BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang Y, He L, Wu J, Wang K, Wang J, Dai W, Yuan A, Wu J, Hu Y. Switchable PDT for reducing skin photosensitization by a NIR dye inducing self-assembled and photo-disassembled nanoparticles. Biomaterials 2016;107:23-32. [PMID: 27598652 DOI: 10.1016/j.biomaterials.2016.08.037] [Cited by in Crossref: 61] [Cited by in F6Publishing: 67] [Article Influence: 8.7] [Reference Citation Analysis]
Number Citing Articles
1 Li M, Huo L, Zeng J, Zhu G, Liu X, Zhu X, Huang G, Wang Y, Ni K, Zhao Z. Switchable ROS Scavenger/Generator for MRI-Guided Anti-Inflammation and Anti-Tumor Therapy with Enhanced Therapeutic Efficacy and Reduced Side Effects. Adv Healthc Mater 2023;12:e2202043. [PMID: 36367363 DOI: 10.1002/adhm.202202043] [Reference Citation Analysis]
2 Tan J, Lu Z, Gao C, Zhang Z, Sun Z, Ling B, Li Z, You J. Electronic tuning strategy in H2S-triggered fluorescence sensing and subsequent photodynamic therapy of colon cancer. Dyes and Pigments 2023. [DOI: 10.1016/j.dyepig.2023.111199] [Reference Citation Analysis]
3 Ma X, Liu Y, Li S, Ogino K, Xing R, Yan X. Multicomponent coassembled nanodrugs based on ovalbumin, pheophorbide a and Zn2+ for in vitro photodynamic therapy. Supramolecular Materials 2022;1:100010. [DOI: 10.1016/j.supmat.2022.100010] [Reference Citation Analysis]
4 Kumar Dan A, Aamna B, De S, Pereira-silva M, Sahu R, Cláudia Paiva-santos A, Parida S. Sericin nanoparticles: Future nanocarrier for target-specific delivery of chemotherapeutic drugs. Journal of Molecular Liquids 2022;368:120717. [DOI: 10.1016/j.molliq.2022.120717] [Reference Citation Analysis]
5 Zhao H, Wang X, Geng Z, Liang N, Li Q, Hu X, Wei Z. Dual-function microneedle array for efficient photodynamic therapy with transdermal co-delivered light and photosensitizers. Lab Chip 2022. [PMID: 36047443 DOI: 10.1039/d2lc00505k] [Reference Citation Analysis]
6 Marcelo GA, Galhano J, Oliveira E. Applications of cyanine-nanoparticle systems in science: Health and environmental perspectives. Dyes and Pigments 2022. [DOI: 10.1016/j.dyepig.2022.110756] [Reference Citation Analysis]
7 Ruan L, Li H, Zhang J, Zhou M, Huang H, Dong J, Li J, Zhao F, Wu Z, Chen J, Chai Z, Hu Y. Chemical transformation and cytotoxicity of iron oxide nanoparticles (IONPs) accumulated in mitochondria. Talanta 2022. [DOI: 10.1016/j.talanta.2022.123770] [Reference Citation Analysis]
8 Xia H, Li B, Zhao Y, Han Y, Wang S, Chen A, Kankala RK. Nanoarchitectured manganese dioxide (MnO2)-based assemblies for biomedicine. Coordination Chemistry Reviews 2022;464:214540. [DOI: 10.1016/j.ccr.2022.214540] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
9 Liu Y, Wang Z, Gao Z, Zong Y, Sun J, Zhou W, Wang H, Ma D, Li Z, Zhang D. Porous organic polymer overcomes the post-treatment phototoxicity of photodynamic agents and maintains their antitumor efficiency. Acta Biomaterialia 2022. [DOI: 10.1016/j.actbio.2022.07.043] [Reference Citation Analysis]
