BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Peng J, Qi T, Liao J, Chu B, Yang Q, Li W, Qu Y, Luo F, Qian Z. Controlled release of cisplatin from pH-thermal dual responsive nanogels. Biomaterials 2013;34:8726-40. [PMID: 23948167 DOI: 10.1016/j.biomaterials.2013.07.092] [Cited by in Crossref: 97] [Cited by in F6Publishing: 96] [Article Influence: 9.7] [Reference Citation Analysis]
Number Citing Articles
1 Farjadian F, Ghasemi S, Akbarian M, Hoseini-ghahfarokhi M, Moghoofei M, Doroudian M. Physically stimulus-responsive nanoparticles for therapy and diagnosis. Front Chem 2022;10:952675. [DOI: 10.3389/fchem.2022.952675] [Reference Citation Analysis]
2 Rezaei A, Rafieian F, Akbari-Alavijeh S, Kharazmi MS, Jafari SM. Release of bioactive compounds from delivery systems by stimuli-responsive approaches; triggering factors, mechanisms, and applications. Adv Colloid Interface Sci 2022;307:102728. [PMID: 35843031 DOI: 10.1016/j.cis.2022.102728] [Reference Citation Analysis]
3 Shakoori Z, Pashaei-asl R, Pashaiasl M, Davaran S, Ghanbari H, Ebrahimie E, Rezayat SM. Biocompatibility study of P (N-isopropylacrylamide)-based nanocomposite and its cytotoxic effect on HeLa cells as a drug delivery system for Cisplatin. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2022.103254] [Reference Citation Analysis]
4 Dalir Abdolahinia E, Barati G, Ranjbar-navazi Z, Kadkhoda J, Islami M, Hashemzadeh N, Maleki Dizaj S, Sharifi S. Application of nanogels as drug delivery systems in multicellular spheroid tumor model. Journal of Drug Delivery Science and Technology 2022;68:103109. [DOI: 10.1016/j.jddst.2022.103109] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
5 Nguyen NT, Bui QA, Nguyen HHN, Nguyen TT, Ly KL, Tran HLB, Doan VN, Nhi TTY, Nguyen NH, Nguyen NH, Tran NQ, Nguyen DT. Curcuminoid Co-Loading Platinum Heparin-Poloxamer P403 Nanogel Increasing Effectiveness in Antitumor Activity. Gels 2022;8:59. [DOI: 10.3390/gels8010059] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
6 Du X, Gao Y, Kang Q, Xing J. Design and Applications of Tumor Microenvironment-Responsive Nanogels as Drug Carriers. Front Bioeng Biotechnol 2021;9:771851. [PMID: 34746113 DOI: 10.3389/fbioe.2021.771851] [Reference Citation Analysis]
7 Xiao Z, You Y, Liu Y, He L, Zhang D, Cheng Q, Wang D, Chen T, Shi C, Luo L. NIR-Triggered Blasting Nanovesicles for Targeted Multimodal Image-Guided Synergistic Cancer Photothermal and Chemotherapy. ACS Appl Mater Interfaces 2021;13:35376-88. [PMID: 34313109 DOI: 10.1021/acsami.1c08339] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
8 Chen Y, Li ZH, Pan P, Zeng RY, Zhang XZ. Tumor-Specific ONOO- Nanogenerator for Improved Drug Delivery and Enhanced Chemotherapy of Tumor. ACS Nano 2021. [PMID: 34275285 DOI: 10.1021/acsnano.1c01312] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
9 Fawzi Kabil M, Nasr M, El-Sherbiny IM. Conventional and hybrid nanoparticulate systems for the treatment of hepatocellular carcinoma: An updated review. Eur J Pharm Biopharm 2021;167:9-37. [PMID: 34271117 DOI: 10.1016/j.ejpb.2021.07.003] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
10 Kimura A, Jo JI, Yoshida F, Hong Z, Tabata Y, Sumiyoshi A, Taguchi M, Aoki I. Ultra-small size gelatin nanogel as a blood brain barrier impermeable contrast agent for magnetic resonance imaging. Acta Biomater 2021;125:290-9. [PMID: 33601066 DOI: 10.1016/j.actbio.2021.02.016] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
11 Moradi Kashkooli F, Soltani M, Souri M, Meaney C, Kohandel M. Nexus between in silico and in vivo models to enhance clinical translation of nanomedicine. Nano Today 2021;36:101057. [DOI: 10.1016/j.nantod.2020.101057] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 17.0] [Reference Citation Analysis]
