BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Brown DM, Goljanek-Whysall K. microRNAs: Modulators of the underlying pathophysiology of sarcopenia? Ageing Res Rev 2015;24:263-73. [PMID: 26342566 DOI: 10.1016/j.arr.2015.08.007] [Cited by in Crossref: 43] [Cited by in F6Publishing: 41] [Article Influence: 6.1] [Reference Citation Analysis]
Number Citing Articles
1 Soriano-Arroquia A, Clegg PD, Molloy AP, Goljanek-Whysall K. Preparation and Culture of Myogenic Precursor Cells/Primary Myoblasts from Skeletal Muscle of Adult and Aged Humans. J Vis Exp 2017. [PMID: 28287512 DOI: 10.3791/55047] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 1.2] [Reference Citation Analysis]
2 Gennari L, Bianciardi S, Merlotti D. MicroRNAs in bone diseases. Osteoporos Int 2017;28:1191-213. [PMID: 27904930 DOI: 10.1007/s00198-016-3847-5] [Cited by in Crossref: 47] [Cited by in F6Publishing: 40] [Article Influence: 7.8] [Reference Citation Analysis]
3 Brown DM, Jones S, Daniel ZCTR, Brearley MC, Lewis JE, Ebling FJP, Parr T, Brameld JM. Effect of sodium 4-phenylbutyrate on Clenbuterol-mediated muscle growth. PLoS One 2018;13:e0201481. [PMID: 30052661 DOI: 10.1371/journal.pone.0201481] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
4 Wilhelmsen A, Tsintzas K, Jones SW. Recent advances and future avenues in understanding the role of adipose tissue cross talk in mediating skeletal muscle mass and function with ageing. Geroscience 2021;43:85-110. [PMID: 33528828 DOI: 10.1007/s11357-021-00322-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
5 Chen Z, Bemben MG, Bemben DA. Bone and muscle specific circulating microRNAs in postmenopausal women based on osteoporosis and sarcopenia status. Bone 2019;120:271-8. [PMID: 30408612 DOI: 10.1016/j.bone.2018.11.001] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
6 Yanai K, Kaneko S, Ishii H, Aomatsu A, Ito K, Hirai K, Ookawara S, Ishibashi K, Morishita Y. MicroRNAs in Sarcopenia: A Systematic Review. Front Med (Lausanne) 2020;7:180. [PMID: 32549041 DOI: 10.3389/fmed.2020.00180] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
7 Kanakis I, Alameddine M, Folkes L, Moxon S, Myrtziou I, Ozanne SE, Peffers MJ, Goljanek-Whysall K, Vasilaki A. Small-RNA Sequencing Reveals Altered Skeletal Muscle microRNAs and snoRNAs Signatures in Weanling Male Offspring from Mouse Dams Fed a Low Protein Diet during Lactation. Cells 2021;10:1166. [PMID: 34064819 DOI: 10.3390/cells10051166] [Reference Citation Analysis]
8 Hackl M, Heilmeier U, Weilner S, Grillari J. Circulating microRNAs as novel biomarkers for bone diseases - Complex signatures for multifactorial diseases? Mol Cell Endocrinol 2016;432:83-95. [PMID: 26525415 DOI: 10.1016/j.mce.2015.10.015] [Cited by in Crossref: 85] [Cited by in F6Publishing: 86] [Article Influence: 12.1] [Reference Citation Analysis]
9 Lavin KM, Coen PM, Baptista LC, Bell MB, Drummer D, Harper SA, Lixandrão ME, McAdam JS, O'Bryan SM, Ramos S, Roberts LM, Vega RB, Goodpaster BH, Bamman MM, Buford TW. State of Knowledge on Molecular Adaptations to Exercise in Humans: Historical Perspectives and Future Directions. Compr Physiol 2022;12:3193-279. [PMID: 35578962 DOI: 10.1002/cphy.c200033] [Reference Citation Analysis]
