BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sakamoto K, Shinohara T, Adachi Y, Asami T, Ohtaki T. A novel LRP1-binding peptide L57 that crosses the blood brain barrier. Biochem Biophys Rep 2017;12:135-9. [PMID: 29090274 DOI: 10.1016/j.bbrep.2017.07.003] [Cited by in Crossref: 10] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
Number Citing Articles
1 Israel LL, Galstyan A, Cox A, Shatalova ES, Sun T, Rashid MH, Grodzinski Z, Chiechi A, Fuchs DT, Patil R, Koronyo-Hamaoui M, Black KL, Ljubimova JY, Holler E. Signature Effects of Vector-Guided Systemic Nano Bioconjugate Delivery Across Blood-Brain Barrier of Normal, Alzheimer's, and Tumor Mouse Models. ACS Nano 2022. [PMID: 35961653 DOI: 10.1021/acsnano.1c10034] [Reference Citation Analysis]
2 Pardridge WM. A Historical Review of Brain Drug Delivery. Pharmaceutics 2022;14:1283. [PMID: 35745855 DOI: 10.3390/pharmaceutics14061283] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
3 Anami Y, Xiong W, Yamaguchi A, Yamazaki CM, Zhang N, An Z, Tsuchikama K. Homogeneous antibody-angiopep 2 conjugates for effective brain targeting. RSC Adv 2022;12:3359-64. [PMID: 35425350 DOI: 10.1039/d1ra08131d] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
4 Song Y, Hu C, Fu Y, Gao H. Modulating the blood–brain tumor barrier for improving drug delivery efficiency and efficacy. VIEW 2022;3:20200129. [DOI: 10.1002/viw.20200129] [Reference Citation Analysis]
5 Yan L, Moriarty RA, Stroka KM. Recent progress and new challenges in modeling of human pluripotent stem cell-derived blood-brain barrier. Theranostics 2021;11:10148-70. [PMID: 34815809 DOI: 10.7150/thno.63195] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
6 Hurd MD, Goel I, Sakai Y, Teramura Y. Current status of ischemic stroke treatment: From thrombolysis to potential regenerative medicine. Regen Ther 2021;18:408-17. [PMID: 34722837 DOI: 10.1016/j.reth.2021.09.009] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
7 Parrasia S, Rossa A, Varanita T, Checchetto V, De Lorenzi R, Zoratti M, Paradisi C, Ruzza P, Mattarei A, Szabò I, Biasutto L. An Angiopep2-PAPTP Construct Overcomes the Blood-Brain Barrier. New Perspectives against Brain Tumors. Pharmaceuticals (Basel) 2021;14:129. [PMID: 33562146 DOI: 10.3390/ph14020129] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Zhou X, Smith QR, Liu X. Brain penetrating peptides and peptide-drug conjugates to overcome the blood-brain barrier and target CNS diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;13:e1695. [PMID: 33470550 DOI: 10.1002/wnan.1695] [Cited by in Crossref: 3] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
9 Pardridge WM. Brain Delivery of Nanomedicines: Trojan Horse Liposomes for Plasmid DNA Gene Therapy of the Brain. Front Med Technol 2020;2:602236. [PMID: 35047884 DOI: 10.3389/fmedt.2020.602236] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
10 Rodrigues JP, Prajapati N, DeCoster MA, Poh S, Murray TA. Efficient LRP1-Mediated Uptake and Low Cytotoxicity of Peptide L57 In Vitro Shows Its Promise as CNS Drug Delivery Vector. J Pharm Sci 2021;110:824-32. [PMID: 33065129 DOI: 10.1016/j.xphs.2020.09.019] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
11 Duro-Castano A, Moreira Leite D, Forth J, Deng Y, Matias D, Noble Jesus C, Battaglia G. Designing peptide nanoparticles for efficient brain delivery. Adv Drug Deliv Rev 2020;160:52-77. [PMID: 33031897 DOI: 10.1016/j.addr.2020.10.001] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 7.5] [Reference Citation Analysis]
12 Pucci C, De Pasquale D, Marino A, Martinelli C, Lauciello S, Ciofani G. Hybrid Magnetic Nanovectors Promote Selective Glioblastoma Cell Death through a Combined Effect of Lysosomal Membrane Permeabilization and Chemotherapy. ACS Appl Mater Interfaces 2020;12:29037-55. [DOI: 10.1021/acsami.0c05556] [Cited by in Crossref: 12] [Cited by in F6Publishing: 17] [Article Influence: 6.0] [Reference Citation Analysis]
13 Verma MK, Shakya S. LRP-1 Mediated Endocytosis of EFE Across the Blood–Brain Barrier; Protein–Protein Interaction and Molecular Dynamics Analysis. Int J Pept Res Ther 2021;27:71-81. [DOI: 10.1007/s10989-020-10065-z] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
14 Crook ZR, Girard E, Sevilla GP, Merrill M, Friend D, Rupert PB, Pakiam F, Nguyen E, Yin C, Ruff RO, Hopping G, Strand AD, Finton KAK, Coxon M, Mhyre AJ, Strong RK, Olson JM. A TfR-Binding Cystine-Dense Peptide Promotes Blood-Brain Barrier Penetration of Bioactive Molecules. J Mol Biol 2020;432:3989-4009. [PMID: 32304700 DOI: 10.1016/j.jmb.2020.04.002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
15 Chen L, Zeng D, Xu N, Li C, Zhang W, Zhu X, Gao Y, Chen PR, Lin J. Blood–Brain Barrier- and Blood–Brain Tumor Barrier-Penetrating Peptide-Derived Targeted Therapeutics for Glioma and Malignant Tumor Brain Metastases. ACS Appl Mater Interfaces 2019;11:41889-97. [DOI: 10.1021/acsami.9b14046] [Cited by in Crossref: 15] [Cited by in F6Publishing: 29] [Article Influence: 5.0] [Reference Citation Analysis]
16 Actis Dato V, Chiabrando GA. The Role of Low-Density Lipoprotein Receptor-Related Protein 1 in Lipid Metabolism, Glucose Homeostasis and Inflammation. Int J Mol Sci 2018;19:E1780. [PMID: 29914093 DOI: 10.3390/ijms19061780] [Cited by in Crossref: 38] [Cited by in F6Publishing: 42] [Article Influence: 9.5] [Reference Citation Analysis]