BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Tagashira H, Shinoda Y, Shioda N, Fukunaga K. Methyl pyruvate rescues mitochondrial damage caused by SIGMAR1 mutation related to amyotrophic lateral sclerosis. Biochim Biophys Acta 2014;1840:3320-34. [PMID: 25175561 DOI: 10.1016/j.bbagen.2014.08.012] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 4.6] [Reference Citation Analysis]
Number Citing Articles
1 Aishwarya R, Abdullah CS, Morshed M, Remex NS, Bhuiyan MS. Sigmar1's Molecular, Cellular, and Biological Functions in Regulating Cellular Pathophysiology. Front Physiol 2021;12:705575. [PMID: 34305655 DOI: 10.3389/fphys.2021.705575] [Reference Citation Analysis]
2 Mavlyutov TA, Guo LW, Epstein ML, Ruoho AE. Role of the Sigma-1 receptor in Amyotrophic Lateral Sclerosis (ALS). J Pharmacol Sci 2015;127:10-6. [PMID: 25704013 DOI: 10.1016/j.jphs.2014.12.013] [Cited by in Crossref: 51] [Cited by in F6Publishing: 51] [Article Influence: 7.3] [Reference Citation Analysis]
3 Abraham MJ, Fleming KL, Raymond S, Wong AYC, Bergeron R. The sigma-1 receptor behaves as an atypical auxiliary subunit to modulate the functional characteristics of Kv1.2 channels expressed in HEK293 cells. Physiol Rep 2019;7:e14147. [PMID: 31222975 DOI: 10.14814/phy2.14147] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
4 Harley J, Clarke BE, Patani R. The Interplay of RNA Binding Proteins, Oxidative Stress and Mitochondrial Dysfunction in ALS. Antioxidants (Basel) 2021;10:552. [PMID: 33918215 DOI: 10.3390/antiox10040552] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
5 Smith EF, Shaw PJ, De Vos KJ. The role of mitochondria in amyotrophic lateral sclerosis. Neurosci Lett 2019;710:132933. [PMID: 28669745 DOI: 10.1016/j.neulet.2017.06.052] [Cited by in Crossref: 143] [Cited by in F6Publishing: 113] [Article Influence: 28.6] [Reference Citation Analysis]
6 Shaw JJP, Boyer TL, Venner E, Beck PJ, Slamowitz T, Caste T, Hickman A, Raymond MH, Costa-Pinheiro P, Jameson MJ, Fox TE, Kester M. Inhibition of Lysosomal Function Mitigates Protective Mitophagy and Augments Ceramide Nanoliposome-Induced Cell Death in Head and Neck Squamous Cell Carcinoma. Mol Cancer Ther 2020;19:2621-33. [PMID: 33087509 DOI: 10.1158/1535-7163.MCT-20-0182] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
7 Tsai SY, Pokrass MJ, Klauer NR, De Credico NE, Su TP. Sigma-1 receptor chaperones in neurodegenerative and psychiatric disorders. Expert Opin Ther Targets 2014;18:1461-76. [PMID: 25331742 DOI: 10.1517/14728222.2014.972939] [Cited by in Crossref: 15] [Cited by in F6Publishing: 26] [Article Influence: 1.9] [Reference Citation Analysis]
8 Jia J, Cheng J, Wang C, Zhen X. Sigma-1 Receptor-Modulated Neuroinflammation in Neurological Diseases. Front Cell Neurosci 2018;12:314. [PMID: 30294261 DOI: 10.3389/fncel.2018.00314] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
9 Watanabe S, Ilieva H, Tamada H, Nomura H, Komine O, Endo F, Jin S, Mancias P, Kiyama H, Yamanaka K. Mitochondria-associated membrane collapse is a common pathomechanism in SIGMAR1- and SOD1-linked ALS. EMBO Mol Med 2016;8:1421-37. [PMID: 27821430 DOI: 10.15252/emmm.201606403] [Cited by in Crossref: 113] [Cited by in F6Publishing: 113] [Article Influence: 18.8] [Reference Citation Analysis]