12 González-urías A, Manzanares-guevara LA, Licea-claveríe Á, Ochoa-terán A, Licea-navarro AF, Bernaldez-sarabia J, Zapata-gonzález I. Stimuli responsive nanogels with intrinsic fluorescence: Promising nanovehicles for controlled drug delivery and cell internalization detection in diverse cancer cell lines. European Polymer Journal 2021;144:110200. [DOI: 10.1016/j.eurpolymj.2020.110200] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
13 Odrobińska J, Skonieczna M, Neugebauer D. Micellar Carriers of Active Substances Based on Amphiphilic PEG/PDMS Heterograft Copolymers: Synthesis and Biological Evaluation of Safe Use on Skin. Int J Mol Sci 2021;22:1202. [PMID: 33530445 DOI: 10.3390/ijms22031202] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
14 Iyer S, Das A. Responsive nanogels for anti-cancer therapy. Materials Today: Proceedings 2021;44:2330-2333. [DOI: 10.1016/j.matpr.2020.12.415] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
15 Yildiz B, Ozenler S, Yucel M, Yildiz UH, Arslan Yildiz A. Biomimetic and Synthetic Gels for Nanopharmaceutical Applications. Nanopharmaceuticals: Principles and Applications Vol. 1 2021. [DOI: 10.1007/978-3-030-44925-4_7] [Reference Citation Analysis]
16 Huang Y, Xiao Z, Guan Z, Zeng Z, Shen Y, Xu X, Zhao C. Bone-seeking nanoplatform co-delivering cisplatin and zoledronate for synergistic therapy of breast cancer bone metastasis and bone resorption. Acta Pharm Sin B 2020;10:2384-403. [PMID: 33354509 DOI: 10.1016/j.apsb.2020.06.006] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
17 Preman NK, Barki RR, Vijayan A, Sanjeeva SG, Johnson RP. Recent developments in stimuli-responsive polymer nanogels for drug delivery and diagnostics: A review. European Journal of Pharmaceutics and Biopharmaceutics 2020;157:121-53. [DOI: 10.1016/j.ejpb.2020.10.009] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 7.7] [Reference Citation Analysis]
18 Ayoubi‐joshaghani MH, Seidi K, Azizi M, Jaymand M, Javaheri T, Jahanban‐esfahlan R, Hamblin MR. Potential Applications of Advanced Nano/Hydrogels in Biomedicine: Static, Dynamic, Multi‐Stage, and Bioinspired. Adv Funct Mater 2020;30:2004098. [DOI: 10.1002/adfm.202004098] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 11.0] [Reference Citation Analysis]
19 Moradi Kashkooli F, Soltani M, Souri M. Controlled anti-cancer drug release through advanced nano-drug delivery systems: Static and dynamic targeting strategies. J Control Release 2020;327:316-49. [PMID: 32800878 DOI: 10.1016/j.jconrel.2020.08.012] [Cited by in Crossref: 84] [Cited by in F6Publishing: 67] [Article Influence: 28.0] [Reference Citation Analysis]
20 Garcia-Pinel B, Ortega-Rodríguez A, Porras-Alcalá C, Cabeza L, Contreras-Cáceres R, Ortiz R, Díaz A, Moscoso A, Sarabia F, Prados J, López-Romero JM, Melguizo C. Magnetically active pNIPAM nanosystems as temperature-sensitive biocompatible structures for controlled drug delivery. Artif Cells Nanomed Biotechnol 2020;48:1022-35. [PMID: 32663040 DOI: 10.1080/21691401.2020.1773488] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
21 Solomevich SO, Dmitruk EI, Bychkovsky PM, Nebytov AE, Yurkshtovich TL, Golub NV. Fabrication of oxidized bacterial cellulose by nitrogen dioxide in chloroform/cyclohexane as a highly loaded drug carrier for sustained release of cisplatin. Carbohydr Polym 2020;248:116745. [PMID: 32919553 DOI: 10.1016/j.carbpol.2020.116745] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 5.7] [Reference Citation Analysis]
22 Yin Y, Hu B, Yuan X, Cai L, Gao H, Yang Q. Nanogel: A Versatile Nano-Delivery System for Biomedical Applications. Pharmaceutics 2020;12:E290. [PMID: 32210184 DOI: 10.3390/pharmaceutics12030290] [Cited by in Crossref: 63] [Cited by in F6Publishing: 70] [Article Influence: 21.0] [Reference Citation Analysis]
23 Sharma SK, Al Hosani S, Kalmouni M, Nair AR, Palanikumar L, Pasricha R, Sadler KC, Magzoub M, Jagannathan R. Supercritical CO2 Processing Generates Aqueous Cisplatin Solutions with Enhanced Cancer Specificity. ACS Omega 2020;5:4558-67. [PMID: 32175502 DOI: 10.1021/acsomega.9b03917] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