10 Fariyike B, Singleton Q, Hunter M, Hill WD, Isales CM, Hamrick MW, Fulzele S. Role of MicroRNA-141 in the Aging Musculoskeletal System: A Current Overview. Mech Ageing Dev 2019;178:9-15. [PMID: 30528652 DOI: 10.1016/j.mad.2018.12.001] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
11 Soriano-Arroquia A, House L, Tregilgas L, Canty-Laird E, Goljanek-Whysall K. The functional consequences of age-related changes in microRNA expression in skeletal muscle. Biogerontology 2016;17:641-54. [PMID: 26922183 DOI: 10.1007/s10522-016-9638-8] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 5.3] [Reference Citation Analysis]
12 Iannone F, Montesanto A, Cione E, Crocco P, Caroleo MC, Dato S, Rose G, Passarino G. Expression Patterns of Muscle-Specific miR-133b and miR-206 Correlate with Nutritional Status and Sarcopenia. Nutrients 2020;12:E297. [PMID: 31979011 DOI: 10.3390/nu12020297] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 7.0] [Reference Citation Analysis]
13 Long DE, Peck BD, Lavin KM, Dungan CM, Kosmac K, Tuggle SC, Bamman MM, Kern PA, Peterson CA. Skeletal muscle properties show collagen organization and immune cell content are associated with resistance exercise response heterogeneity in older persons. J Appl Physiol (1985) 2022. [PMID: 35482328 DOI: 10.1152/japplphysiol.00025.2022] [Reference Citation Analysis]
14 Bellizzi D, Guarasci F, Iannone F, Passarino G, Rose G. Epigenetics and Ageing. In: Caruso C, editor. Centenarians. Cham: Springer International Publishing; 2019. pp. 99-133. [DOI: 10.1007/978-3-030-20762-5_7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
15 Proctor CJ, Goljanek-Whysall K. Using computer simulation models to investigate the most promising microRNAs to improve muscle regeneration during ageing. Sci Rep 2017;7:12314. [PMID: 28951568 DOI: 10.1038/s41598-017-12538-6] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
16 Cruz-Jentoft AJ, Sayer AA. Sarcopenia. Lancet. 2019;393:2636-2646. [PMID: 31171417 DOI: 10.1016/s0140-6736(19)31138-9] [Cited by in Crossref: 360] [Cited by in F6Publishing: 218] [Article Influence: 120.0] [Reference Citation Analysis]
17 Murabito JM, Rong J, Lunetta KL, Huan T, Lin H, Zhao Q, Freedman JE, Tanriverdi K, Levy D, Larson MG. Cross-sectional relations of whole-blood miRNA expression levels and hand grip strength in a community sample. Aging Cell 2017;16:888-94. [PMID: 28597569 DOI: 10.1111/acel.12622] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
18 Shorter E, Sannicandro AJ, Poulet B, Goljanek-Whysall K. Skeletal Muscle Wasting and Its Relationship With Osteoarthritis: a Mini-Review of Mechanisms and Current Interventions. Curr Rheumatol Rep. 2019;21:40. [PMID: 31203463 DOI: 10.1007/s11926-019-0839-4] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 8.7] [Reference Citation Analysis]
19 Liao Y, Zhou X, Xu S, Meng Z, Li D, Yang X, Liu L, Yang W. Noncoding RNAs-associated ceRNA networks involved in the amelioration of skeletal muscle aging after whey protein supplementation. The Journal of Nutritional Biochemistry 2022. [DOI: 10.1016/j.jnutbio.2022.108968] [Reference Citation Analysis]
20 Weinkove D, Goljanek-Whysall K. Why do we age? Insights into biology and evolution of ageing. Biogerontology 2017;18:855-7. [PMID: 29086101 DOI: 10.1007/s10522-017-9734-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