10 Chondrogianni N, Voutetakis K, Kapetanou M, Delitsikou V, Papaevgeniou N, Sakellari M, Lefaki M, Filippopoulou K, Gonos ES. Proteasome activation: An innovative promising approach for delaying aging and retarding age-related diseases. Ageing Res Rev 2015;23:37-55. [PMID: 25540941 DOI: 10.1016/j.arr.2014.12.003] [Cited by in Crossref: 76] [Cited by in F6Publishing: 66] [Article Influence: 10.9] [Reference Citation Analysis]
11 Dreser A, Vollrath JT, Sechi A, Johann S, Roos A, Yamoah A, Katona I, Bohlega S, Wiemuth D, Tian Y, Schmidt A, Vervoorts J, Dohmen M, Beyer C, Anink J, Aronica E, Troost D, Weis J, Goswami A. The ALS-linked E102Q mutation in Sigma receptor-1 leads to ER stress-mediated defects in protein homeostasis and dysregulation of RNA-binding proteins. Cell Death Differ 2017;24:1655-71. [PMID: 28622300 DOI: 10.1038/cdd.2017.88] [Cited by in Crossref: 46] [Cited by in F6Publishing: 46] [Article Influence: 9.2] [Reference Citation Analysis]
12 Yang S, Wu S, Fifita J, McCann E, Fat SCM, Galper J, Freckleton S, Zhang KY, Blair IP. Theme 3 In vitro experimental models. Amyotroph Lateral Scler Frontotemporal Degener 2019;20:135-59. [PMID: 31702460 DOI: 10.1080/21678421.2019.1646991] [Reference Citation Analysis]
13 Mukhopadhyay S, Das DN, Panda PK, Sinha N, Naik PP, Bissoyi A, Pramanik K, Bhutia SK. Autophagy protein Ulk1 promotes mitochondrial apoptosis through reactive oxygen species. Free Radical Biology and Medicine 2015;89:311-21. [DOI: 10.1016/j.freeradbiomed.2015.07.159] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 3.9] [Reference Citation Analysis]
14 Noyer L, Lemonnier L, Mariot P, Gkika D. Partners in Crime: Towards New Ways of Targeting Calcium Channels. Int J Mol Sci 2019;20:E6344. [PMID: 31888223 DOI: 10.3390/ijms20246344] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
15 HD iPSC Consortium. Bioenergetic deficits in Huntington's disease iPSC-derived neural cells and rescue with glycolytic metabolites. Hum Mol Genet 2020;29:1757-71. [PMID: 30768179 DOI: 10.1093/hmg/ddy430] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 10.0] [Reference Citation Analysis]
16 Abdullah CS, Alam S, Aishwarya R, Miriyala S, Panchatcharam M, Bhuiyan MAN, Peretik JM, Orr AW, James J, Osinska H, Robbins J, Lorenz JN, Bhuiyan MS. Cardiac Dysfunction in the Sigma 1 Receptor Knockout Mouse Associated With Impaired Mitochondrial Dynamics and Bioenergetics. J Am Heart Assoc 2018;7:e009775. [PMID: 30371279 DOI: 10.1161/JAHA.118.009775] [Cited by in Crossref: 27] [Cited by in F6Publishing: 17] [Article Influence: 9.0] [Reference Citation Analysis]
17 Hayashi T. Conversion of psychological stress into cellular stress response: Roles of the sigma-1 receptor in the process: Psychological stress and cellular stress. Psychiatry Clin Neurosci 2015;69:179-91. [DOI: 10.1111/pcn.12262] [Cited by in Crossref: 50] [Cited by in F6Publishing: 42] [Article Influence: 7.1] [Reference Citation Analysis]
18 Sidibé H, Dubinski A, Vande Velde C. The multi-functional RNA-binding protein G3BP1 and its potential implication in neurodegenerative disease. J Neurochem 2021;157:944-62. [PMID: 33349931 DOI: 10.1111/jnc.15280] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