24 Cyphert EL, Bil M, Recum HA, Święszkowski W. Repurposing biodegradable tissue engineering scaffolds for localized chemotherapeutic delivery. J Biomed Mater Res 2020;108:1144-58. [DOI: 10.1002/jbm.a.36889] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
25 Chung ACK, Li X, Li W, Wang T, Lee H, Jin L, Cai Z, Leung KC. Mass spectrometry imaging and monitoring of in vivo glutathione-triggered cisplatin release from nanoparticles in the kidneys. Nanoscale Adv 2020;2:5857-65. [DOI: 10.1039/d0na00708k] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
26 Liu N, Liu H, Chen H, Wang G, Teng H, Chang Y. Polyphotosensitizer nanogels for GSH-responsive histone deacetylase inhibitors delivery and enhanced cancer photodynamic therapy. Colloids Surf B Biointerfaces 2020;188:110753. [PMID: 31884084 DOI: 10.1016/j.colsurfb.2019.110753] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
27 Suhail M, Rosenholm JM, Minhas MU, Badshah SF, Naeem A, Khan KU, Fahad M. Nanogels as drug-delivery systems: a comprehensive overview. Therapeutic Delivery 2019;10:697-717. [DOI: 10.4155/tde-2019-0010] [Cited by in Crossref: 62] [Cited by in F6Publishing: 62] [Article Influence: 15.5] [Reference Citation Analysis]
28 Gonzalez-urias A, Zapata-gonzalez I, Licea-claverie A, Licea-navarro AF, Bernaldez-sarabia J, Cervantes-luevano K. Cationic versus anionic core-shell nanogels for transport of cisplatin to lung cancer cells. Colloids and Surfaces B: Biointerfaces 2019;182:110365. [DOI: 10.1016/j.colsurfb.2019.110365] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
29 Farooq MA, Aquib M, Farooq A, Haleem Khan D, Joelle Maviah MB, Sied Filli M, Kesse S, Boakye-Yiadom KO, Mavlyanova R, Parveen A, Wang B. Recent progress in nanotechnology-based novel drug delivery systems in designing of cisplatin for cancer therapy: an overview. Artif Cells Nanomed Biotechnol 2019;47:1674-92. [PMID: 31066300 DOI: 10.1080/21691401.2019.1604535] [Cited by in Crossref: 55] [Cited by in F6Publishing: 43] [Article Influence: 13.8] [Reference Citation Analysis]
30 Liao J, Jia Y, Wu Y, Shi K, Yang D, Li P, Qian Z. Physical‐, chemical‐, and biological‐responsive nanomedicine for cancer therapy. WIREs Nanomed Nanobiotechnol 2020;12. [DOI: 10.1002/wnan.1581] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 6.8] [Reference Citation Analysis]
31 Sabir F, Asad MI, Qindeel M, Afzal I, Dar MJ, Shah KU, Zeb A, Khan GM, Ahmed N, Din F. Polymeric Nanogels as Versatile Nanoplatforms for Biomedical Applications. Journal of Nanomaterials 2019;2019:1-16. [DOI: 10.1155/2019/1526186] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 8.8] [Reference Citation Analysis]
32 Li Y, Du L, Wu C, Yu B, Zhang H, An F. Peptide Sequence-Dominated Enzyme-Responsive Nanoplatform for Anticancer Drug Delivery. CTMC 2019;19:74-97. [DOI: 10.2174/1568026619666190125144621] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
33 Peng J, Yang Q, Shi K, Xiao Y, Wei X, Qian Z. Intratumoral fate of functional nanoparticles in response to microenvironment factor: Implications on cancer diagnosis and therapy. Adv Drug Deliv Rev 2019;143:37-67. [PMID: 31276708 DOI: 10.1016/j.addr.2019.06.007] [Cited by in Crossref: 64] [Cited by in F6Publishing: 64] [Article Influence: 16.0] [Reference Citation Analysis]
34 Li W, Xue B, Shi K, Qu Y, Chu B, Qian Z. Magnetic iron oxide nanoparticles/10-hydroxy camptothecin co-loaded nanogel for enhanced photothermal-chemo therapy. Applied Materials Today 2019;14:84-95. [DOI: 10.1016/j.apmt.2018.11.008] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
35 Zhang X, Chen X, Wang H, Jia H, Wu F. Supramolecular Nanogel‐Based Universal Drug Carriers Formed by “Soft–Hard” Co‐Assembly: Accurate Cancer Diagnosis and Hypoxia‐Activated Cancer Therapy. Adv Therap 2019;2:1800140. [DOI: 10.1002/adtp.201800140] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 8.3] [Reference Citation Analysis]
