BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Candido S, Abrams SL, Steelman LS, Lertpiriyapong K, Fitzgerald TL, Martelli AM, Cocco L, Montalto G, Cervello M, Polesel J. Roles of NGAL and MMP-9 in the tumor microenvironment and sensitivity to targeted therapy. Biochim Biophys Acta. 2016;1863:438-448. [PMID: 26278055 DOI: 10.1016/j.bbamcr.2015.08.010] [Cited by in Crossref: 50] [Cited by in F6Publishing: 50] [Article Influence: 7.1] [Reference Citation Analysis]
Number Citing Articles
1 Rahimi S, Roushandeh AM, Ebrahimi A, Samadani AA, Kuwahara Y, Roudkenar MH. CRISPR/Cas9-mediated knockout of Lcn2 effectively enhanced CDDP-induced apoptosis and reduced cell migration capacity of PC3 cells. Life Sciences 2019;231:116586. [DOI: 10.1016/j.lfs.2019.116586] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
2 Chuang HY, Jeng WY, Wang E, Jiang ST, Hsu CM, Hsieh-Li HM, Chiou YY. Secreted Neutrophil Gelatinase-Associated Lipocalin Shows Stronger Ability to Inhibit Cyst Enlargement of ADPKD Cells Compared with Nonsecreted Form. Cells 2022;11:483. [PMID: 35159293 DOI: 10.3390/cells11030483] [Reference Citation Analysis]
3 Wang Y, Xu X, Song C, Wu J, Hu X, Zhu H, Zhang X, Wang Y, Gui L, Zhao M, Peng S. ATIQCTPC targeting MMP-9: a key step to slowing primary tumor growth and inhibiting metastasis of lewis lung carcinoma in vivo. Oncotarget 2017;8:63881-9. [PMID: 28969037 DOI: 10.18632/oncotarget.19172] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
4 Chappell WH, Candido S, Abrams SL, Russo S, Ove R, Martelli AM, Cocco L, Ramazzotti G, Cervello M, Montalto G, Steelman LS, Leng X, Arlinghaus RB, Libra M, Mccubrey JA. Roles of p53, NF-κB and the androgen receptor in controlling NGAL expression in prostate cancer cell lines. Advances in Biological Regulation 2018;69:43-62. [DOI: 10.1016/j.jbior.2018.05.002] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
5 D'Amico F, Candido S, Libra M. Interaction between matrix metalloproteinase-9 (MMP-9) and neutrophil gelatinase-associated lipocalin (NGAL): A recent evolutionary event in primates. Dev Comp Immunol 2021;116:103933. [PMID: 33245981 DOI: 10.1016/j.dci.2020.103933] [Reference Citation Analysis]
6 Jiang Z, Chi J, Li H, Wang Y, Liu W, Han B. Effect of chitosan oligosaccharide-conjugated selenium on improving immune function and blocking gastric cancer growth. Eur J Pharmacol 2021;891:173673. [PMID: 33098836 DOI: 10.1016/j.ejphar.2020.173673] [Reference Citation Analysis]
7 Wu C, Wang Z, Wang X, Zou J, Wu Z, Liu J, Zhang W. Morphology/Interstitial Fluid Pressure-Tunable Nanopomegranate Designed by Alteration of Membrane Fluidity under Tumor Enzyme and PEGylation. Mol Pharm 2021;18:2039-52. [PMID: 33769816 DOI: 10.1021/acs.molpharmaceut.1c00036] [Reference Citation Analysis]
8 Hong X, Yan H, Xie F, Wang K, Wang Q, Huang H, Yang K, Huang S, Zhao T, Wang J, Chen Y, Liu K, Lan X. Development of a novel ssDNA aptamer targeting neutrophil gelatinase-associated lipocalin and its application in clinical trials. J Transl Med 2019;17:204. [PMID: 31215436 DOI: 10.1186/s12967-019-1955-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
9 Zhen H, Li G, Zhao P, Zhang Y, Wang J, Yu J, Cao B. Raltitrexed Enhances the Antitumor Effect of Apatinib in Human Esophageal Squamous Carcinoma Cells via Akt and Erk Pathways. Onco Targets Ther 2020;13:12325-39. [PMID: 33293826 DOI: 10.2147/OTT.S276125] [Reference Citation Analysis]