21 Williams J, Smith F, Kumar S, Vijayan M, Reddy PH. Are microRNAs true sensors of ageing and cellular senescence? Ageing Res Rev 2017;35:350-63. [PMID: 27903442 DOI: 10.1016/j.arr.2016.11.008] [Cited by in Crossref: 50] [Cited by in F6Publishing: 50] [Article Influence: 10.0] [Reference Citation Analysis]
22 Soriano-Arroquia A, McCormick R, Molloy AP, McArdle A, Goljanek-Whysall K. Age-related changes in miR-143-3p:Igfbp5 interactions affect muscle regeneration. Aging Cell 2016;15:361-9. [PMID: 26762731 DOI: 10.1111/acel.12442] [Cited by in Crossref: 48] [Cited by in F6Publishing: 45] [Article Influence: 8.0] [Reference Citation Analysis]
23 He N, Zhang YL, Zhang Y, Feng B, Zheng Z, Wang D, Zhang S, Guo Q, Ye H. Circulating MicroRNAs in Plasma Decrease in Response to Sarcopenia in the Elderly. Front Genet 2020;11:167. [PMID: 32194634 DOI: 10.3389/fgene.2020.00167] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
24 Barbiera A, Pelosi L, Sica G, Scicchitano BM. Nutrition and microRNAs: Novel Insights to Fight Sarcopenia. Antioxidants (Basel) 2020;9:E951. [PMID: 33023202 DOI: 10.3390/antiox9100951] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
25 Phillips BE, Williams JP, Greenhaff PL, Smith K, Atherton PJ. Physiological adaptations to resistance exercise as a function of age. JCI Insight 2017;2:95581. [PMID: 28878131 DOI: 10.1172/jci.insight.95581] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 5.8] [Reference Citation Analysis]
26 Cannataro R, Carbone L, Petro JL, Cione E, Vargas S, Angulo H, Forero DA, Odriozola-Martínez A, Kreider RB, Bonilla DA. Sarcopenia: Etiology, Nutritional Approaches, and miRNAs. Int J Mol Sci 2021;22:9724. [PMID: 34575884 DOI: 10.3390/ijms22189724] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 8.0] [Reference Citation Analysis]
27 Borja-Gonzalez M, Casas-Martinez JC, McDonagh B, Goljanek-Whysall K. Inflamma-miR-21 Negatively Regulates Myogenesis during Ageing. Antioxidants (Basel) 2020;9:E345. [PMID: 32340146 DOI: 10.3390/antiox9040345] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
28 Melouane A, Ghanemi A, Yoshioka M, St-Amand J. Functional genomics applications and therapeutic implications in sarcopenia. Mutat Res Rev Mutat Res 2019;781:175-85. [PMID: 31416575 DOI: 10.1016/j.mrrev.2019.04.003] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
29 Valášková S, Gažová A, Vrbová P, Koller T, Šalingová B, Adamičková A, Chomaničová N, Hulajová N, Payer J, Kyselovič J. The Severity of Muscle Performance Deterioration in Sarcopenia Correlates With Circulating Muscle Tissue-Specific miRNAs. Physiol Res. [DOI: 10.33549//physiolres.934778] [Reference Citation Analysis]
30 Gomez-verjan JC, Vazquez-martinez ER, Rivero-segura NA, Medina-campos RH. The RNA world of human ageing. Hum Genet 2018;137:865-79. [DOI: 10.1007/s00439-018-1955-3] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 5.8] [Reference Citation Analysis]
31 Sannicandro AJ, Soriano-Arroquia A, Goljanek-Whysall K. Micro(RNA)-managing muscle wasting. J Appl Physiol (1985) 2019;127:619-32. [PMID: 30991011 DOI: 10.1152/japplphysiol.00961.2018] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