36 Qu Y, Chu B, Wei X, Lei M, Hu D, Zha R, Zhong L, Wang M, Wang F, Qian Z. Redox/pH dual-stimuli responsive camptothecin prodrug nanogels for "on-demand" drug delivery. J Control Release 2019;296:93-106. [PMID: 30664976 DOI: 10.1016/j.jconrel.2019.01.016] [Cited by in Crossref: 104] [Cited by in F6Publishing: 104] [Article Influence: 26.0] [Reference Citation Analysis]
37 Kousalová J, Etrych T. Polymeric nanogels as drug delivery systems. Physiol Res 2018;67:S305-17. [PMID: 30379552 DOI: 10.33549/physiolres.933979] [Cited by in Crossref: 27] [Cited by in F6Publishing: 30] [Article Influence: 6.8] [Reference Citation Analysis]
38 Shang Y, Wang Z, Zhang R, Li X, Zhang S, Gao J, Li X, Yang Z. A novel thermogel system of self-assembling peptides manipulated by enzymatic dephosphorylation. Chem Commun 2019;55:5123-6. [DOI: 10.1039/c9cc00401g] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 4.3] [Reference Citation Analysis]
39 Abouelmagd SA, Ellah NHA, Hamid BNAE. Temperature and pH dual-stimuli responsive polymeric carriers for drug delivery. Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications. Elsevier; 2019. pp. 87-109. [DOI: 10.1016/b978-0-08-101995-5.00003-9] [Cited by in Crossref: 6] [Article Influence: 1.5] [Reference Citation Analysis]
40 Zhao H, Xu J, Wan J, Geng S, Li H, Peng X, Fu Q, He M, Zhao Y, Yang X. Cisplatin-directed coordination-crosslinking nanogels with thermo/pH-sensitive triblock polymers: improvement on chemotherapic efficacy via sustained release and drug retention. Nanoscale 2017;9:5859-71. [PMID: 28429810 DOI: 10.1039/c7nr01097d] [Cited by in Crossref: 37] [Cited by in F6Publishing: 41] [Article Influence: 7.4] [Reference Citation Analysis]
41 Sánchez-Moreno P, de Vicente J, Nardecchia S, Marchal JA, Boulaiz H. Thermo-Sensitive Nanomaterials: Recent Advance in Synthesis and Biomedical Applications. Nanomaterials (Basel) 2018;8:E935. [PMID: 30428608 DOI: 10.3390/nano8110935] [Cited by in Crossref: 67] [Cited by in F6Publishing: 68] [Article Influence: 13.4] [Reference Citation Analysis]
42 Karimi MH, Mahdavinia GR, Massoumi B. pH-controlled sunitinib anticancer release from magnetic chitosan nanoparticles crosslinked with κ-carrageenan. Materials Science and Engineering: C 2018;91:705-14. [DOI: 10.1016/j.msec.2018.06.019] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 6.2] [Reference Citation Analysis]
43 Oroojalian F, Babaei M, Taghdisi SM, Abnous K, Ramezani M, Alibolandi M. Encapsulation of Thermo-responsive Gel in pH-sensitive Polymersomes as Dual-Responsive Smart carriers for Controlled Release of Doxorubicin. Journal of Controlled Release 2018;288:45-61. [DOI: 10.1016/j.jconrel.2018.08.039] [Cited by in Crossref: 65] [Cited by in F6Publishing: 57] [Article Influence: 13.0] [Reference Citation Analysis]
44 Bolla PK, Rodriguez VA, Kalhapure RS, Kolli CS, Andrews S, Renukuntla J. A review on pH and temperature responsive gels and other less explored drug delivery systems. Journal of Drug Delivery Science and Technology 2018;46:416-35. [DOI: 10.1016/j.jddst.2018.05.037] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 7.6] [Reference Citation Analysis]
45 Gao X, Yang H, Wu M, Shi K, Zhou C, Peng J, Yang Q. Targeting Delivery of Lidocaine and Cisplatin by Nanogel Enhances Chemotherapy and Alleviates Metastasis. ACS Appl Mater Interfaces 2018;10:25228-40. [PMID: 29979563 DOI: 10.1021/acsami.8b09376] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 4.8] [Reference Citation Analysis]
46 Zhang W, Zhang Z, Tung CH. Beyond chemotherapeutics: cisplatin as a temporary buckle to fabricate drug-loaded nanogels. Chem Commun (Camb) 2017;53:779-82. [PMID: 27999837 DOI: 10.1039/c6cc08230k] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
47 Ahmad Z, Majeed S, Shah A. In vitro release and cytotoxicity of cisplatin loaded methoxy poly (ethylene glycol)- block -poly (glutamic acid) nanoparticles against human breast cancer cell lines. Journal of Drug Delivery Science and Technology 2018;43:85-93. [DOI: 10.1016/j.jddst.2017.09.016] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
