BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wei J, Shuai X, Wang R, He X, Li Y, Ding M, Li J, Tan H, Fu Q. Clickable and imageable multiblock polymer micelles with magnetically guided and PEG-switched targeting and release property for precise tumor theranosis. Biomaterials 2017;145:138-53. [PMID: 28863308 DOI: 10.1016/j.biomaterials.2017.08.005] [Cited by in Crossref: 44] [Cited by in F6Publishing: 47] [Article Influence: 7.3] [Reference Citation Analysis]
Number Citing Articles
1 Cheng C, Ma J, Zhao J, Lu H, Liu Y, He C, Lu M, Yin X, Li J, Ding M. Redox-dual-sensitive multiblock copolymer vesicles with disulfide-enabled sequential drug delivery. J Mater Chem B 2023;11:2631-7. [PMID: 36794489 DOI: 10.1039/d2tb02686d] [Reference Citation Analysis]
2 Cao D, Chen L, Zhang Z, Luo Y, Zhao L, Yuan C, Lu J, Liu X, Li J. Biodegradable nanomaterials for diagnosis and therapy of tumors. J Mater Chem B 2023;11:1829-48. [PMID: 36786439 DOI: 10.1039/d2tb02591d] [Reference Citation Analysis]
3 He N, Wang A, Tian C, Song Y, Guo X, Ming H, Ding M, Luo F, Tan H, Li J. Tuning the Endocytosis of Hybrid Micelles through Spatial Regulation of Cationic Groups. ACS Appl Mater Interfaces 2023. [PMID: 36779657 DOI: 10.1021/acsami.2c20620] [Reference Citation Analysis]
4 Khizar S, Elkalla E, Zine N, Jaffrezic-Renault N, Errachid A, Elaissari A. Magnetic nanoparticles: multifunctional tool for cancer therapy. Expert Opin Drug Deliv 2023;20:189-204. [PMID: 36608938 DOI: 10.1080/17425247.2023.2166484] [Reference Citation Analysis]
5 Tao W, Wang J, Zhou Y, Liu Z, Chen H, Zhao Z, Yan H, Liao X. Acid/reduction dual-sensitive amphiphilic graft polyurethane with folic acid and detachable poly(ethylene glycol) as anticancer drug delivery carrier. Colloids Surf B Biointerfaces 2023;222:113084. [PMID: 36549246 DOI: 10.1016/j.colsurfb.2022.113084] [Reference Citation Analysis]
6 Zhang Y, Ge T, Li Y, Lu J, Du H, Yan L, Tan H, Li J, Yin Y. Anti-Fouling and Anti-Biofilm Performance of Self-Polishing Waterborne Polyurethane with Gemini Quaternary Ammonium Salts. Polymers (Basel) 2023;15. [PMID: 36679198 DOI: 10.3390/polym15020317] [Reference Citation Analysis]
7 Aram E, Moeni M, Abedizadeh R, Sabour D, Sadeghi-abandansari H, Gardy J, Hassanpour A. Smart and Multi-Functional Magnetic Nanoparticles for Cancer Treatment Applications: Clinical Challenges and Future Prospects. Nanomaterials 2022;12:3567. [DOI: 10.3390/nano12203567] [Reference Citation Analysis]
8 Li H, Zhang X, Shao F, Chen J, Li L, Hong R. Continuous preparation of a nontoxic magnetic fluid as a dual-mode contrast agent for MRI. Biomaterials Advances 2022;139:213004. [DOI: 10.1016/j.bioadv.2022.213004] [Reference Citation Analysis]
9 Sobczak M, Kędra K. Biomedical Polyurethanes for Anti-Cancer Drug Delivery Systems: A Brief, Comprehensive Review. Int J Mol Sci 2022;23:8181. [PMID: 35897757 DOI: 10.3390/ijms23158181] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
