BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Salazar-Degracia A, Busquets S, Argilés JM, Bargalló-Gispert N, López-Soriano FJ, Barreiro E. Effects of the beta2 agonist formoterol on atrophy signaling, autophagy, and muscle phenotype in respiratory and limb muscles of rats with cancer-induced cachexia. Biochimie 2018;149:79-91. [PMID: 29654866 DOI: 10.1016/j.biochi.2018.04.009] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 6.0] [Reference Citation Analysis]
Number Citing Articles
1 Murphy BT, Mackrill JJ, O'Halloran KD. Impact of cancer cachexia on respiratory muscle function and the therapeutic potential of exercise. J Physiol 2022;600:4979-5004. [PMID: 36251564 DOI: 10.1113/JP283569] [Reference Citation Analysis]
2 Yuan L, Springer J, Palus S, Busquets S, Jové Q, Alves de Lima Junior E, Anker MS, von Haehling S, Álvarez Ladrón N, Millman O, Oosterlee A, Szymczyk A, López‐soriano FJ, Anker SD, Coats AJ, Argiles JM. The atypical β‐blocker S‐oxprenolol reduces cachexia and improves survival in a rat cancer cachexia model. J cachexia sarcopenia muscle 2022. [DOI: 10.1002/jcsm.13116] [Reference Citation Analysis]
3 Ryder P, Braddock M. Harnessing the Space Environment for the Discovery and Development of New Medicines. Handbook of Space Pharmaceuticals 2022. [DOI: 10.1007/978-3-030-05526-4_32] [Reference Citation Analysis]
4 Franco-Romero A, Sandri M. Role of autophagy in muscle disease. Mol Aspects Med 2021;:101041. [PMID: 34625292 DOI: 10.1016/j.mam.2021.101041] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
5 Mallard J, Hucteau E, Hureau TJ, Pagano AF. Skeletal Muscle Deconditioning in Breast Cancer Patients Undergoing Chemotherapy: Current Knowledge and Insights From Other Cancers. Front Cell Dev Biol 2021;9:719643. [PMID: 34595171 DOI: 10.3389/fcell.2021.719643] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
6 Mañas-García L, Denhard C, Mateu J, Duran X, Gea J, Barreiro E. Beneficial Effects of Resveratrol in Mouse Gastrocnemius: A Hint to Muscle Phenotype and Proteolysis. Cells 2021;10:2436. [PMID: 34572085 DOI: 10.3390/cells10092436] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
7 Penedo-Vázquez A, Duran X, Mateu J, López-Postigo A, Barreiro E. Curcumin and Resveratrol Improve Muscle Function and Structure through Attenuation of Proteolytic Markers in Experimental Cancer-Induced Cachexia. Molecules 2021;26:4904. [PMID: 34443492 DOI: 10.3390/molecules26164904] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
8 Braddock M. From Target Identification to Drug Development in Space: Using the Microgravity Assist. Curr Drug Discov Technol 2020;17:45-56. [PMID: 30648510 DOI: 10.2174/1570163816666190112150014] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
9 Zhou X, Hu S, Zhang Y, Du G, Li Y. The mechanism by which noncoding RNAs regulate muscle wasting in cancer cachexia. Precision Clinical Medicine 2021;4:136-47. [DOI: 10.1093/pcmedi/pbab008] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
10 Martin A, Freyssenet D. Phenotypic features of cancer cachexia-related loss of skeletal muscle mass and function: lessons from human and animal studies. J Cachexia Sarcopenia Muscle 2021;12:252-73. [PMID: 33783983 DOI: 10.1002/jcsm.12678] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 9.5] [Reference Citation Analysis]
11 Peris-Moreno D, Cussonneau L, Combaret L, Polge C, Taillandier D. Ubiquitin Ligases at the Heart of Skeletal Muscle Atrophy Control. Molecules 2021;26:E407. [PMID: 33466753 DOI: 10.3390/molecules26020407] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