48 Jin Z, Wu K, Hou J, Yu K, Shen Y, Guo S. A PTX/nitinol stent combination with temperature-responsive phase-change 1-hexadecanol for magnetocaloric drug delivery: Magnetocaloric drug release and esophagus tissue penetration. Biomaterials 2018;153:49-58. [DOI: 10.1016/j.biomaterials.2017.10.040] [Cited by in Crossref: 40] [Cited by in F6Publishing: 39] [Article Influence: 8.0] [Reference Citation Analysis]
49 Ekkelenkamp AE, Elzes MR, Engbersen JFJ, Paulusse JMJ. Responsive crosslinked polymer nanogels for imaging and therapeutics delivery. J Mater Chem B 2018;6:210-35. [DOI: 10.1039/c7tb02239e] [Cited by in Crossref: 62] [Cited by in F6Publishing: 64] [Article Influence: 12.4] [Reference Citation Analysis]
50 Maji S, Jerca VV, Jerca FA, Hoogenboom R. Smart polymeric gels. Polymeric Gels 2018. [DOI: 10.1016/b978-0-08-102179-8.00007-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
51 Madhusudana Rao K, Krishna Rao KS, Ha C. Functional stimuli-responsive polymeric network nanogels as cargo systems for targeted drug delivery and gene delivery in cancer cells. Design of Nanostructures for Theranostics Applications 2018. [DOI: 10.1016/b978-0-12-813669-0.00006-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
52 Rimondino G, Biglione C, Martinelli M, Alvarez Igarzábal C, Strumia M. Design of Multifunctional Nanogels with Intelligent Behavior. Polymer Gels 2018. [DOI: 10.1007/978-981-10-6086-1_7] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
53 Shirakura T, Smith C, Hopkins TJJ, Koo Lee YE, Lazaridis F, Argyrakis P, Kopelman R. Matrix Density Engineering of Hydrogel Nanoparticles with Simulation-Guided Synthesis for Tuning Drug Release and Cellular Uptake. ACS Omega 2017;2:3380-9. [PMID: 28782048 DOI: 10.1021/acsomega.7b00590] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
54 Salimi F, Dilmaghani KA, Alizadeh E, Akbarzadeh A, Davaran S. Enhancing cisplatin delivery to hepatocellular carcinoma HepG2 cells using dual sensitive smart nanocomposite. Artif Cells Nanomed Biotechnol 2018;46:949-58. [PMID: 28687054 DOI: 10.1080/21691401.2017.1349777] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 2.7] [Reference Citation Analysis]
55 Shakoori Z, Ghanbari H, Omidi Y, Pashaiasl M, Akbarzadeh A, Jomeh Farsangi Z, Rezayat SM, Davaran S. Fluorescent multi-responsive cross-linked P(N-isopropylacrylamide)-based nanocomposites for cisplatin delivery. Drug Development and Industrial Pharmacy 2017;43:1283-91. [DOI: 10.1080/03639045.2017.1313859] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
56 Peng J, Dong M, Ran B, Li W, Hao Y, Yang Q, Tan L, Shi K, Qian Z. "One-for-All"-Type, Biodegradable Prussian Blue/Manganese Dioxide Hybrid Nanocrystal for Trimodal Imaging-Guided Photothermal Therapy and Oxygen Regulation of Breast Cancer. ACS Appl Mater Interfaces 2017;9:13875-86. [PMID: 28374581 DOI: 10.1021/acsami.7b01365] [Cited by in Crossref: 79] [Cited by in F6Publishing: 81] [Article Influence: 13.2] [Reference Citation Analysis]
57 Wu H, Jin H, Wang C, Zhang Z, Ruan H, Sun L, Yang C, Li Y, Qin W, Wang C. Synergistic Cisplatin/Doxorubicin Combination Chemotherapy for Multidrug-Resistant Cancer via Polymeric Nanogels Targeting Delivery. ACS Appl Mater Interfaces 2017;9:9426-36. [PMID: 28247750 DOI: 10.1021/acsami.6b16844] [Cited by in Crossref: 105] [Cited by in F6Publishing: 109] [Article Influence: 17.5] [Reference Citation Analysis]
58 Schneeberger K, Spee B, Costa P, Sachs N, Clevers H, Malda J. Converging biofabrication and organoid technologies: the next frontier in hepatic and intestinal tissue engineering? Biofabrication 2017;9:013001. [PMID: 28211365 DOI: 10.1088/1758-5090/aa6121] [Cited by in Crossref: 58] [Cited by in F6Publishing: 58] [Article Influence: 9.7] [Reference Citation Analysis]