10 Zanoni M, Pignatta S, Arienti C, Bonafè M, Tesei A. Anticancer drug discovery using multicellular tumor spheroid models. Expert Opin Drug Discov 2019;14:289-301. [PMID: 30689452 DOI: 10.1080/17460441.2019.1570129] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 10.7] [Reference Citation Analysis]
11 Wang N, Meng X, Liu Y, Chen Y, Liang Q. LPS promote Osteosarcoma invasion and migration through TLR4/HOTAIR. Gene 2019;680:1-8. [PMID: 30240881 DOI: 10.1016/j.gene.2018.09.031] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]
12 Yang JJ, Wang YH, Yin J, Leng H, Shen SD. Polysaccharides from Ulva prolifera O.F. Müller inhibit cell proliferation via activating MAPK signaling in A549 and H1650 cells. Food Funct 2021;12:6915-24. [PMID: 34132294 DOI: 10.1039/d1fo00294e] [Reference Citation Analysis]
13 Zhang Y, Wang G. MicroRNA-183 inhibits A375 human melanoma cell migration and invasion by targeting Ezrin and MMP-9. Oncol Lett 2019;17:548-54. [PMID: 30655800 DOI: 10.3892/ol.2018.9603] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
14 Bahrun U, Wildana W, Rahmawati H, Kurniawan LB, Hamdani W. Lipocalin 2 could predict circulating MMP9 levels in patients with breast cancer. Breast Dis 2021;40:S115-7. [PMID: 34057126 DOI: 10.3233/BD-219017] [Reference Citation Analysis]
15 Ma X, Pan X, Wei Y, Tan B, Yang L, Ren H, Qian M, Du B. Chemotherapy-induced uridine diphosphate release promotes breast cancer metastasis through P2Y6 activation. Oncotarget 2016;7:29036-50. [PMID: 27074554 DOI: 10.18632/oncotarget.8664] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
16 Lu KH, Yang JS, Hsieh YH, Chu HJ, Chou CH, Lu EW, Lin CW, Yang SF. Lipocalin-2 Inhibits Osteosarcoma Cell Metastasis by Suppressing MET Expression via the MEK-ERK Pathway. Cancers (Basel) 2021;13:3181. [PMID: 34202288 DOI: 10.3390/cancers13133181] [Reference Citation Analysis]
17 Ondee T, Gillen J, Visitchanakun P, Somparn P, Issara-Amphorn J, Dang Phi C, Chancharoenthana W, Gurusamy D, Nita-Lazar A, Leelahavanichkul A. Lipocalin-2 (Lcn-2) Attenuates Polymicrobial Sepsis with LPS Preconditioning (LPS Tolerance) in FcGRIIb Deficient Lupus Mice. Cells 2019;8:E1064. [PMID: 31514375 DOI: 10.3390/cells8091064] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
18 Kang YT, Hsu WC, Wu CH, Hsin IL, Wu PR, Yeh KT, Ko JL. Metformin alleviates nickel-induced autophagy and apoptosis via inhibition of hexokinase-2, activating lipocalin-2, in human bronchial epithelial cells. Oncotarget 2017;8:105536-52. [PMID: 29285270 DOI: 10.18632/oncotarget.22317] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
19 Xu WX, Zhang J, Hua YT, Yang SJ, Wang DD, Tang JH. An Integrative Pan-Cancer Analysis Revealing LCN2 as an Oncogenic Immune Protein in Tumor Microenvironment. Front Oncol 2020;10:605097. [PMID: 33425761 DOI: 10.3389/fonc.2020.605097] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
20 Gao Y, Wang B, Cao J, Feng S, Liu B. Elevated Urinary Neutrophil Gelatinase-Associated Lipocalin Is a Biomarker for Lupus Nephritis: A Systematic Review and Meta-Analysis. Biomed Res Int 2020;2020:2768326. [PMID: 32685458 DOI: 10.1155/2020/2768326] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
21 Wang Y, Yu L, Ding J, Chen Y. Iron Metabolism in Cancer. Int J Mol Sci. 2018;20:pii: E95. [PMID: 30591630 DOI: 10.3390/ijms20010095] [Cited by in Crossref: 62] [Cited by in F6Publishing: 61] [Article Influence: 15.5] [Reference Citation Analysis]