10 Guo L, Xia Q, Qin J, Yang M, Yang T, You F, Chen Z, Liu B, Peng H. Skin-safe nanophotosensitizers with highly-controlled synthesized polydopamine shell for synergetic chemo-photodynamic therapy. Journal of Colloid and Interface Science 2022;616:81-92. [DOI: 10.1016/j.jcis.2022.02.046] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Liu Y, Liu C, Wang Z, Zhou W, Wang H, Zhang Y, Zhang D, Ma D, Li Z. Supramolecular organic frameworks improve the safety of clinically used porphyrin photodynamic agents and maintain their antitumor efficacy. Biomaterials 2022. [DOI: 10.1016/j.biomaterials.2022.121467] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
12 Gulati LK, Gulati GK, Kumar S. Photochromic materials as a photosensitizer in reversible reactive singlet oxygen generation. Dyes and Pigments 2022;199:110104. [DOI: 10.1016/j.dyepig.2022.110104] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Zhang Q, He M, Zhang X, Yu H, Liu J, Guo Y, Zhang J, Ren X, Wang H, Zhao Y. Tumor Microenvironment Activated Chemodynamic–Photodynamic Therapy by Multistage Self‐Assembly Engineered Protein Nanomedicine. Adv Funct Materials 2022;32:2112251. [DOI: 10.1002/adfm.202112251] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
14 Tasso TT, Baptista MS. Photosensitized Oxidation of Intracellular Targets: Understanding the Mechanisms to Improve the Efficiency of Photodynamic Therapy. Methods in Molecular Biology 2022. [DOI: 10.1007/978-1-0716-2099-1_18] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
15 Yu N, Qiu P, Ren Q, Wen M, Geng P, Macharia DK, Zhu M, Chen Z. Transforming a Sword into a Knife: Persistent Phototoxicity Inhibition and Alternative Therapeutical Activation of Highly-Photosensitive Phytochlorin. ACS Nano 2021;15:19793-805. [PMID: 34851096 DOI: 10.1021/acsnano.1c07241] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
16 Hu T, Qin Z, Shen C, Gong HL, He ZY. Multifunctional Mitochondria-Targeting Nanosystems for Enhanced Anticancer Efficacy. Front Bioeng Biotechnol 2021;9:786621. [PMID: 34900973 DOI: 10.3389/fbioe.2021.786621] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
17 Tian Y, Younis MR, Tang Y, Liao X, He G, Wang S, Teng Z, Huang P, Zhang L, Lu G. Dye-loaded mesoporous polydopamine nanoparticles for multimodal tumor theranostics with enhanced immunogenic cell death. J Nanobiotechnology 2021;19:365. [PMID: 34789274 DOI: 10.1186/s12951-021-01109-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
18 Chu H, Cao T, Dai G, Liu B, Duan H, Kong C, Tian N, Hou D, Sun Z. Recent advances in functionalized upconversion nanoparticles for light-activated tumor therapy. RSC Adv 2021;11:35472-88. [PMID: 35493151 DOI: 10.1039/d1ra05638g] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
19 Zheng Y, Ye J, Li Z, Chen H, Gao Y. Recent progress in sono-photodynamic cancer therapy: From developed new sensitizers to nanotechnology-based efficacy-enhancing strategies. Acta Pharm Sin B 2021;11:2197-219. [PMID: 34522584 DOI: 10.1016/j.apsb.2020.12.016] [Cited by in Crossref: 18] [Cited by in F6Publishing: 24] [Article Influence: 9.0] [Reference Citation Analysis]
20 Zhang M, Jiang X, Zhang Q, Zheng T, Mohammadniaei M, Wang W, Shen J, Sun Y. Biodegradable Polymeric Nanoparticles Containing an Immune Checkpoint Inhibitor (aPDL1) to Locally Induce Immune Responses in the Central Nervous System. Adv Funct Mater 2021;31:2102274. [DOI: 10.1002/adfm.202102274] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