12 Mañas-García L, Penedo-Vázquez A, López-Postigo A, Deschrevel J, Durán X, Barreiro E. Prolonged Immobilization Exacerbates the Loss of Muscle Mass and Function Induced by Cancer-Associated Cachexia through Enhanced Proteolysis in Mice. Int J Mol Sci 2020;21:E8167. [PMID: 33142912 DOI: 10.3390/ijms21218167] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
13 Mravec B, Horvathova L, Hunakova L. Neurobiology of Cancer: the Role of β-Adrenergic Receptor Signaling in Various Tumor Environments. Int J Mol Sci 2020;21:E7958. [PMID: 33114769 DOI: 10.3390/ijms21217958] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 7.7] [Reference Citation Analysis]
14 Yang W, Huang J, Wu H, Wang Y, Du Z, Ling Y, Wang W, Wu Q, Gao W. Molecular mechanisms of cancer cachexia‑induced muscle atrophy (Review). Mol Med Rep 2020;22:4967-80. [PMID: 33174001 DOI: 10.3892/mmr.2020.11608] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
15 Gupta P, Dutt V, Kaur N, Kalra P, Gupta S, Dua A, Dabur R, Saini V, Mittal A. S-allyl cysteine: A potential compound against skeletal muscle atrophy. Biochim Biophys Acta Gen Subj 2020;1864:129676. [PMID: 32649980 DOI: 10.1016/j.bbagen.2020.129676] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
16 Scalabrin M, Adams V, Labeit S, Bowen TS. Emerging Strategies Targeting Catabolic Muscle Stress Relief. Int J Mol Sci 2020;21:E4681. [PMID: 32630118 DOI: 10.3390/ijms21134681] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
17 Ballerini A, Chua CYX, Rhudy J, Susnjar A, Di Trani N, Jain PR, Laue G, Lubicka D, Shirazi‐fard Y, Ferrari M, Stodieck LS, Cadena SM, Grattoni A. Counteracting Muscle Atrophy on Earth and in Space via Nanofluidics Delivery of Formoterol. Adv Therap 2020;3:2000014. [DOI: 10.1002/adtp.202000014] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
18 Zhang Y, Wang J, Wang X, Gao T, Tian H, Zhou D, Zhang L, Li G, Wang X. The autophagic-lysosomal and ubiquitin proteasome systems are simultaneously activated in the skeletal muscle of gastric cancer patients with cachexia. Am J Clin Nutr 2020;111:570-9. [PMID: 31968072 DOI: 10.1093/ajcn/nqz347] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 7.3] [Reference Citation Analysis]
19 de Sousa Cavalcante ML, Silva MS, Cavalcante AKM, de Oliveira Santos R, Nunes DDT, Busquets S, Argiles JM, Seelaender M, de Matos Neto EM, Dos Santos AA, da Silva MTB. Win 55,212-2, atenolol and subdiaphragmatic vagotomy prevent acceleration of gastric emptying induced by cachexia via Yoshida-AH-130 cells in rats. Eur J Pharmacol 2020;877:173087. [PMID: 32234430 DOI: 10.1016/j.ejphar.2020.173087] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
20 Penna F, Ballarò R, Costelli P. The Redox Balance: A Target for Interventions Against Muscle Wasting in Cancer Cachexia? Antioxid Redox Signal 2020;33:542-58. [PMID: 32037856 DOI: 10.1089/ars.2020.8041] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
21 Campos JC, Baehr LM, Ferreira ND, Bozi LHM, Andres AM, Ribeiro MAC, Gottlieb RA, Bodine SC, Ferreira JCB. β2 -adrenoceptor activation improves skeletal muscle autophagy in neurogenic myopathy. FASEB J 2020;34:5628-41. [PMID: 32112488 DOI: 10.1096/fj.201902305R] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