22 Wu J, Wang J, Su Q, Ding W, Li T, Yu J, Cao B. Traditional Chinese medicine Astragalus polysaccharide enhanced antitumor effects of the angiogenesis inhibitor apatinib in pancreatic cancer cells on proliferation, invasiveness, and apoptosis. Onco Targets Ther 2018;11:2685-98. [PMID: 29785118 DOI: 10.2147/OTT.S157129] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
23 Perego S, Sansoni V, Ziemann E, Lombardi G. Another Weapon against Cancer and Metastasis: Physical-Activity-Dependent Effects on Adiposity and Adipokines. Int J Mol Sci 2021;22:2005. [PMID: 33670492 DOI: 10.3390/ijms22042005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
24 Jaberi SA, Cohen A, D'Souza C, Abdulrazzaq YM, Ojha S, Bastaki S, Adeghate EA. Lipocalin-2: Structure, function, distribution and role in metabolic disorders. Biomed Pharmacother 2021;142:112002. [PMID: 34463264 DOI: 10.1016/j.biopha.2021.112002] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Wu J, Yu J, Wang J, Zhang C, Shang K, Yao X, Cao B. Astragalus polysaccharide enhanced antitumor effects of Apatinib in gastric cancer AGS cells by inhibiting AKT signalling pathway. Biomedicine & Pharmacotherapy 2018;100:176-83. [DOI: 10.1016/j.biopha.2018.01.140] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 4.5] [Reference Citation Analysis]
26 Yang Q, Yin Y, Pan Y, Ye X, Xu B, Yu W, Zeng H, Sun H. Anti-metastatic activity of Agrocybe aegerita galectin (AAL) in a mouse model of breast cancer lung metastasis. Journal of Functional Foods 2018;41:163-70. [DOI: 10.1016/j.jff.2017.12.058] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
27 Deng X, Wang J, Wu Q, Pan L, Mou T, Du C. Lipocalin2 as a useful biomarker for risk stratification in patients with acute cholangitis: A single-center prospective and observational study. Clinica Chimica Acta 2022. [DOI: 10.1016/j.cca.2022.05.022] [Reference Citation Analysis]
28 Zhao Y, Xia Q, Liu Y, Bai W, Yao Y, Ding J, Lin L, Xu Z, Cai Z, Wang S, Li E, Xu H, Wu B, Xu L, Du Z. TCF7L2 and EGR1 synergistic activation of transcription of LCN2 via an ERK1/2-dependent pathway in esophageal squamous cell carcinoma cells. Cell Signal 2019;55:8-16. [PMID: 30557604 DOI: 10.1016/j.cellsig.2018.12.007] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
29 Rahimi S, Roushandeh AM, Ahmadzadeh E, Jahanian-Najafabadi A, Roudkenar MH. Implication and role of neutrophil gelatinase-associated lipocalin in cancer: lipocalin-2 as a potential novel emerging comprehensive therapeutic target for a variety of cancer types. Mol Biol Rep 2020;47:2327-46. [PMID: 31970626 DOI: 10.1007/s11033-020-05261-5] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
30 Che K, Han W, Zhang M, Niu H. Role of neutrophil gelatinase-associated lipocalin in renal cell carcinoma. Oncol Lett 2021;21:148. [PMID: 33552266 DOI: 10.3892/ol.2020.12409] [Reference Citation Analysis]
31 Wang X, Li X, Dai X, Zhang X, Zhang J, Xu T, Lan Q. Coaxial extrusion bioprinted shell-core hydrogel microfibers mimic glioma microenvironment and enhance the drug resistance of cancer cells. Colloids Surf B Biointerfaces 2018;171:291-9. [PMID: 30048904 DOI: 10.1016/j.colsurfb.2018.07.042] [Cited by in Crossref: 37] [Cited by in F6Publishing: 33] [Article Influence: 9.3] [Reference Citation Analysis]
32 Pelosi P, Iovinella I, Zhu J, Wang G, Dani FR. Beyond chemoreception: diverse tasks of soluble olfactory proteins in insects: Soluble olfactory proteins in insects. Biol Rev 2018;93:184-200. [DOI: 10.1111/brv.12339] [Cited by in Crossref: 196] [Cited by in F6Publishing: 160] [Article Influence: 39.2] [Reference Citation Analysis]