59 Wang H, Dai T, Zhou S, Huang X, Li S, Sun K, Zhou G, Dou H. Self-Assembly Assisted Fabrication of Dextran-Based Nanohydrogels with Reduction-Cleavable Junctions for Applications as Efficient Drug Delivery Systems. Sci Rep 2017;7:40011. [PMID: 28071743 DOI: 10.1038/srep40011] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 5.8] [Reference Citation Analysis]
60 Li Z, He G, Hua J, Wu M, Guo W, Gong J, Zhang J, Qiao C. Preparation of γ-PGA hydrogels and swelling behaviors in salt solutions with different ionic valence numbers. RSC Adv 2017;7:11085-93. [DOI: 10.1039/c6ra26419k] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 5.0] [Reference Citation Analysis]
61 Tsintou M, Wang C, Dalamagkas K, Weng D, Zhang Y, Niu W. Nanogels for biomedical applications. Nanobiomaterials Science, Development and Evaluation 2017. [DOI: 10.1016/b978-0-08-100963-5.00005-7] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
62 van Elk M, Murphy BP, Eufrásio-da-silva T, O’reilly DP, Vermonden T, Hennink WE, Duffy GP, Ruiz-hernández E. Nanomedicines for advanced cancer treatments: Transitioning towards responsive systems. International Journal of Pharmaceutics 2016;515:132-64. [DOI: 10.1016/j.ijpharm.2016.10.013] [Cited by in Crossref: 69] [Cited by in F6Publishing: 71] [Article Influence: 9.9] [Reference Citation Analysis]
63 Karimi M, Ghasemi A, Sahandi Zangabad P, Rahighi R, Moosavi Basri SM, Mirshekari H, Amiri M, Shafaei Pishabad Z, Aslani A, Bozorgomid M, Ghosh D, Beyzavi A, Vaseghi A, Aref AR, Haghani L, Bahrami S, Hamblin MR. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev 2016;45:1457-501. [PMID: 26776487 DOI: 10.1039/c5cs00798d] [Cited by in Crossref: 916] [Cited by in F6Publishing: 949] [Article Influence: 130.9] [Reference Citation Analysis]
64 Voulgari E, Bakandritsos A, Galtsidis S, Zoumpourlis V, Burke BP, Clemente GS, Cawthorne C, Archibald SJ, Tuček J, Zbořil R, Kantarelou V, Karydas AG, Avgoustakis K. Synthesis, characterization and in vivo evaluation of a magnetic cisplatin delivery nanosystem based on PMAA-graft-PEG copolymers. J Control Release 2016;243:342-56. [PMID: 27793687 DOI: 10.1016/j.jconrel.2016.10.021] [Cited by in Crossref: 36] [Cited by in F6Publishing: 29] [Article Influence: 5.1] [Reference Citation Analysis]
65 Li W, Peng J, Tan L, Wu J, Shi K, Qu Y, Wei X, Qian Z. Mild photothermal therapy/photodynamic therapy/chemotherapy of breast cancer by Lyp-1 modified Docetaxel/IR820 Co-loaded micelles. Biomaterials 2016;106:119-33. [PMID: 27561883 DOI: 10.1016/j.biomaterials.2016.08.016] [Cited by in Crossref: 173] [Cited by in F6Publishing: 186] [Article Influence: 24.7] [Reference Citation Analysis]
66 Zhang J, Shen J, Yin W, Wei X, Wu L, Liu H. The intervention research on treatment by Xianchen to rabbits model of chemotherapeutic phlebitis. Acta Cir Bras 2016;31:549-56. [DOI: 10.1590/s0102-865020160080000008] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
67 Wu H, Wang C. Biodegradable Smart Nanogels: A New Platform for Targeting Drug Delivery and Biomedical Diagnostics. Langmuir 2016;32:6211-25. [DOI: 10.1021/acs.langmuir.6b00842] [Cited by in Crossref: 107] [Cited by in F6Publishing: 106] [Article Influence: 15.3] [Reference Citation Analysis]
68 Cuggino JC, Molina M, Wedepohl S, Igarzabal CIA, Calderón M, Gugliotta LM. Responsive nanogels for application as smart carriers in endocytic pH-triggered drug delivery systems. European Polymer Journal 2016;78:14-24. [DOI: 10.1016/j.eurpolymj.2016.02.022] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 5.4] [Reference Citation Analysis]
69 Cheng Q, Liu Y. Multifunctional platinum-based nanoparticles for biomedical applications: Platinum-based nanoparticles for biomedical applications. WIREs Nanomed Nanobiotechnol 2017;9:e1410. [DOI: 10.1002/wnan.1410] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 4.7] [Reference Citation Analysis]
70 González M, Merino U, Vargas S, Quintanilla F, Rodríguez R. Synthesis and characterization of a HAp-based biomarker with controlled drug release for breast cancer. Materials Science and Engineering: C 2016;61:801-8. [DOI: 10.1016/j.msec.2016.01.015] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