21 Shin J, Xu Y, Koo S, Lim JH, Lee JY, Sharma A, Sun Y, Kim JS. Mitochondria-targeted nanotheranostic: Harnessing single-laser-activated dual phototherapeutic processing for hypoxic tumor treatment. Matter 2021;4:2508-21. [DOI: 10.1016/j.matt.2021.05.022] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
22 Cui H, Liu M, Yu W, Cao Y, Zhou H, Yin J, Liu H, Que S, Wang J, Huang C, Gong C, Zhao G. Copper Peroxide-Loaded Gelatin Sponges for Wound Dressings with Antimicrobial and Accelerating Healing Properties. ACS Appl Mater Interfaces 2021;13:26800-7. [PMID: 34096255 DOI: 10.1021/acsami.1c07409] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 9.5] [Reference Citation Analysis]
23 Pan P, Yue Q, Li J, Gao M, Yang X, Ren Y, Cheng X, Cui P, Deng Y. Smart Cargo Delivery System based on Mesoporous Nanoparticles for Bone Disease Diagnosis and Treatment. Adv Sci (Weinh) 2021;8:e2004586. [PMID: 34165902 DOI: 10.1002/advs.202004586] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
24 Wang L, Niu C. IR780-based nanomaterials for cancer imaging and therapy. J Mater Chem B 2021;9:4079-97. [PMID: 33912889 DOI: 10.1039/d1tb00407g] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 6.5] [Reference Citation Analysis]
25 Zhu G, Zhang Q, Zhao X, Zhang Q, Chen W, Xu L, Zhao S, Wang K, Liu T, Guo H. NIR molecule induced self-assembled nanoparticles for synergistic in vivo chemo-photothermal therapy of bladder cancer. Mater Res Express 2021;8:045017. [DOI: 10.1088/2053-1591/abf873] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
26 Gunduz H, Bilici K, Cetin S, Muti A, Sennaroglu A, Yagci Acar H, Kolemen S. Dual laser activatable brominated hemicyanine as a highly efficient and photostable multimodal phototherapy agent. J Photochem Photobiol B 2021;217:112171. [PMID: 33711563 DOI: 10.1016/j.jphotobiol.2021.112171] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
27 Hu Y, Wang X, Zhao P, Wang H, Gu W, Ye L. Nanozyme-catalyzed oxygen release from calcium peroxide nanoparticles for accelerated hypoxia relief and image-guided super-efficient photodynamic therapy. Biomater Sci 2020;8:2931-8. [PMID: 32314771 DOI: 10.1039/d0bm00187b] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 12.5] [Reference Citation Analysis]
28 Li M, Xu Y, Zhao M, Li F, Feng W, Feng T, Liu S, Zhao Q. Rational Design of Near-Infrared-Absorbing Pt(II)-Chelated Azadipyrromethene Dyes as a New Generation of Photosensitizers for Synergistic Phototherapy. Inorg Chem 2020;59:17826-33. [DOI: 10.1021/acs.inorgchem.0c02631] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
29 Sun Y, Zhang Y, Gao Y, Wang P, He G, Blum NT, Lin J, Liu Q, Wang X, Huang P. Six Birds with One Stone: Versatile Nanoporphyrin for Single-Laser-Triggered Synergistic Phototheranostics and Robust Immune Activation. Adv Mater 2020;32:e2004481. [PMID: 33015905 DOI: 10.1002/adma.202004481] [Cited by in Crossref: 44] [Cited by in F6Publishing: 49] [Article Influence: 14.7] [Reference Citation Analysis]
30 Huang B, Wang P, Ouyang Y, Pang R, Liu S, Hong C, Ma S, Gao Y, Tian J, Zhang W. Pillar[5]arene-Based Switched Supramolecular Photosensitizer for Self-Amplified and pH-Activated Photodynamic Therapy. ACS Appl Mater Interfaces 2020;12:41038-46. [PMID: 32830945 DOI: 10.1021/acsami.0c10372] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 7.0] [Reference Citation Analysis]