33 Candido S, Di Maso M, Serraino D, Mccubrey JA, Bortolus R, Zanin M, Battiston M, Salemi R, Libra M, Polesel J. Diagnostic value of neutrophil gelatinase-associated lipocalin/matrix metalloproteinase-9 pathway in transitional cell carcinoma of the bladder. Tumor Biol 2016;37:9855-63. [DOI: 10.1007/s13277-016-4872-x] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
34 Tsakogiannis D, Kalogera E, Zagouri F, Zografos E, Balalis D, Bletsa G. Determination of FABP4, RBP4 and the MMP-9/NGAL complex in the serum of women with breast cancer. Oncol Lett 2021;21:85. [PMID: 33376518 DOI: 10.3892/ol.2020.12346] [Reference Citation Analysis]
35 Tian Z, Wang Z, Chen Y, Qu S, Liu C, Chen F, Ma L, Zhu J. Bioinformatics Analysis of Prognostic Tumor Microenvironment-Related Genes in the Tumor Microenvironment of Hepatocellular Carcinoma. Med Sci Monit 2020;26:e922159. [PMID: 32231177 DOI: 10.12659/MSM.922159] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
36 Yang HJ, Guo Z, Yang YT, Jiang JH, Qi YP, Li JJ, Li LQ, Xiang BD. Blood neutrophil-lymphocyte ratio predicts survival after hepatectomy for hepatocellular carcinoma: A propensity score-based analysis. World J Gastroenterol 2016; 22(21): 5088-5095 [PMID: 27275101 DOI: 10.3748/wjg.v22.i21.5088] [Cited by in CrossRef: 29] [Cited by in F6Publishing: 24] [Article Influence: 4.8] [Reference Citation Analysis]
37 Utkusavas A, Gurel Gurevin E, Yilmazer N, Uvez A, Oztay F, Bulut H, Ustunova S, Esener OBB, Sonmez K, Erol Kutucu D, Meral I, Dimas K, Armutak EI. Effects of combined administration of doxorubicin and chloroquine on lung pathology in mice with solid Ehrlich ascites carcinoma. Biotech Histochem 2022;:1-12. [PMID: 35240890 DOI: 10.1080/10520295.2022.2036369] [Reference Citation Analysis]
38 Li YJ, Liu HT, Xue CJ, Xing XQ, Dong ST, Wang LS, Ding CY, Meng L, Dong ZJ. The synergistic anti-tumor effect of schisandrin B and apatinib. J Asian Nat Prod Res 2020;22:839-49. [PMID: 31364407 DOI: 10.1080/10286020.2019.1645131] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
39 Chiang KC, Yeh TS, Wu RC, Pang JS, Cheng CT, Wang SY, Juang HH, Yeh CN. Lipocalin 2 (LCN2) is a promising target for cholangiocarcinoma treatment and bile LCN2 level is a potential cholangiocarcinoma diagnostic marker. Sci Rep 2016;6:36138. [PMID: 27782193 DOI: 10.1038/srep36138] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 4.2] [Reference Citation Analysis]
40 Roli L, Pecoraro V, Trenti T. Can NGAL be employed as prognostic and diagnostic biomarker in human cancers? Int J Biol Markers. 2017;32:e53-e61. [PMID: 28106227 DOI: 10.5301/jbm.5000245] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 3.6] [Reference Citation Analysis]
41 Chen S, Zhang Y, Zhan Q. TMT-Based proteomics analysis of LPS-induced acute lung injury. Exp Lung Res 2021;47:402-15. [PMID: 34590969 DOI: 10.1080/01902148.2021.1981494] [Reference Citation Analysis]
42 Zhang MX, Wang L, Zeng L, Tu ZW. LCN2 Is a Potential Biomarker for Radioresistance and Recurrence in Nasopharyngeal Carcinoma. Front Oncol 2020;10:605777. [PMID: 33604288 DOI: 10.3389/fonc.2020.605777] [Reference Citation Analysis]
43 Santiago-Sánchez GS, Pita-Grisanti V, Quiñones-Díaz B, Gumpper K, Cruz-Monserrate Z, Vivas-Mejía PE. Biological Functions and Therapeutic Potential of Lipocalin 2 in Cancer. Int J Mol Sci 2020;21:E4365. [PMID: 32575507 DOI: 10.3390/ijms21124365] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