71 Lu S, Xu L, Kang ET, Mahendran R, Chiong E, Neoh KG. Co-delivery of peptide-modified cisplatin and doxorubicin via mucoadhesive nanocapsules for potential synergistic intravesical chemotherapy of non-muscle-invasive bladder cancer. Eur J Pharm Sci 2016;84:103-15. [PMID: 26780592 DOI: 10.1016/j.ejps.2016.01.013] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 3.6] [Reference Citation Analysis]
72 Wu D, Cui H, Zhu J, Qin X, Xie T. Novel amino acid based nanogel conjugated suture for antibacterial application. J Mater Chem B 2016;4:2606-13. [DOI: 10.1039/c6tb00186f] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.4] [Reference Citation Analysis]
73 Shirakura T, Ray A, Kopelman R. Polyethylenimine incorporation into hydrogel nanomatrices for enhancing nanoparticle-assisted chemotherapy. RSC Adv 2016;6:48016-24. [DOI: 10.1039/c6ra02414a] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
74 V. NSKV, H. G. S, Fathima SJ, Radha V, Khanum F. pH and thermosensitive 5-fluorouracil loaded poly(NIPAM-co-AAc) nanogels for cancer therapy. RSC Adv 2016;6:105495-507. [DOI: 10.1039/c6ra18034e] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.7] [Reference Citation Analysis]
75 Sun X, Cai C, Wang Q, Cai D, Qian J, Chi Y, Zheng K, Zhang X, Zhang G, Zhong K, Wu Z. A polyethylenimine functionalized porous/hollow nanoworm as a drug delivery system and a bioimaging agent. Phys Chem Chem Phys 2016;18:7820-8. [DOI: 10.1039/c5cp07933k] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 1.9] [Reference Citation Analysis]
76 Zhang H, Zhai Y, Wang J, Zhai G. New progress and prospects: The application of nanogel in drug delivery. Mater Sci Eng C Mater Biol Appl 2016;60:560-8. [PMID: 26706564 DOI: 10.1016/j.msec.2015.11.041] [Cited by in Crossref: 166] [Cited by in F6Publishing: 166] [Article Influence: 20.8] [Reference Citation Analysis]
77 Soni KS, Desale SS, Bronich TK. Nanogels: An overview of properties, biomedical applications and obstacles to clinical translation. J Control Release 2016;240:109-26. [PMID: 26571000 DOI: 10.1016/j.jconrel.2015.11.009] [Cited by in Crossref: 302] [Cited by in F6Publishing: 306] [Article Influence: 37.8] [Reference Citation Analysis]
78 Klouda L. Thermoresponsive hydrogels in biomedical applications. European Journal of Pharmaceutics and Biopharmaceutics 2015;97:338-49. [DOI: 10.1016/j.ejpb.2015.05.017] [Cited by in Crossref: 317] [Cited by in F6Publishing: 321] [Article Influence: 39.6] [Reference Citation Analysis]
79 Desale SS, Soni KS, Romanova S, Cohen SM, Bronich TK. Targeted delivery of platinum-taxane combination therapy in ovarian cancer. J Control Release 2015;220:651-9. [PMID: 26381902 DOI: 10.1016/j.jconrel.2015.09.007] [Cited by in Crossref: 38] [Cited by in F6Publishing: 41] [Article Influence: 4.8] [Reference Citation Analysis]
80 Jin S, Wan J, Meng L, Huang X, Guo J, Liu L, Wang C. Biodegradation and Toxicity of Protease/Redox/pH Stimuli-Responsive PEGlated PMAA Nanohydrogels for Targeting Drug delivery. ACS Appl Mater Interfaces 2015;7:19843-52. [PMID: 26288386 DOI: 10.1021/acsami.5b05984] [Cited by in Crossref: 95] [Cited by in F6Publishing: 96] [Article Influence: 11.9] [Reference Citation Analysis]
81 Chiang CS, Tseng YH, Liao BJ, Chen SY. Magnetically Targeted Nanocapsules for PAA-Cisplatin-Conjugated Cores in PVA/SPIO Shells via Surfactant-Free Emulsion for Reduced Nephrotoxicity and Enhanced Lung Cancer Therapy. Adv Healthc Mater 2015;4:1066-75. [PMID: 25656800 DOI: 10.1002/adhm.201400794] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 3.0] [Reference Citation Analysis]
82 Kim J, Pramanick S, Lee D, Park H, Kim WJ. Polymeric biomaterials for the delivery of platinum-based anticancer drugs. Biomater Sci 2015;3:1002-17. [PMID: 26221935 DOI: 10.1039/c5bm00039d] [Cited by in Crossref: 64] [Cited by in F6Publishing: 67] [Article Influence: 8.0] [Reference Citation Analysis]