10 Song Y, Sun C, Tian C, Ming H, Wang Y, Liu W, He N, He X, Ding M, Li J, Luo F, Tan H, Fu Q. Precisely synthesized segmented polyurethanes toward block sequence-controlled drug delivery. Chem Sci 2022;13:5353-62. [PMID: 35655572 DOI: 10.1039/d1sc06457f] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Derakhshankhah H, Haghshenas B, Eskandani M, Jahanban-esfahlan R, Abbasi-maleki S, Jaymand M. Folate-conjugated thermal- and pH-responsive magnetic hydrogel as a drug delivery nano-system for “smart” chemo/hyperthermia therapy of solid tumors. Materials Today Communications 2022;30:103148. [DOI: 10.1016/j.mtcomm.2022.103148] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
12 Gul A, Tzirtzilakis EE, Makhanov SS. A two - phase, two - way coupled model of targeted magnetic drug delivery for small Reynolds numbers. Engineering Applications of Computational Fluid Mechanics 2022;16:374-96. [DOI: 10.1080/19942060.2021.2016493] [Reference Citation Analysis]
13 Fernandes DA. Theranostic Nanoparticles for Therapy and Imaging in Cancer Detection. Nanomaterials for Cancer Detection Using Imaging Techniques and Their Clinical Applications 2022. [DOI: 10.1007/978-3-031-09636-5_6] [Reference Citation Analysis]
14 Taiariol L, Chaix C, Farre C, Moreau E. Click and Bioorthogonal Chemistry: The Future of Active Targeting of Nanoparticles for Nanomedicines? Chem Rev 2021. [PMID: 34705429 DOI: 10.1021/acs.chemrev.1c00484] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
15 Chang D, Ma Y, Xu X, Xie J, Ju S. Stimuli-Responsive Polymeric Nanoplatforms for Cancer Therapy. Front Bioeng Biotechnol 2021;9:707319. [PMID: 34249894 DOI: 10.3389/fbioe.2021.707319] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
16 Ma J, Chen Y, Liang W, Li L, Du J, Pan C, Zhang C. ROS-responsive dimeric prodrug-based nanomedicine targeted therapy for gastric cancer. Drug Deliv 2021;28:1204-13. [PMID: 34142633 DOI: 10.1080/10717544.2021.1937380] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
17 Jiao J, Lu H, Wang S. Photo-responsive prodrug nanoparticles for efficient cytoplasmic delivery and synergistic photodynamic-chemotherapy of metastatic triple-negative breast cancer. Acta Biomater 2021;126:421-32. [PMID: 33774201 DOI: 10.1016/j.actbio.2021.03.045] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
18 Greene MK, Nogueira JCF, Tracey SR, Richards DA, McDaid WJ, Burrows JF, Campbell K, Longley DB, Chudasama V, Scott CJ. Refined construction of antibody-targeted nanoparticles leads to superior antigen binding and enhanced delivery of an entrapped payload to pancreatic cancer cells. Nanoscale 2020;12:11647-58. [PMID: 32436550 DOI: 10.1039/d0nr02387f] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
19 Li Z, Yang Y, Peng C, Liu H, Yang R, Zheng Y, Cai L, Tan H, Fu Q, Ding M. Drug-induced hierarchical self-assembly of poly(amino acid) for efficient intracellular drug delivery. Chinese Chemical Letters 2021;32:1563-6. [DOI: 10.1016/j.cclet.2020.10.016] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
20 Varghese R, Vijay N, Dalvi YB. Magnetic Nanoparticles for Image-Guided Drug Delivery. Gels Horizons: From Science to Smart Materials 2021. [DOI: 10.1007/978-981-16-1260-2_3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
21 Li H, Yang S, Hui D, Hong R. Progress in magnetic Fe 3 O 4 nanomaterials in magnetic resonance imaging. Nanotechnology Reviews 2020;9:1265-83. [DOI: 10.1515/ntrev-2020-0095] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
22 Sutradhar A. Effects of buoyant and Saffman lift force on magnetic drug targeting in microvessel in the presence of inertia. Microvasc Res 2021;133:104099. [PMID: 33144121 DOI: 10.1016/j.mvr.2020.104099] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