19 Wong AYC, Hristova E, Ahlskog N, Tasse L, Ngsee JK, Chudalayandi P, Bergeron R. Aberrant Subcellular Dynamics of Sigma-1 Receptor Mutants Underlying Neuromuscular Diseases. Mol Pharmacol 2016;90:238-53. [DOI: 10.1124/mol.116.104018] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 3.5] [Reference Citation Analysis]
20 Tadić V, Malci A, Goldhammer N, Stubendorff B, Sengupta S, Prell T, Keiner S, Liu J, Guenther M, Frahm C, Witte OW, Grosskreutz J. Sigma 1 receptor activation modifies intracellular calcium exchange in the G93AhSOD1 ALS model. Neuroscience 2017;359:105-18. [PMID: 28723387 DOI: 10.1016/j.neuroscience.2017.07.012] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.4] [Reference Citation Analysis]
21 Schmidt HR, Zheng S, Gurpinar E, Koehl A, Manglik A, Kruse AC. Crystal structure of the human σ1 receptor. Nature 2016;532:527-30. [PMID: 27042935 DOI: 10.1038/nature17391] [Cited by in Crossref: 263] [Cited by in F6Publishing: 250] [Article Influence: 43.8] [Reference Citation Analysis]
22 Kraskovskaya NA, Bezprozvanny IB. Normalization of Calcium Balance in Striatal Neurons in Huntington's Disease: Sigma 1 Receptor as a Potential Target for Therapy. Biochemistry (Mosc) 2021;86:471-9. [PMID: 33941067 DOI: 10.1134/S0006297921040076] [Reference Citation Analysis]
23 Ververis A, Dajani R, Koutsou P, Aloqaily A, Nelson-Williams C, Loring E, Arafat A, Mubaidin AF, Horany K, Bader MB, Al-Baho Y, Ali B, Muhtaseb A, DeSpenza T Jr, Al-Qudah AA, Middleton LT, Zamba-Papanicolaou E, Lifton R, Christodoulou K. Distal hereditary motor neuronopathy of the Jerash type is caused by a novel SIGMAR1 c.500A>T missense mutation. J Med Genet 2020;57:178-86. [PMID: 31511340 DOI: 10.1136/jmedgenet-2019-106108] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
24 Mavlyutov TA, Baker EM, Losenegger TM, Kim JR, Torres B, Epstein ML, Ruoho AE. The Sigma-1 Receptor-A Therapeutic Target for the Treatment of ALS? Adv Exp Med Biol 2017;964:255-65. [PMID: 28315276 DOI: 10.1007/978-3-319-50174-1_17] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
25 Aishwarya R, Abdullah CS, Remex NS, Alam S, Morshed M, Nitu S, Hartman B, King J, Nobel Bhuiyan MA, Orr AW, Kevil CG, Bhuiyan MS. Molecular Characterization of Skeletal Muscle Dysfunction in Sigmar1 Knockout Mice. Am J Pathol 2021:S0002-9440(21)00441-7. [PMID: 34710383 DOI: 10.1016/j.ajpath.2021.10.003] [Reference Citation Analysis]
26 Su TP, Su TC, Nakamura Y, Tsai SY. The Sigma-1 Receptor as a Pluripotent Modulator in Living Systems. Trends Pharmacol Sci 2016;37:262-78. [PMID: 26869505 DOI: 10.1016/j.tips.2016.01.003] [Cited by in Crossref: 154] [Cited by in F6Publishing: 151] [Article Influence: 25.7] [Reference Citation Analysis]
27 Weng TY, Tsai SA, Su TP. Roles of sigma-1 receptors on mitochondrial functions relevant to neurodegenerative diseases. J Biomed Sci 2017;24:74. [PMID: 28917260 DOI: 10.1186/s12929-017-0380-6] [Cited by in Crossref: 39] [Cited by in F6Publishing: 37] [Article Influence: 7.8] [Reference Citation Analysis]
28 Fo Y, Zhang C, Chen X, Liu X, Ye T, Guo Y, Qu C, Shi S, Yang B. Chronic sigma-1 receptor activation ameliorates ventricular remodeling and decreases susceptibility to ventricular arrhythmias after myocardial infarction in rats. Eur J Pharmacol 2020;889:173614. [PMID: 33010304 DOI: 10.1016/j.ejphar.2020.173614] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