31 Liu Y, Lin R, Ma L, Zhuang H, Feng C, Chang J, Wu C. Mesoporous bioactive glass for synergistic therapy of tumor and regeneration of bone tissue. Applied Materials Today 2020;19:100578. [DOI: 10.1016/j.apmt.2020.100578] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
32 Zhang Y, Wan Y, Chen Y, Blum NT, Lin J, Huang P. Ultrasound-Enhanced Chemo-Photodynamic Combination Therapy by Using Albumin "Nanoglue"-Based Nanotheranostics. ACS Nano 2020;14:5560-9. [PMID: 32343559 DOI: 10.1021/acsnano.9b09827] [Cited by in Crossref: 48] [Cited by in F6Publishing: 55] [Article Influence: 16.0] [Reference Citation Analysis]
33 Leitão MM, de Melo-Diogo D, Alves CG, Lima-Sousa R, Correia IJ. Prototypic Heptamethine Cyanine Incorporating Nanomaterials for Cancer Phototheragnostic. Adv Healthc Mater 2020;9:e1901665. [PMID: 31994354 DOI: 10.1002/adhm.201901665] [Cited by in Crossref: 44] [Cited by in F6Publishing: 45] [Article Influence: 14.7] [Reference Citation Analysis]
34 Demazeau M, Gibot L, Mingotaud AF, Vicendo P, Roux C, Lonetti B. Rational design of block copolymer self-assemblies in photodynamic therapy. Beilstein J Nanotechnol 2020;11:180-212. [PMID: 32082960 DOI: 10.3762/bjnano.11.15] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
35 Deng L, Sheng D, Liu M, Yang L, Ran H, Li P, Cai X, Sun Y, Wang Z. A near-infrared laser and H 2 O 2 activated bio-nanoreactor for enhanced photodynamic therapy of hypoxic tumors. Biomater Sci 2020;8:858-70. [DOI: 10.1039/c9bm01126a] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 6.7] [Reference Citation Analysis]
36 Li X, Feng X, Sun C, Liu Y, Zhao Q, Wang S. Mesoporous carbon‑manganese nanocomposite for multiple imaging guided oxygen-elevated synergetic therapy. J Control Release 2020;319:104-18. [PMID: 31881317 DOI: 10.1016/j.jconrel.2019.12.042] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 5.5] [Reference Citation Analysis]
37 Yang G, Chen C, Zhu Y, Liu Z, Xue Y, Zhong S, Wang C, Gao Y, Zhang W. GSH-Activatable NIR Nanoplatform with Mitochondria Targeting for Enhancing Tumor-Specific Therapy. ACS Appl Mater Interfaces 2019;11:44961-9. [DOI: 10.1021/acsami.9b15996] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 10.0] [Reference Citation Analysis]
38 Dai Y, Wang B, Sun Z, Cheng J, Zhao H, Wu K, Sun P, Shen Q, Li M, Fan Q. Multifunctional Theranostic Liposomes Loaded with a Hypoxia-Activated Prodrug for Cascade-Activated Tumor Selective Combination Therapy. ACS Appl Mater Interfaces 2019;11:39410-23. [PMID: 31578854 DOI: 10.1021/acsami.9b11080] [Cited by in Crossref: 39] [Cited by in F6Publishing: 41] [Article Influence: 9.8] [Reference Citation Analysis]
39 Jiang D, Chen C, Xue Y, Cao H, Wang C, Yang G, Gao Y, Wang P, Zhang W. NIR-Triggered "OFF/ON" Photodynamic Therapy through a Upper Critical Solution Temperature Block Copolymer. ACS Appl Mater Interfaces 2019;11:37121-9. [PMID: 31525015 DOI: 10.1021/acsami.9b12889] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
40 Huang B, Tian J, Jiang D, Gao Y, Zhang W. NIR-Activated “OFF/ON” Photodynamic Therapy by a Hybrid Nanoplatform with Upper Critical Solution Temperature Block Copolymers and Gold Nanorods. Biomacromolecules 2019;20:3873-83. [DOI: 10.1021/acs.biomac.9b00963] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 7.3] [Reference Citation Analysis]