23 Zhang Y, Liu B, Huang K, Wang S, Quirino RL, Zhang Z, Zhang C. Eco-Friendly Castor Oil-Based Delivery System with Sustained Pesticide Release and Enhanced Retention. ACS Appl Mater Interfaces 2020;12:37607-18. [DOI: 10.1021/acsami.0c10620] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 8.7] [Reference Citation Analysis]
24 Zheng Y, Weng C, Cheng C, Zhao J, Yang R, Zhang Q, Ding M, Tan H, Fu Q. Multiblock Copolymers toward Segmentation-Driven Morphological Transition. Macromolecules 2020;53:5992-6001. [DOI: 10.1021/acs.macromol.0c00374] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
25 Gauger AJ, Hershberger KK, Bronstein LM. Theranostics Based on Magnetic Nanoparticles and Polymers: Intelligent Design for Efficient Diagnostics and Therapy. Front Chem 2020;8:561. [PMID: 32733850 DOI: 10.3389/fchem.2020.00561] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
26 Weng C, Fan N, Xu T, Chen H, Li Z, Li Y, Tan H, Fu Q, Ding M. FRET-based polymer materials for detection of cellular microenvironments. Chinese Chemical Letters 2020;31:1490-8. [DOI: 10.1016/j.cclet.2019.11.009] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
27 Avasthi A, Caro C, Pozo-Torres E, Leal MP, García-Martín ML. Magnetic Nanoparticles as MRI Contrast Agents. Top Curr Chem (Cham) 2020;378:40. [PMID: 32382832 DOI: 10.1007/s41061-020-00302-w] [Cited by in Crossref: 46] [Cited by in F6Publishing: 49] [Article Influence: 15.3] [Reference Citation Analysis]
28 Weng C, Chen H, Xu T, Li Z, Liu X, Ding M, Zhang Q, Tan H, Fu Q. Photo-responsive Self-Reducible Polymers: Overcoming the Spatiotemporal Barriers for Hypersensitivity. ACS Materials Lett 2020;2:602-9. [DOI: 10.1021/acsmaterialslett.0c00070] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
29 Yang R, Zheng Y, Shuai X, Fan F, He X, Ding M, Li J, Tan H, Fu Q. Crosslinking Induced Reassembly of Multiblock Polymers: Addressing the Dilemma of Stability and Responsivity. Adv Sci (Weinh) 2020;7:1902701. [PMID: 32328415 DOI: 10.1002/advs.201902701] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
30 Ni R, Zhu J, Xu Z, Chen Y. A self-assembled pH/enzyme dual-responsive prodrug with PEG deshielding for multidrug-resistant tumor therapy. J Mater Chem B 2020;8:1290-301. [PMID: 31967176 DOI: 10.1039/c9tb02264c] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
31 Mauri E. Novel strategies to improve delivery performances. Nanomaterials for Theranostics and Tissue Engineering 2020. [DOI: 10.1016/b978-0-12-817838-6.00003-6] [Reference Citation Analysis]
32 Wang K, Amin K, An Z, Cai Z, Chen H, Chen H, Dong Y, Feng X, Fu W, Gu J, Han Y, Hu D, Hu R, Huang D, Huang F, Huang F, Huang Y, Jin J, Jin X, Li Q, Li T, Li Z, Li Z, Liu J, Liu J, Liu S, Peng H, Qin A, Qing X, Shen Y, Shi J, Sun X, Tong B, Wang B, Wang H, Wang L, Wang S, Wei Z, Xie T, Xu C, Xu H, Xu Z, Yang B, Yu Y, Zeng X, Zhan X, Zhang G, Zhang J, Zhang MQ, Zhang X, Zhang X, Zhang Y, Zhang Y, Zhao C, Zhao W, Zhou Y, Zhou Z, Zhu J, Zhu X, Tang BZ. Advanced functional polymer materials. Mater Chem Front 2020;4:1803-915. [DOI: 10.1039/d0qm00025f] [Cited by in Crossref: 73] [Cited by in F6Publishing: 75] [Article Influence: 24.3] [Reference Citation Analysis]