32 Chen G, Wang G, Lian Y. Relationships Between Depressive Symptoms, Dietary Inflammatory Potential, and Sarcopenia: Mediation Analyses. Front Nutr 2022;9:844917. [DOI: 10.3389/fnut.2022.844917] [Reference Citation Analysis]
33 Moreira Soares Oliveira B, Gawlik KI, Durbeej M, Holmberg J. Exploratory Profiling of Urine MicroRNAs in the dy2J/dy2J Mouse Model of LAMA2-CMD: Relation to Disease Progression. PLoS Curr 2018;10:ecurrents. [PMID: 30430039 DOI: 10.1371/currents.md.d0c203c018bc024f2f4c9791ecb05f88] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 0.3] [Reference Citation Analysis]
34 Chen FX, Shen Y, Liu Y, Wang HF, Liang CY, Luo M. Inflammation-dependent downregulation of miR-532-3p mediates apoptotic signaling in human sarcopenia through targeting BAK1. Int J Biol Sci 2020;16:1481-94. [PMID: 32226296 DOI: 10.7150/ijbs.41641] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
35 Seldeen KL, Pang M, Leiker MM, Bard JE, Rodríguez-Gonzalez M, Hernandez M, Sheridan Z, Nowak N, Troen BR. Chronic vitamin D insufficiency impairs physical performance in C57BL/6J mice. Aging (Albany NY) 2018;10:1338-55. [PMID: 29905532 DOI: 10.18632/aging.101471] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
36 Soci UPR, Melo SFS, Gomes JLP, Silveira AC, Nóbrega C, de Oliveira EM. Exercise Training and Epigenetic Regulation: Multilevel Modification and Regulation of Gene Expression. Adv Exp Med Biol 2017;1000:281-322. [PMID: 29098627 DOI: 10.1007/978-981-10-4304-8_16] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
37 Borja-Gonzalez M, Casas-Martinez JC, McDonagh B, Goljanek-Whysall K. Aging Science Talks: The role of miR-181a in age-related loss of muscle mass and function. Transl Med Aging 2020;4:81-5. [PMID: 32835152 DOI: 10.1016/j.tma.2020.07.001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
38 Vrbová P, Valášková S, Gažová A, Smaha J, Kužma M, Kyselovič J, Payer J, Koller T. Biomarkers of the Physical Function Mobility Domains Among Patients Hospitalized in Internal Medicine. Physiol Res. [DOI: 10.33549//physiolres.934777] [Reference Citation Analysis]
39 Loczenski-Brown DM, Jones S, Luckett J, Daniel Z, Brearley MC, Ebling FJP, Parr T, Brameld JM. Effect of adeno-associated virus (AAV)-mediated overexpression of PEPCK-M (Pck2) on Clenbuterol-induced muscle growth. PLoS One 2019;14:e0218970. [PMID: 31237922 DOI: 10.1371/journal.pone.0218970] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
40 Gao HE, Li FH, Xie T, Ma S, Qiao YB, Wu DS, Sun L. Lifelong Exercise in Age Rats Improves Skeletal Muscle Function and MicroRNA Profile. Med Sci Sports Exerc 2021;53:1873-82. [PMID: 34398060 DOI: 10.1249/MSS.0000000000002661] [Reference Citation Analysis]
41 Goljanek-Whysall K, Iwanejko LA, Vasilaki A, Pekovic-Vaughan V, McDonagh B. Ageing in relation to skeletal muscle dysfunction: redox homoeostasis to regulation of gene expression. Mamm Genome 2016;27:341-57. [PMID: 27215643 DOI: 10.1007/s00335-016-9643-x] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 2.5] [Reference Citation Analysis]
42 Wiedmer P, Jung T, Castro JP, Pomatto LCD, Sun PY, Davies KJA, Grune T. Sarcopenia - Molecular mechanisms and open questions. Ageing Res Rev 2021;65:101200. [PMID: 33130247 DOI: 10.1016/j.arr.2020.101200] [Cited by in Crossref: 37] [Cited by in F6Publishing: 29] [Article Influence: 37.0] [Reference Citation Analysis]