1 |
Veryutin DA, Doroshenko IA, Martynova EA, Sapozhnikova KA, Svirshchevskaya EV, Shibaeva AV, Markova AA, Chistov AA, Borisova NE, Shuvalov MV, Korshun VA, Alferova VA, Podrugina TA. Probing tricarbocyanine dyes for targeted delivery of anthracyclines. Biochimie 2023;206:12-23. [PMID: 36179940 DOI: 10.1016/j.biochi.2022.09.015] [Reference Citation Analysis]
|
2 |
Cai Z, Yu J, Hu J, Sun K, Liu M, Gu D, Chen J, Xu Y, He X, Wei W, Wang Z, Sun B. Three near-infrared and lysosome-targeting probes for photodynamic therapy (PDT). Spectrochim Acta A Mol Biomol Spectrosc 2023;286:122027. [PMID: 36323089 DOI: 10.1016/j.saa.2022.122027] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
3 |
Tunikowska J, Rembiałkowska N, Michel O, Mączyńska J, Antończyk A, Prządka P, Kiełbowicz Z, Kulbacka J. Electrochemotherapy with Bleomycin Supported by NIRF Imaging with Indocyanine Green (ICG)—In Vitro and In Vivo Case Study. Applied Sciences 2023;13:2027. [DOI: 10.3390/app13042027] [Reference Citation Analysis]
|
4 |
Jo G, Kim EJ, Hyun H. Enhanced Tumor Uptake and Retention of Cyanine Dye-Albumin Complex for Tumor-Targeted Imaging and Phototherapy. Int J Mol Sci 2023;24. [PMID: 36614318 DOI: 10.3390/ijms24010862] [Reference Citation Analysis]
|
5 |
Exner RM, Cortezon-Tamarit F, Ge H, Pourzand C, Pascu SI. Unraveling the Chemistry of meso-Cl Tricarbocyanine Dyes in Conjugation Reactions for the Creation of Peptide Bonds. ACS Bio Med Chem Au 2022;2:642-54. [PMID: 36573095 DOI: 10.1021/acsbiomedchemau.2c00053] [Reference Citation Analysis]
|
6 |
Sun C, Wang J, Xia T, Sun Q, He Y, Wang H, He Q, Liu L. Mitochondrion-Targeted NIR Therapeutic Agent Suppresses Melanoma by Inducing Apoptosis and Cell Cycle Arrest via E2F/Cyclin/CDK Pathway. Pharmaceuticals (Basel) 2022;15. [PMID: 36559040 DOI: 10.3390/ph15121589] [Reference Citation Analysis]
|
7 |
Toksoy A, Sonkaya Ö, Erkan DS, Gulen RB, Algi MP, Algi F. Norsquaraine endowed with anticancer and antibacterial activities. Photodiagnosis Photodyn Ther 2022;40:103110. [PMID: 36070851 DOI: 10.1016/j.pdpdt.2022.103110] [Reference Citation Analysis]
|
8 |
Jo G, Kim EJ, Hyun H. Tumor Targeting by Conjugation of Chlorambucil with Zwitterionic Near-Infrared Fluorophore for Cancer Phototherapy. Int J Mol Sci 2022;23. [PMID: 36430570 DOI: 10.3390/ijms232214093] [Reference Citation Analysis]
|
9 |
Grankina II, Borovoy IA, Petrushenko SI, Hrankina SS, Semynozhenko VP, Yefimova SL, Sorokin AV. Fluorescent properties of amphi-PIC J-aggregates in the complexes with bovine serum albumin. Journal of Molecular Liquids 2022. [DOI: 10.1016/j.molliq.2022.120755] [Reference Citation Analysis]
|
10 |
Zonjić I, Radić Stojković M, Crnolatac I, Tomašić Paić A, Pšeničnik S, Vasilev A, Kandinska M, Mondeshki M, Baluschev S, Landfester K, Glavaš-obrovac L, Jukić M, Kralj J, Brozovic A, Horvat L, Tumir L. Styryl dyes with N-Methylpiperazine and N-Phenylpiperazine Functionality: AT-DNA and G-quadruplex binding ligands and theranostic agents. Bioorganic Chemistry 2022;127:105999. [DOI: 10.1016/j.bioorg.2022.105999] [Reference Citation Analysis]
|
11 |
Serrano JL, Maia A, Santos AO, Lima E, Reis LV, Nunes MJ, Boto REF, Silvestre S, Almeida P. An Insight into Symmetrical Cyanine Dyes as Promising Selective Antiproliferative Agents in Caco-2 Colorectal Cancer Cells. Molecules 2022;27. [PMID: 36144515 DOI: 10.3390/molecules27185779] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
12 |