41 Xue Y, Li J, Yang G, Liu Z, Zhou H, Zhang W. Multistep Consolidated Phototherapy Mediated by a NIR-Activated Photosensitizer. ACS Appl Mater Interfaces 2019;11:33628-36. [PMID: 31433160 DOI: 10.1021/acsami.9b10605] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
42 Zhang W, Cai K, Li X, Zhang J, Ma Z, Foda MF, Mu Y, Dai X, Han H. Au Hollow Nanorods-Chimeric Peptide Nanocarrier for NIR-II Photothermal Therapy and Real-time Apoptosis Imaging for Tumor Theranostics. Theranostics 2019;9:4971-81. [PMID: 31410195 DOI: 10.7150/thno.35560] [Cited by in Crossref: 26] [Cited by in F6Publishing: 31] [Article Influence: 6.5] [Reference Citation Analysis]
43 Cao J, Chi J, Xia J, Zhang Y, Han S, Sun Y. Iodinated Cyanine Dyes for Fast Near-Infrared-Guided Deep Tissue Synergistic Phototherapy. ACS Appl Mater Interfaces 2019;11:25720-9. [DOI: 10.1021/acsami.9b07694] [Cited by in Crossref: 51] [Cited by in F6Publishing: 54] [Article Influence: 12.8] [Reference Citation Analysis]
44 Li X, Fan H, Guo T, Bai H, Kwon N, Kim KH, Yu S, Cho Y, Kim H, Nam KT, Yoon J, Zhang XB, Tan W. Sequential Protein-Responsive Nanophotosensitizer Complex for Enhancing Tumor-Specific Therapy. ACS Nano 2019;13:6702-10. [PMID: 31184131 DOI: 10.1021/acsnano.9b01100] [Cited by in Crossref: 42] [Cited by in F6Publishing: 43] [Article Influence: 10.5] [Reference Citation Analysis]
45 Deng L, Guo W, Li G, Hu Y, Zhang LM. Hydrophobic IR780 loaded sericin nanomicelles for phototherapy with enhanced antitumor efficiency. Int J Pharm 2019;566:549-56. [PMID: 31158452 DOI: 10.1016/j.ijpharm.2019.05.075] [Cited by in Crossref: 17] [Cited by in F6Publishing: 21] [Article Influence: 4.3] [Reference Citation Analysis]
46 Xia Q, Chen Z, Zhou Y, Liu R. Near-Infrared Organic Fluorescent Nanoparticles for Long-term Monitoring and Photodynamic Therapy of Cancer. Nanotheranostics 2019;3:156-65. [PMID: 31008024 DOI: 10.7150/ntno.33536] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
47 Yang Y, Yang X, Li H, Li C, Ding H, Zhang M, Guo Y, Sun M. Near-infrared light triggered liposomes combining photodynamic and chemotherapy for synergistic breast tumor therapy. Colloids and Surfaces B: Biointerfaces 2019;173:564-70. [DOI: 10.1016/j.colsurfb.2018.10.019] [Cited by in Crossref: 38] [Cited by in F6Publishing: 42] [Article Influence: 9.5] [Reference Citation Analysis]
48 Li T, Yan L. Functional Polymer Nanocarriers for Photodynamic Therapy. Pharmaceuticals (Basel) 2018;11:E133. [PMID: 30513613 DOI: 10.3390/ph11040133] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 3.6] [Reference Citation Analysis]
49 Zhou Z, Zhang B, Wang H, Yuan A, Hu Y, Wu J. Two-stage oxygen delivery for enhanced radiotherapy by perfluorocarbon nanoparticles. Theranostics 2018;8:4898-911. [DOI: 10.7150/thno.27598] [Cited by in Crossref: 74] [Cited by in F6Publishing: 77] [Article Influence: 14.8] [Reference Citation Analysis]
50 Liu G, Zhang S, Shi Y, Huang X, Tang Y, Chen P, Si W, Huang W, Dong X. “Wax-Sealed” Theranostic Nanoplatform for Enhanced Afterglow Imaging-Guided Photothermally Triggered Photodynamic Therapy. Adv Funct Mater 2018;28:1804317. [DOI: 10.1002/adfm.201804317] [Cited by in Crossref: 71] [Cited by in F6Publishing: 73] [Article Influence: 14.2] [Reference Citation Analysis]