33 Chu L, Zhang Y, Feng Z, Yang J, Tian Q, Yao X, Zhao X, Tan H, Chen Y. Synthesis and application of a series of amphipathic chitosan derivatives and the corresponding magnetic nanoparticle-embedded polymeric micelles. Carbohydr Polym 2019;223:114966. [PMID: 31426997 DOI: 10.1016/j.carbpol.2019.06.005] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
34 Liu Y, Yu P, Peng X, Huang Q, Ding M, Chen Y, Jin R, Xie J, Zhao C, Li J. Hexapeptide-conjugated calcitonin for targeted therapy of osteoporosis. Journal of Controlled Release 2019;304:39-50. [DOI: 10.1016/j.jconrel.2019.04.042] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 3.5] [Reference Citation Analysis]
35 Zhong L, Xu L, Liu Y, Li Q, Zhao D, Li Z, Zhang H, Zhang H, Kan Q, Wang Y, Sun J, He Z. Transformative hyaluronic acid-based active targeting supramolecular nanoplatform improves long circulation and enhances cellular uptake in cancer therapy. Acta Pharm Sin B 2019;9:397-409. [PMID: 30972285 DOI: 10.1016/j.apsb.2018.11.006] [Cited by in Crossref: 56] [Cited by in F6Publishing: 57] [Article Influence: 14.0] [Reference Citation Analysis]
36 Zhang P, Hu J, Bu L, Zhang H, Du B, Zhu C, Li Y. Facile Preparation of Reduction-Responsive Micelles Based on Biodegradable Amphiphilic Polyurethane with Disulfide Bonds in the Backbone. Polymers (Basel) 2019;11:E262. [PMID: 30960245 DOI: 10.3390/polym11020262] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
37 Sangtani A, Muroski ME, Delehanty JB. Mechanisms of Actively Triggered Drug Delivery from Hard Nanoparticle Carriers. ACS Symposium Series 2019. [DOI: 10.1021/bk-2019-1309.ch008] [Reference Citation Analysis]
38 Qian Z, Hu W, Pan Y. Biofunctional Magnetic Nanomaterials for Diagnosis, Therapy, and Theranostic Applications. Theranostic Bionanomaterials 2019. [DOI: 10.1016/b978-0-12-815341-3.00015-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
39 Zhang C, Du C, Liao J, Gu Y, Gong Y, Pei J, Gu H, Yin D, Gao L, Pan Y. Synthesis of magnetite hybrid nanocomplexes to eliminate bacteria and enhance biofilm disruption. Biomater Sci 2019;7:2833-40. [DOI: 10.1039/c9bm00057g] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 4.8] [Reference Citation Analysis]
40 Yang T, Niu D, Chen J, He J, Yang S, Jia X, Hao J, Zhao W, Li Y. Biodegradable organosilica magnetic micelles for magnetically targeted MRI and GSH-triggered tumor chemotherapy. Biomater Sci 2019;7:2951-60. [DOI: 10.1039/c9bm00342h] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
41 Shah MR, Imran M, Ullah S. Construction of stimulus-responsive micelles systems for efficient targeting of cancer drugs. Nanocarriers for Cancer Diagnosis and Targeted Chemotherapy 2019. [DOI: 10.1016/b978-0-12-816773-1.00009-2] [Reference Citation Analysis]
42 Dai Y, Chen X, Zhang X. Recent advances in stimuli-responsive polymeric micelles via click chemistry. Polym Chem 2019;10:34-44. [DOI: 10.1039/c8py01174e] [Cited by in Crossref: 48] [Cited by in F6Publishing: 48] [Article Influence: 12.0] [Reference Citation Analysis]
43 Price PM, Mahmoud WE, Al-Ghamdi AA, Bronstein LM. Magnetic Drug Delivery: Where the Field Is Going. Front Chem 2018;6:619. [PMID: 30619827 DOI: 10.3389/fchem.2018.00619] [Cited by in Crossref: 158] [Cited by in F6Publishing: 161] [Article Influence: 31.6] [Reference Citation Analysis]
