BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lai KP, Gong Z, Tse WKF. Zebrafish as the toxicant screening model: Transgenic and omics approaches. Aquat Toxicol 2021;234:105813. [PMID: 33812311 DOI: 10.1016/j.aquatox.2021.105813] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
Number Citing Articles
1 Okeke ES, Feng W, Mao G, Chen Y, Qian X, Luo M, Xu H, Qiu X, Wu X, Yang L. A transcriptomic-based analysis predicts the neuroendocrine disrupting effect on adult male and female zebrafish (Danio rerio) following long-term exposure to tetrabromobisphenol A bis(2-hydroxyethyl) ether. Comp Biochem Physiol C Toxicol Pharmacol 2023;264:109527. [PMID: 36442598 DOI: 10.1016/j.cbpc.2022.109527] [Reference Citation Analysis]
2 Yu H, Song W, Chen X, Zhao Q, Du X. Transcriptomic analysis reveals up-regulated histone genes may play a key role in zebrafish embryo-larvae response to Bisphenol A (BPA) exposure. Ecotoxicol Environ Saf 2023;252:114578. [PMID: 36709539 DOI: 10.1016/j.ecoenv.2023.114578] [Reference Citation Analysis]
3 MacRae CA, Peterson RT. Zebrafish as a Mainstream Model for In Vivo Systems Pharmacology and Toxicology. Annu Rev Pharmacol Toxicol 2023;63:43-64. [PMID: 36151053 DOI: 10.1146/annurev-pharmtox-051421-105617] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
4 Morash MG, Kirzinger MW, Achenbach JC, Venkatachalam AB, Cooper JP, Ratzlaff DE, Woodland CLA, Ellis LD. The contribution of larval zebrafish transcriptomics to chemical risk assessment. Regul Toxicol Pharmacol 2023;138:105336. [PMID: 36642323 DOI: 10.1016/j.yrtph.2023.105336] [Reference Citation Analysis]
5 Bai C, Tang M. Progress on the toxicity of quantum dots to model organism-zebrafish. J Appl Toxicol 2023;43:89-106. [PMID: 35441386 DOI: 10.1002/jat.4333] [Reference Citation Analysis]
6 Volkov M, Machikhin A, Bukova V, Khokhlov D, Burlakov A, Krylov V. Optical transparency and label-free vessel imaging of zebrafish larvae in shortwave infrared range as a tool for prolonged studying of cardiovascular system development. Sci Rep 2022;12:20884. [PMID: 36463350 DOI: 10.1038/s41598-022-25386-w] [Reference Citation Analysis]
7 Silva Brito R, Canedo A, Farias D, Rocha TL. Transgenic zebrafish (Danio rerio) as an emerging model system in ecotoxicology and toxicology: Historical review, recent advances, and trends. Science of The Total Environment 2022;848:157665. [DOI: 10.1016/j.scitotenv.2022.157665] [Reference Citation Analysis]
8 Li R, Liu J, Leung CT, Lin X, Chan TF, Tse WKF, Lai KP. Transcriptomic Analysis in Marine Medaka Gill Reveals That the Hypo-Osmotic Stress Could Alter the Immune Response via the IL17 Signaling Pathway. IJMS 2022;23:12417. [DOI: 10.3390/ijms232012417] [Reference Citation Analysis]
9 Hu Y, Ma X, Liu R, Mushtaq I, Qi Y, Yuan C, Huang D. 2,4-Dichlorophenol Increases Primordial Germ Cell Numbers via ESR2a-Dependent Pathway in Zebrafish Larvae. Environ Sci Technol . [DOI: 10.1021/acs.est.2c05212] [Reference Citation Analysis]
10 Terrazas-Salgado L, Yáñez-Rivera B, Llera-Herrera R, García-Gasca A, Alvarado-Cruz I, Betancourt-Lozano M. Transcriptomic signaling in zebrafish (Danio rerio) embryos exposed to environmental concentrations of glyphosate. J Environ Sci Health B 2022;:1-11. [PMID: 36048159 DOI: 10.1080/03601234.2022.2115780] [Reference Citation Analysis]
11 Gazo I, Naraine R, Lebeda I, Tomčala A, Dietrich M, Franěk R, Pšenička M, Šindelka R. Transcriptome and Proteome Analyses Reveal Stage-Specific DNA Damage Response in Embryos of Sturgeon (Acipenser ruthenus). Int J Mol Sci 2022;23:6392. [PMID: 35742841 DOI: 10.3390/ijms23126392] [Reference Citation Analysis]
12 Petty HJ, Barrett JE, Kosmowski EG, Amos DS, Ryan SM, Jones LD, Lassiter CS. Spironolactone affects cardiovascular and craniofacial development in zebrafish embryos (Danio rerio). Environmental Toxicology and Pharmacology 2022;92:103848. [DOI: 10.1016/j.etap.2022.103848] [Reference Citation Analysis]
13 Liu W, Pan Y, Yang L, Xie Y, Chen X, Chang J, Hao W, Zhu L, Wan B. Developmental toxicity of TCBPA on the nervous and cardiovascular systems of zebrafish (Danio rerio): A combination of transcriptomic and metabolomics. Journal of Environmental Sciences 2022. [DOI: 10.1016/j.jes.2022.04.022] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Baker ME. Divergent Evolution of Progesterone and Mineralocorticoid Receptors in Terrestrial Vertebrates and Fish Influences Endocrine Disruption. Biochem Pharmacol 2022;:114951. [PMID: 35149051 DOI: 10.1016/j.bcp.2022.114951] [Reference Citation Analysis]
15 Kayhan FE, Esmer Duruel HE, Tartar Kizilkaya Ş, Kaymak G, Akbulut C, Genç H, Zengin M, Yön Ertuğ ND. Tiazolidin’in Zebra Balığı (Danio rerio) Solungaç ve Karaciğer Dokusunda AChE Enzim Aktivitesi ve Toplam Protein Seviyesi Üzerine Etkileri. Acta Aquatica Turcica 2022. [DOI: 10.22392/actaquatr.1001378] [Reference Citation Analysis]
16 da Costa Filho BM, Duarte AC, Santos TAR. Environmental monitoring approaches for the detection of organic contaminants in marine environments: a critical review. Trends in Environmental Analytical Chemistry 2022. [DOI: 10.1016/j.teac.2022.e00154] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
17 Soergel H, Loosli F, Muhle-Goll C. Strain-Specific Liver Metabolite Profiles in Medaka. Metabolites 2021;11:744. [PMID: 34822402 DOI: 10.3390/metabo11110744] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
18 da Silva KM, Iturrospe E, Bars C, Knapen D, Van Cruchten S, Covaci A, van Nuijs ALN. Mass Spectrometry-Based Zebrafish Toxicometabolomics: A Review of Analytical and Data Quality Challenges. Metabolites 2021;11:635. [PMID: 34564451 DOI: 10.3390/metabo11090635] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]