44 Che J, Shen WZ, Deng Y, Dai YH, Liao YD, Yuan XL, Zhang P. Effects of lentivirus-mediated silencing of Periostin on tumor microenvironment and bone metastasis via the integrin-signaling pathway in lung cancer. Life Sci 2017;182:10-21. [PMID: 28601389 DOI: 10.1016/j.lfs.2017.05.030] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
45 Falzone L, Candido S, Salemi R, Basile MS, Scalisi A, McCubrey JA, Torino F, Signorelli SS, Montella M, Libra M. Computational identification of microRNAs associated to both epithelial to mesenchymal transition and NGAL/MMP-9 pathways in bladder cancer. Oncotarget 2016;7:72758-66. [PMID: 27602581 DOI: 10.18632/oncotarget.11805] [Cited by in Crossref: 52] [Cited by in F6Publishing: 54] [Article Influence: 13.0] [Reference Citation Analysis]
46 Villodre ES, Hu X, Larson R, Finetti P, Gomez K, Balema W, Stecklein SR, Santiago-Sanchez G, Krishnamurthy S, Song J, Su X, Ueno NT, Tripathy D, Van Laere S, Bertucci F, Vivas-Mejía P, Woodward WA, Debeb BG. Lipocalin 2 promotes inflammatory breast cancer tumorigenesis and skin invasion. Mol Oncol 2021. [PMID: 34342930 DOI: 10.1002/1878-0261.13074] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
47 Santiago-Sánchez GS, Noriega-Rivera R, Hernández-O'Farrill E, Valiyeva F, Quiñones-Diaz B, Villodre ES, Debeb BG, Rosado-Albacarys A, Vivas-Mejía PE. Targeting Lipocalin-2 in Inflammatory Breast Cancer Cells with Small Interference RNA and Small Molecule Inhibitors. Int J Mol Sci 2021;22:8581. [PMID: 34445288 DOI: 10.3390/ijms22168581] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
48 Kot K, Kupnicka P, Witulska O, Czepan A, Łanocha-Arendarczyk NA, Łanocha AA, Kosik-Bogacka DI. Potential Biomarkers in Diagnosis of Renal Acanthamoebiasis. Int J Mol Sci 2021;22:6583. [PMID: 34205319 DOI: 10.3390/ijms22126583] [Reference Citation Analysis]
49 Guarneri C, Bevelacqua V, Polesel J, Falzone L, Cannavò PS, Spandidos DA, Malaponte G, Libra M. NF‑κB inhibition is associated with OPN/MMP‑9 downregulation in cutaneous melanoma. Oncol Rep 2017;37:737-46. [PMID: 28075446 DOI: 10.3892/or.2017.5362] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 7.0] [Reference Citation Analysis]
50 Li J, Liu N, Tang L, Yan B, Chen X, Zhang J, Peng C. The relationship between TRAF6 and tumors. Cancer Cell Int 2020;20:429. [PMID: 32905356 DOI: 10.1186/s12935-020-01517-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
51 Meng L, Wang M, Du Z, Fang Z, Wu B, Wu J, Xie W, Shen J, Zhu T, Xu X, Liao L, Xu L, Li E, Lan B. Cell Signaling Pathway in 12-O-Tetradecanoylphorbol-13-acetate-Induced LCN2 Gene Transcription in Esophageal Squamous Cell Carcinoma. Biomed Res Int 2017;2017:9592501. [PMID: 29098164 DOI: 10.1155/2017/9592501] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
52 Huang H. Matrix Metalloproteinase-9 (MMP-9) as a Cancer Biomarker and MMP-9 Biosensors: Recent Advances. Sensors (Basel) 2018;18:E3249. [PMID: 30262739 DOI: 10.3390/s18103249] [Cited by in Crossref: 139] [Cited by in F6Publishing: 146] [Article Influence: 34.8] [Reference Citation Analysis]
53 Langhans SA. Three-Dimensional in Vitro Cell Culture Models in Drug Discovery and Drug Repositioning. Front Pharmacol. 2018;9:6. [PMID: 29410625 DOI: 10.3389/fphar.2018.00006] [Cited by in Crossref: 408] [Cited by in F6Publishing: 363] [Article Influence: 102.0] [Reference Citation Analysis]