44 Tian X, Liu S, Zhu J, Qian Z, Bai L, Pan Y. Biofunctional magnetic hybrid nanomaterials for theranostic applications. Nanotechnology 2019;30:032002. [DOI: 10.1088/1361-6528/aaebcc] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
45 Pan Z, Fang D, Song Y, Song N, Ding M, Li J, Luo F, Li J, Tan H, Fu Q. Understanding the effect of alkyl chains of gemini cations on the physicochemical and cellular properties of polyurethane micelles. Biomater Sci 2018;6:1899-907. [PMID: 29873651 DOI: 10.1039/c8bm00431e] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
46 Song R, Zhang M, Liu Y, Cui Z, Zhang H, Tang Z, Chen X, Wu H, Yao Z, He M, Bu W. A multifunctional nanotheranostic for the intelligent MRI diagnosis and synergistic treatment of hypoxic tumor. Biomaterials 2018;175:123-33. [DOI: 10.1016/j.biomaterials.2018.05.018] [Cited by in Crossref: 39] [Cited by in F6Publishing: 41] [Article Influence: 7.8] [Reference Citation Analysis]
47 Sun H, Zhang Y, Zhong Z. Reduction-sensitive polymeric nanomedicines: An emerging multifunctional platform for targeted cancer therapy. Adv Drug Deliv Rev 2018;132:16-32. [PMID: 29775625 DOI: 10.1016/j.addr.2018.05.007] [Cited by in Crossref: 75] [Cited by in F6Publishing: 77] [Article Influence: 15.0] [Reference Citation Analysis]
48 Ding K, Li R, Ma Y, Li N, Zhang T, Cheng-mei X, Jiang H, Gong Y. Folate Ligand Orientation Optimized during Cell Membrane Mimetic Micelle Formation for Enhanced Tumor Cell Targeting. Langmuir 2019;35:1257-65. [DOI: 10.1021/acs.langmuir.8b00744] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
49 Zhou Q, Zhang L, Yang T, Wu H. Stimuli-responsive polymeric micelles for drug delivery and cancer therapy. Int J Nanomedicine 2018;13:2921-42. [PMID: 29849457 DOI: 10.2147/IJN.S158696] [Cited by in Crossref: 190] [Cited by in F6Publishing: 197] [Article Influence: 38.0] [Reference Citation Analysis]
50 Liu H, Wang R, Wei J, Cheng C, Zheng Y, Pan Y, He X, Ding M, Tan H, Fu Q. Conformation-Directed Micelle-to-Vesicle Transition of Cholesterol-Decorated Polypeptide Triggered by Oxidation. J Am Chem Soc 2018;140:6604-10. [DOI: 10.1021/jacs.8b01873] [Cited by in Crossref: 58] [Cited by in F6Publishing: 60] [Article Influence: 11.6] [Reference Citation Analysis]
51 Chen W, Zhou S, Ge L, Wu W, Jiang X. Translatable High Drug Loading Drug Delivery Systems Based on Biocompatible Polymer Nanocarriers. Biomacromolecules 2018;19:1732-45. [PMID: 29690764 DOI: 10.1021/acs.biomac.8b00218] [Cited by in Crossref: 76] [Cited by in F6Publishing: 78] [Article Influence: 15.2] [Reference Citation Analysis]
52 Yi G, Son J, Yoo J, Park C, Koo H. Application of click chemistry in nanoparticle modification and its targeted delivery. Biomater Res 2018;22:13. [PMID: 29686885 DOI: 10.1186/s40824-018-0123-0] [Cited by in Crossref: 49] [Cited by in F6Publishing: 52] [Article Influence: 9.8] [Reference Citation Analysis]
53 Zou Y, Zhang L, Yang L, Zhu F, Ding M, Lin F, Wang Z, Li Y. “Click” chemistry in polymeric scaffolds: Bioactive materials for tissue engineering. Journal of Controlled Release 2018;273:160-79. [DOI: 10.1016/j.jconrel.2018.01.023] [Cited by in Crossref: 132] [Cited by in F6Publishing: 117] [Article Influence: 26.4] [Reference Citation Analysis]