming scenarios in cancer. Future Med Chem 2018;10:1877-80. [PMID: 29921135 DOI: 10.4155/fmc-2018-0182] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]