Zhuang Z, Meng Z, Li J, Shen P, Dai J, Lou X, Xia F, Tang BZ, Zhao Z. Antibacterial Theranostic Agents with Negligible Living Cell Invasiveness: AIE-Active Cationic Amphiphiles Regulated by Alkyl Chain Engineering. ACS Nano 2022;16:11912-30. [PMID: 35917549 DOI: 10.1021/acsnano.2c01721] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
13 |
Liu J, Wang X, Huang F, Sun Y, Li Y, Miao Y. Near-Infrared Frequency Upconversion Luminescence Bioimaging Based on Cyanine Nanomicelles. ACS Appl Polym Mater . [DOI: 10.1021/acsapm.2c00624] [Reference Citation Analysis]
|
14 |
Liu J, Wang L, Shen R, Zhao J, Qian Y. A novel heptamethine cyanine photosensitizer for FRET-amplified photodynamic therapy and two-photon imaging in A-549 cells. Spectrochim Acta A Mol Biomol Spectrosc 2022;274:121083. [PMID: 35248855 DOI: 10.1016/j.saa.2022.121083] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
15 |
Qiao W, Li Z. Recent Progress of Squaraine-Based Fluorescent Materials and Their Biomedical Applications. Symmetry 2022;14:966. [DOI: 10.3390/sym14050966] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
|
16 |
Savani S, Onbasli K, Gunduz H, Aydındogan E, Erkısa M, Muti A, Khan M, Sennaroglu A, Ulukaya E, Yagci Acar H, Kolemen S. Development of a cysteine responsive chlorinated hemicyanine for image-guided dual phototherapy. Bioorganic Chemistry 2022;122:105725. [DOI: 10.1016/j.bioorg.2022.105725] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
17 |
Xiong J, Wang P, Son S, Zhong C, Zhang F, Mao Z, Liu Z, Kim JS. Engineering a theranostic platform for synergistic hypoxia-responsive photodynamic therapy and chemotherapy. Matter 2022. [DOI: 10.1016/j.matt.2022.02.019] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
|
18 |
Lahiri J, Sandhu S, Levine BG, Dantus M. Human Serum Albumin Dimerization Enhances the S2 Emission of Bound Cyanine IR806. J Phys Chem Lett 2022;:1825-32. [PMID: 35171617 DOI: 10.1021/acs.jpclett.1c03735] [Reference Citation Analysis]
|
19 |
Yang Y, Fan Z, Dong Q, Sun W, Zhang X, Guan L, Wang L. Sustainable Approach to Methine-Substituted Heptamethine Cyanines from Bioderived Furfural and Their Phototherapy Potential. ACS Sustainable Chem Eng . [DOI: 10.1021/acssuschemeng.1c08048] [Reference Citation Analysis]
|
20 |
Górecka Ż, Grzelecki D, Paskal W, Choińska E, Gilewicz J, Wrzesień R, Macherzyński W, Tracz M, Budzińska-Wrzesień E, Bedyńska M, Kopka M, Jackowska-Tracz A, Świątek-Najwer E, Włodarski PK, Jaworowski J, Święszkowski W. Biodegradable Fiducial Markers for Bimodal Near-Infrared Fluorescence- and X-ray-Based Imaging. ACS Biomater Sci Eng 2022. [PMID: 35020357 DOI: 10.1021/acsbiomaterials.1c01259] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
21 |
Fu L, Huang Y, Hou J, Sun M, Wang L, Wang X, Chen L. A Raman/fluorescence dual-modal imaging guided synergistic photothermal and photodynamic therapy nanoplatform for precision cancer theranostics. J Mater Chem B. [DOI: 10.1039/d2tb01696f] [Reference Citation Analysis]
|
22 |
Sun L, Ouyang J, Zeng Z, Zeng C, Ma Y, Zeng F, Wu S. Targeted and activatable nanosystem for fluorescent and optoacoustic imaging of immune-mediated inflammatory diseases and therapy via inhibiting NF-κB/NLRP3 pathways. Bioact Mater 2022;10:79-92. [PMID: 34901531 DOI: 10.1016/j.bioactmat.2021.08.010] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
23 |
Wang D, Kuzma ML, Tan X, He TC, Dong C, Liu Z, Yang J. Phototherapy and optical waveguides for the treatment of infection. Adv Drug Deliv Rev 2021;179:114036. [PMID: 34740763 DOI: 10.1016/j.addr.2021.114036] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