29 Papaevgeniou N, Chondrogianni N. UPS Activation in the Battle Against Aging and Aggregation-Related Diseases: An Extended Review. In: Matthiesen R, editor. Proteostasis. New York: Springer; 2016. pp. 1-70. [DOI: 10.1007/978-1-4939-3756-1_1] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
30 Jesse CM, Bushuven E, Tripathi P, Chandrasekar A, Simon CM, Drepper C, Yamoah A, Dreser A, Katona I, Johann S, Beyer C, Wagner S, Grond M, Nikolin S, Anink J, Troost D, Sendtner M, Goswami A, Weis J. ALS-Associated Endoplasmic Reticulum Proteins in Denervated Skeletal Muscle: Implications for Motor Neuron Disease Pathology. Brain Pathol 2017;27:781-94. [PMID: 27790792 DOI: 10.1111/bpa.12453] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
31 Shinoda Y, Haga Y, Akagawa K, Fukunaga K. Wildtype σ1 receptor and the receptor agonist improve ALS-associated mutation-induced insolubility and toxicity. J Biol Chem 2020;295:17573-87. [PMID: 33453999 DOI: 10.1074/jbc.RA120.015012] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Stoica R, Paillusson S, Gomez-Suaga P, Mitchell JC, Lau DH, Gray EH, Sancho RM, Vizcay-Barrena G, De Vos KJ, Shaw CE, Hanger DP, Noble W, Miller CC. ALS/FTD-associated FUS activates GSK-3β to disrupt the VAPB-PTPIP51 interaction and ER-mitochondria associations. EMBO Rep 2016;17:1326-42. [PMID: 27418313 DOI: 10.15252/embr.201541726] [Cited by in Crossref: 121] [Cited by in F6Publishing: 120] [Article Influence: 20.2] [Reference Citation Analysis]
33 Haga H, Matsuo K, Yabuki Y, Zhang C, Han F, Fukunaga K. Enhancement of ATP production ameliorates motor and cognitive impairments in a mouse model of MPTP-induced Parkinson's disease. Neurochem Int 2019;129:104492. [PMID: 31229554 DOI: 10.1016/j.neuint.2019.104492] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
34 Fukunaga K, Shinoda Y, Tagashira H. The role of SIGMAR1 gene mutation and mitochondrial dysfunction in amyotrophic lateral sclerosis. Journal of Pharmacological Sciences 2015;127:36-41. [DOI: 10.1016/j.jphs.2014.12.012] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 4.7] [Reference Citation Analysis]
35 Delprat B, Maurice T, Delettre C. Wolfram syndrome: MAMs' connection? Cell Death Dis 2018;9:364. [PMID: 29511163 DOI: 10.1038/s41419-018-0406-3] [Cited by in Crossref: 28] [Cited by in F6Publishing: 22] [Article Influence: 7.0] [Reference Citation Analysis]
36 Ullah MI, Ahmad A, Raza SI, Amar A, Ali A, Bhatti A, John P, Mohyuddin A, Ahmad W, Hassan MJ. In silico analysis of SIGMAR1 variant (rs4879809) segregating in a consanguineous Pakistani family showing amyotrophic lateral sclerosis without frontotemporal lobar dementia. Neurogenetics 2015;16:299-306. [PMID: 26205306 DOI: 10.1007/s10048-015-0453-1] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 4.1] [Reference Citation Analysis]
37 Shinoda Y, Wang Y, Yamamoto T, Miyachi H, Fukunaga K. Analysis of binding affinity and docking of novel fatty acid-binding protein (FABP) ligands. J Pharmacol Sci 2020;143:264-71. [PMID: 32499096 DOI: 10.1016/j.jphs.2020.05.005] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
38 Todd TW, Petrucelli L. Modelling amyotrophic lateral sclerosis in rodents. Nat Rev Neurosci 2022. [PMID: 35260846 DOI: 10.1038/s41583-022-00564-x] [Reference Citation Analysis]