83 Costa PF. Bone Tissue Engineering Drug Delivery. Curr Mol Bio Rep 2015;1:87-93. [DOI: 10.1007/s40610-015-0016-0] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 2.5] [Reference Citation Analysis]
84 Peng JR, Qian ZY. Drug delivery systems for overcoming the bioavailability of curcumin: not only the nanoparticle matters. Nanomedicine (Lond) 2014;9:747-50. [PMID: 24981645 DOI: 10.2217/nnm.14.21] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 3.5] [Reference Citation Analysis]
85 Sivaram AJ, Rajitha P, Maya S, Jayakumar R, Sabitha M. Nanogels for delivery, imaging and therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2015;7:509-33. [PMID: 25581024 DOI: 10.1002/wnan.1328] [Cited by in Crossref: 74] [Cited by in F6Publishing: 78] [Article Influence: 9.3] [Reference Citation Analysis]
86 Sousa-herves A, Wedepohl S, Calderón M. One-pot synthesis of doxorubicin-loaded multiresponsive nanogels based on hyperbranched polyglycerol. Chem Commun 2015;51:5264-7. [DOI: 10.1039/c5cc00644a] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 2.3] [Reference Citation Analysis]
87 Wu D, Wu J, Qin X, Chu C. From macro to micro to nano: the development of a novel lysine based hydrogel platform and enzyme triggered self-assembly of macro hydrogel into nanogel. J Mater Chem B 2015;3:2286-94. [DOI: 10.1039/c4tb01902d] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
88 DeWitt MR, Pekkanen AM, Robertson J, Rylander CG, Nichole Rylander M. Influence of hyperthermia on efficacy and uptake of carbon nanohorn-cisplatin conjugates. J Biomech Eng 2014;136:021003. [PMID: 24763615 DOI: 10.1115/1.4026318] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 2.0] [Reference Citation Analysis]
89 Shen W, Luan J, Cao L, Sun J, Yu L, Ding J. Thermogelling polymer-platinum(IV) conjugates for long-term delivery of cisplatin. Biomacromolecules 2015;16:105-15. [PMID: 25435165 DOI: 10.1021/bm501220a] [Cited by in Crossref: 88] [Cited by in F6Publishing: 89] [Article Influence: 9.8] [Reference Citation Analysis]
90 Sharma A, Garg T, Aman A, Panchal K, Sharma R, Kumar S, Markandeywar T. Nanogel--an advanced drug delivery tool: Current and future. Artif Cells Nanomed Biotechnol 2016;44:165-77. [PMID: 25053442 DOI: 10.3109/21691401.2014.930745] [Cited by in Crossref: 71] [Cited by in F6Publishing: 74] [Article Influence: 7.9] [Reference Citation Analysis]
91 Shirakura T, Kelson TJ, Ray A, Malyarenko AE, Kopelman R. Hydrogel Nanoparticles with Thermally Controlled Drug Release. ACS Macro Lett 2014;3:602-6. [PMID: 25419487 DOI: 10.1021/mz500231e] [Cited by in Crossref: 61] [Cited by in F6Publishing: 64] [Article Influence: 6.8] [Reference Citation Analysis]
92 He Z, Chu B, Wei X, Li J, Edwards CK, Song X, He G, Xie Y, Wei Y, Qian Z. Recent development of poly(ethylene glycol)-cholesterol conjugates as drug delivery systems. International Journal of Pharmaceutics 2014;469:168-78. [DOI: 10.1016/j.ijpharm.2014.04.056] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 4.2] [Reference Citation Analysis]
93 Guo W, Wang T, Tang X, Zhang Q, Yu F, Pei M. Triple stimuli-responsive amphiphilic glycopolymer. J Polym Sci Part A: Polym Chem 2014;52:2131-8. [DOI: 10.1002/pola.27222] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 2.9] [Reference Citation Analysis]
94 Nigam S, Chandra S, Newgreen DF, Bahadur D, Chen Q. Poly(ethylene glycol)-Modified PAMAM-Fe 3 O 4 -Doxorubicin Triads with the Potential for Improved Therapeutic Efficacy: Generation-Dependent Increased Drug Loading and Retention at Neutral pH and Increased Release at Acidic pH. Langmuir 2014;30:1004-11. [DOI: 10.1021/la404246h] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 3.9] [Reference Citation Analysis]
95 Yang R, Peng S, Wan W, Hughes TC. Azobenzene based multistimuli responsive supramolecular hydrogels. J Mater Chem C 2014;2:9122-31. [DOI: 10.1039/c4tc01649a] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 4.2] [Reference Citation Analysis]