|
24 |
Park MH, Jo G, Kim EJ, Hyun H. Tumor-Targeted ZW800-1 Analog for Enhanced Tumor Imaging and Photothermal Therapy. Pharmaceutics 2021;13:1648. [PMID: 34683940 DOI: 10.3390/pharmaceutics13101648] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
|
25 |
Park MH, Jo G, Lee BY, Kim EJ, Hyun H. Rapid Tumor Targeting of Renal-Clearable ZW800-1 Conjugate for Efficient Photothermal Cancer Therapy. Biomedicines 2021;9:1151. [PMID: 34572335 DOI: 10.3390/biomedicines9091151] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
26 |
Lu YJ, S AT, Chuang CC, Chen JP. Liposomal IR-780 as a Highly Stable Nanotheranostic Agent for Improved Photothermal/Photodynamic Therapy of Brain Tumors by Convection-Enhanced Delivery. Cancers (Basel) 2021;13:3690. [PMID: 34359590 DOI: 10.3390/cancers13153690] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
|
27 |
Moore C, Borum RM, Mantri Y, Xu M, Fajtová P, O'Donoghue AJ, Jokerst JV. Activatable Carbocyanine Dimers for Photoacoustic and Fluorescent Detection of Protease Activity. ACS Sens 2021;6:2356-65. [PMID: 34038103 DOI: 10.1021/acssensors.1c00518] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 9.5] [Reference Citation Analysis]
|
28 |
Bilici K, Cetin S, Celikbas E, Yagci Acar H, Kolemen S. Recent Advances in Cyanine-Based Phototherapy Agents. Front Chem 2021;9:707876. [PMID: 34249874 DOI: 10.3389/fchem.2021.707876] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 8.5] [Reference Citation Analysis]
|
29 |
Wang Q, Cai J, Niu X, Wang J, Liu J, Xie C, Huang W, Fan Q. Rational design of high performance nanotheranostics for NIR-II fluorescence/magnetic resonance imaging guided enhanced phototherapy. Biomater Sci 2021;9:3499-506. [PMID: 33949444 DOI: 10.1039/d1bm00172h] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
|
30 |
Usama SM, Burgess K. Hows and Whys of Tumor-Seeking Dyes. Acc Chem Res 2021;54:2121-31. [PMID: 33877807 DOI: 10.1021/acs.accounts.0c00733] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
|
31 |
Zheng X, Jin Y, Liu X, Liu T, Wang W, Yu H. Photoactivatable nanogenerators of reactive species for cancer therapy. Bioact Mater 2021;6:4301-18. [PMID: 33997507 DOI: 10.1016/j.bioactmat.2021.04.030] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
|
32 |
Zhang X, Li X, Sun S, Wang P, Ma X, Hou R, Liang X. Anti-Tumor Metastasis via Platelet Inhibitor Combined with Photothermal Therapy under Activatable Fluorescence/Magnetic Resonance Bimodal Imaging Guidance. ACS Appl Mater Interfaces 2021;13:19679-94. [PMID: 33876926 DOI: 10.1021/acsami.1c02302] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
33 |
Liu R, Xu F, Wang L, Liu M, Cao X, Shi X, Guo R. Polydopamine-Coated Laponite Nanoplatforms for Photoacoustic Imaging-Guided Chemo-Phototherapy of Breast Cancer. Nanomaterials (Basel) 2021;11:394. [PMID: 33557046 DOI: 10.3390/nano11020394] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
|
34 |
Cai Y, Tang C, Wei Z, Song C, Zou H, Zhang G, Ran J, Han W. Fused-Ring Small-Molecule-Based Bathochromic Nano-agents for Tumor NIR-II Fluorescence Imaging-Guided Photothermal/Photodynamic Therapy. ACS Appl Bio Mater 2021;4:1942-9. [DOI: 10.1021/acsabm.0c01576] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
|
35 |
G Keller S, Kamiya M, Urano Y. Recent Progress in Small Spirocyclic, Xanthene-Based Fluorescent Probes. Molecules 2020;25:E5964. [PMID: 33339370 DOI: 10.3390/molecules25245964] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
|