51 Zhao M, Xu Y, Xie M, Zou L, Wang Z, Liu S, Zhao Q. Halogenated Aza-BODIPY for Imaging-Guided Synergistic Photodynamic and Photothermal Tumor Therapy. Adv Healthc Mater 2018;7:e1800606. [PMID: 30047582 DOI: 10.1002/adhm.201800606] [Cited by in Crossref: 47] [Cited by in F6Publishing: 47] [Article Influence: 9.4] [Reference Citation Analysis]
52 Tang XL, Wu J, Lin BL, Cui S, Liu HM, Yu RT, Shen XD, Wang TW, Xia W. Near-infrared light-activated red-emitting upconverting nanoplatform for T1-weighted magnetic resonance imaging and photodynamic therapy. Acta Biomater 2018;74:360-73. [PMID: 29763715 DOI: 10.1016/j.actbio.2018.05.017] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 5.2] [Reference Citation Analysis]
53 Alves CG, Lima-sousa R, de Melo-diogo D, Louro RO, Correia IJ. IR780 based nanomaterials for cancer imaging and photothermal, photodynamic and combinatorial therapies. International Journal of Pharmaceutics 2018;542:164-75. [DOI: 10.1016/j.ijpharm.2018.03.020] [Cited by in Crossref: 65] [Cited by in F6Publishing: 65] [Article Influence: 13.0] [Reference Citation Analysis]
54 Zhai Y, Busscher HJ, Liu Y, Zhang Z, van Kooten TG, Su L, Zhang Y, Liu J, Liu J, An Y, Shi L. Photoswitchable Micelles for the Control of Singlet-Oxygen Generation in Photodynamic Therapies. Biomacromolecules 2018;19:2023-33. [DOI: 10.1021/acs.biomac.8b00085] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 3.4] [Reference Citation Analysis]
55 Lin CY, Shieh MJ. Near-Infrared Fluorescent Dye-Decorated Nanocages to Form Grenade-like Nanoparticles with Dual Control Release for Photothermal Theranostics and Chemotherapy. Bioconjug Chem 2018;29:1384-98. [PMID: 29505243 DOI: 10.1021/acs.bioconjchem.8b00088] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
56 Hu L, Wang P, Zhao M, Liu L, Zhou L, Li B, Albaqami FH, El-Toni AM, Li X, Xie Y, Sun X, Zhang F. Near-infrared rechargeable "optical battery" implant for irradiation-free photodynamic therapy. Biomaterials 2018;163:154-62. [PMID: 29459324 DOI: 10.1016/j.biomaterials.2018.02.029] [Cited by in Crossref: 64] [Cited by in F6Publishing: 67] [Article Influence: 12.8] [Reference Citation Analysis]
57 Zhao C, Tong Y, Li X, Shao L, Chen L, Lu J, Deng X, Wang X, Wu Y. Photosensitive Nanoparticles Combining Vascular-Independent Intratumor Distribution and On-Demand Oxygen-Depot Delivery for Enhanced Cancer Photodynamic Therapy. Small 2018;14:1703045. [DOI: 10.1002/smll.201703045] [Cited by in Crossref: 34] [Cited by in F6Publishing: 37] [Article Influence: 6.8] [Reference Citation Analysis]
58 Dong Z, Feng L, Hao Y, Chen M, Gao M, Chao Y, Zhao H, Zhu W, Liu J, Liang C, Zhang Q, Liu Z. Synthesis of Hollow Biomineralized CaCO3-Polydopamine Nanoparticles for Multimodal Imaging-Guided Cancer Photodynamic Therapy with Reduced Skin Photosensitivity. J Am Chem Soc 2018;140:2165-78. [PMID: 29376345 DOI: 10.1021/jacs.7b11036] [Cited by in Crossref: 299] [Cited by in F6Publishing: 310] [Article Influence: 59.8] [Reference Citation Analysis]
59 Li X, Yu S, Lee D, Kim G, Lee B, Cho Y, Zheng BY, Ke MR, Huang JD, Nam KT, Chen X, Yoon J. Facile Supramolecular Approach to Nucleic-Acid-Driven Activatable Nanotheranostics That Overcome Drawbacks of Photodynamic Therapy. ACS Nano 2018;12:681-8. [PMID: 29232105 DOI: 10.1021/acsnano.7b07809] [Cited by in Crossref: 118] [Cited by in F6Publishing: 121] [Article Influence: 23.6] [Reference Citation Analysis]