22 Pötsch MS, Ishida J, Palus S, Tschirner A, von Haehling S, Doehner W, Anker SD, Springer J. MT-102 prevents tissue wasting and improves survival in a rat model of severe cancer cachexia. J Cachexia Sarcopenia Muscle 2020;11:594-605. [PMID: 32067370 DOI: 10.1002/jcsm.12537] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
23 Suzuki T, Von Haehling S, Springer J. Promising models for cancer-induced cachexia drug discovery. Expert Opin Drug Discov 2020;15:627-37. [PMID: 32050816 DOI: 10.1080/17460441.2020.1724954] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
24 Mañas-García L, Bargalló N, Gea J, Barreiro E. Muscle Phenotype, Proteolysis, and Atrophy Signaling During Reloading in Mice: Effects of Curcumin on the Gastrocnemius. Nutrients 2020;12:E388. [PMID: 32024036 DOI: 10.3390/nu12020388] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
25 Ryder P, Braddock M. Harnessing the Space Environment for the Discovery and Development of New Medicines. Handbook of Space Pharmaceuticals 2020. [DOI: 10.1007/978-3-319-50909-9_32-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
26 de Castro GS, Simoes E, Lima JDCC, Ortiz-Silva M, Festuccia WT, Tokeshi F, Alcântara PS, Otoch JP, Coletti D, Seelaender M. Human Cachexia Induces Changes in Mitochondria, Autophagy and Apoptosis in the Skeletal Muscle. Cancers (Basel) 2019;11:E1264. [PMID: 31466311 DOI: 10.3390/cancers11091264] [Cited by in Crossref: 47] [Cited by in F6Publishing: 50] [Article Influence: 11.8] [Reference Citation Analysis]
27 Penna F, Ballarò R, Martinez-Cristobal P, Sala D, Sebastian D, Busquets S, Muscaritoli M, Argilés JM, Costelli P, Zorzano A. Autophagy Exacerbates Muscle Wasting in Cancer Cachexia and Impairs Mitochondrial Function. J Mol Biol 2019;431:2674-86. [PMID: 31150737 DOI: 10.1016/j.jmb.2019.05.032] [Cited by in Crossref: 43] [Cited by in F6Publishing: 38] [Article Influence: 10.8] [Reference Citation Analysis]
28 Han SO, Li S, Everitt JI, Koeberl DD. Salmeterol with Liver Depot Gene Therapy Enhances the Skeletal Muscle Response in Murine Pompe Disease. Hum Gene Ther 2019;30:855-64. [PMID: 30803275 DOI: 10.1089/hum.2018.197] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
29 Salazar-Degracia A, Granado-Martínez P, Millán-Sánchez A, Tang J, Pons-Carreto A, Barreiro E. Reduced lung cancer burden by selective immunomodulators elicits improvements in muscle proteolysis and strength in cachectic mice. J Cell Physiol 2019;234:18041-52. [PMID: 30851071 DOI: 10.1002/jcp.28437] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
30 Penna F, Ballarò R, Beltrà M, De Lucia S, García Castillo L, Costelli P. The Skeletal Muscle as an Active Player Against Cancer Cachexia. Front Physiol 2019;10:41. [PMID: 30833900 DOI: 10.3389/fphys.2019.00041] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 8.0] [Reference Citation Analysis]
31 Barreiro E, Salazar‐degracia A, Sancho‐muñoz A, Gea J. Endoplasmic reticulum stress and unfolded protein response profile in quadriceps of sarcopenic patients with respiratory diseases. J Cell Physiol 2019;234:11315-29. [DOI: 10.1002/jcp.27789] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 3.6] [Reference Citation Analysis]
32 Greising SM, Ottenheijm CAC, O'Halloran KD, Barreiro E. Diaphragm plasticity in aging and disease: therapies for muscle weakness go from strength to strength. J Appl Physiol (1985) 2018;125:243-53. [PMID: 29672230 DOI: 10.1152/japplphysiol.01059.2017] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 2.8] [Reference Citation Analysis]