60 Li X, Peng XH, Zheng BD, Tang J, Zhao Y, Zheng BY, Ke MR, Huang JD. New application of phthalocyanine molecules: from photodynamic therapy to photothermal therapy by means of structural regulation rather than formation of aggregates. Chem Sci 2018;9:2098-104. [PMID: 29675251 DOI: 10.1039/c7sc05115h] [Cited by in Crossref: 117] [Cited by in F6Publishing: 123] [Article Influence: 23.4] [Reference Citation Analysis]
61 Tian Y, Zhao Y, Liu W, Liu Y, Tang Y, Teng Z, Zhang C, Wang S, Lu G. Photosensitizer-loaded biomimetic platform for multimodal imaging-guided synergistic phototherapy. RSC Adv 2018;8:32200-10. [DOI: 10.1039/c8ra04663h] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
62 Li W, Wang Q, Tan G, Zhang H, Cheng J, Wang Z, Jin Y. The photodynamic therapy activity of 3-(1-hydroxylethyl)-3-devinyl-13 1 -(dicyanomethylene) pyropheophorbide-a methyl ester (HDCPPa) against HeLa cell in vitro. J Porphyrins Phthalocyanines 2017;21:589-98. [DOI: 10.1142/s1088424617500584] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
63 An FF, Zhang XH. Strategies for Preparing Albumin-based Nanoparticles for Multifunctional Bioimaging and Drug Delivery. Theranostics 2017;7:3667-89. [PMID: 29109768 DOI: 10.7150/thno.19365] [Cited by in Crossref: 227] [Cited by in F6Publishing: 261] [Article Influence: 37.8] [Reference Citation Analysis]
64 Hou L, Yuan Y, Ren J, Zhang Y, Wang Y, Shan X, Liu Q, Zhang Z. In vitro and in vivo comparative study of the phototherapy anticancer activity of hyaluronic acid-modified single-walled carbon nanotubes, graphene oxide, and fullerene. J Nanopart Res 2017;19. [DOI: 10.1007/s11051-017-3977-5] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 3.3] [Reference Citation Analysis]
65 Ni W, Li M, Cui J, Xing Z, Li Z, Wu X, Song E, Gong M, Zhou W. 808nm light triggered black TiO2 nanoparticles for killing of bladder cancer cells. Mater Sci Eng C Mater Biol Appl 2017;81:252-60. [PMID: 28887971 DOI: 10.1016/j.msec.2017.08.020] [Cited by in Crossref: 35] [Cited by in F6Publishing: 28] [Article Influence: 5.8] [Reference Citation Analysis]
66 Li X, Kim C, Lee S, Lee D, Chung H, Kim G, Heo S, Kim C, Hong K, Yoon J. Nanostructured Phthalocyanine Assemblies with Protein-Driven Switchable Photoactivities for Biophotonic Imaging and Therapy. J Am Chem Soc 2017;139:10880-6. [DOI: 10.1021/jacs.7b05916] [Cited by in Crossref: 246] [Cited by in F6Publishing: 253] [Article Influence: 41.0] [Reference Citation Analysis]
67 Li X, Zheng BY, Ke MR, Zhang Y, Huang JD, Yoon J. A Tumor-pH-Responsive Supramolecular Photosensitizer for Activatable Photodynamic Therapy with Minimal In Vivo Skin Phototoxicity. Theranostics 2017;7:2746-56. [PMID: 28819460 DOI: 10.7150/thno.18861] [Cited by in Crossref: 89] [Cited by in F6Publishing: 93] [Article Influence: 14.8] [Reference Citation Analysis]
68 Wang Y, Liu X, Deng G, Wang Q, Zhang L, Wang Q, Lu J. Multifunctional PS@CS@Au–Fe 3 O 4 –FA nanocomposites for CT, MR and fluorescence imaging guided targeted-photothermal therapy of cancer cells. J Mater Chem B 2017;5:4221-32. [DOI: 10.1039/c7tb00642j] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 5.7] [Reference Citation Analysis]