BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Xie Z, Jiao H, Xiao H, Jiang Y, Liu Z, Qi C, Zhao D, Jiao S, Yu T, Tang X, Pang D, Ouyang H. Generation of pRSAD2 gene knock-in pig via CRISPR/Cas9 technology. Antiviral Res 2020;174:104696. [PMID: 31862502 DOI: 10.1016/j.antiviral.2019.104696] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 7.0] [Reference Citation Analysis]
Number Citing Articles
1 Qi C, Pang D, Yang K, Jiao S, Wu H, Zhao C, Hu L, Li F, Zhou J, Yang L, Lv D, Tang X, Ouyang H, Xie Z. Generation of PCBP1-deficient pigs using CRISPR/Cas9-mediated gene editing. iScience 2022;25:105268. [PMID: 36274935 DOI: 10.1016/j.isci.2022.105268] [Reference Citation Analysis]
2 Miao J, Lan T, Guo H, Wang J, Zhang G, Wang Z, Yang P, Li H, Zhang C, Wang Y, Li XM, Miao M. Characterization of SHARPIN knockout Syrian hamsters developed using CRISPR/Cas9 system. Animal Model Exp Med 2022. [PMID: 36097701 DOI: 10.1002/ame2.12265] [Reference Citation Analysis]
3 Wang S, Qu Z, Huang Q, Zhang J, Lin S, Yang Y, Meng F, Li J, Zhang K. Application of Gene Editing Technology in Resistance Breeding of Livestock. Life (Basel) 2022;12:1070. [PMID: 35888158 DOI: 10.3390/life12071070] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
4 Wani AK, Akhtar N, Singh R, Prakash A, Raza SHA, Cavalu S, Chopra C, Madkour M, Elolimy A, Hashem NM. Genome centric engineering using ZFNs, TALENs and CRISPR-Cas9 systems for trait improvement and disease control in Animals. Vet Res Commun 2022. [PMID: 35781172 DOI: 10.1007/s11259-022-09967-8] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
5 Liu Z, Wu T, Xiang G, Wang H, Wang B, Feng Z, Mu Y, Li K. Enhancing Animal Disease Resistance, Production Efficiency, and Welfare through Precise Genome Editing. IJMS 2022;23:7331. [DOI: 10.3390/ijms23137331] [Reference Citation Analysis]
6 Whitworth KM, Green JA, Redel BK, Geisert RD, Lee K, Telugu BP, Wells KD, Prather RS. Improvements in pig agriculture through gene editing. CABI Agric Biosci 2022;3:41. [PMID: 35755158 DOI: 10.1186/s43170-022-00111-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Yang L, Wang Z, Ouyang H, Zhang Y, Xiao W, Liu Y, Deng J, Li M, Ma L, Qi C, Pang D, Yuan H. Porcine ZC3H11A Is Essential for the Proliferation of Pseudorabies Virus and Porcine Circovirus 2. ACS Infect Dis 2022;8:1179-90. [PMID: 35559610 DOI: 10.1021/acsinfecdis.2c00150] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Lin Y, Li J, Li C, Tu Z, Li S, Li X, Yan S. Application of CRISPR/Cas9 System in Establishing Large Animal Models. Front Cell Dev Biol 2022;10:919155. [DOI: 10.3389/fcell.2022.919155] [Reference Citation Analysis]
9 Huang J, Liu X, Sun Y, Huang C, Wang A, Xu J, Zhou H, Li L, Zhou R. Porcine β-defensin 2 confers enhanced resistance to swine flu infection in transgenic pigs and alleviates swine influenza virus-induced apoptosis possibly through interacting with host SLC25A4. Antiviral Res 2022;:105292. [PMID: 35341807 DOI: 10.1016/j.antiviral.2022.105292] [Reference Citation Analysis]
10 Yuan H, Yang L, Zhang Y, Xiao W, Wang Z, Tang X, Ouyang H, Pang D. Current Status of Genetically Modified Pigs That Are Resistant to Virus Infection. Viruses 2022;14:417. [DOI: 10.3390/v14020417] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Navarro-serna S, Piñeiro-silva C, Romar R, Parrington J, Gadea J. Generation of Gene Edited Pigs. Sustainable Agriculture Reviews 2022. [DOI: 10.1007/978-3-031-07496-7_3] [Reference Citation Analysis]
12 Qi C, Pang D, Yang K, Jiao S, Wu H, Zhao C, Hu L, Li F, Zhou J, Yang L, Lv D, Tang X, Ouyang H, Xie Z. PCBP1 Deficient Pigs Hold the Potential to Inhibit CSFV Infection.. [DOI: 10.1101/2021.12.23.474075] [Reference Citation Analysis]
13 Sen'kova AV, Savin IA, Brenner EV, Zenkova MA, Markov AV. Core genes involved in the regulation of acute lung injury and their association with COVID-19 and tumor progression: A bioinformatics and experimental study. PLoS One 2021;16:e0260450. [PMID: 34807957 DOI: 10.1371/journal.pone.0260450] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
14 You W, Li M, Qi Y, Wang Y, Chen Y, Liu Y, Li L, Ouyang H, Pang D. CRISPR/Cas9-Mediated Specific Integration of Fat-1 and IGF-1 at the pRosa26 Locus. Genes (Basel) 2021;12:1027. [PMID: 34356043 DOI: 10.3390/genes12071027] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
15 Zhang J, Khazalwa EM, Abkallo HM, Zhou Y, Nie X, Ruan J, Zhao C, Wang J, Xu J, Li X, Zhao S, Zuo E, Steinaa L, Xie S. The advancements, challenges, and future implications of the CRISPR/Cas9 system in swine research. J Genet Genomics 2021;48:347-60. [PMID: 34144928 DOI: 10.1016/j.jgg.2021.03.015] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
16 Tanihara F, Hirata M, Otoi T. Current status of the application of gene editing in pigs. J Reprod Dev 2021;67:177-87. [PMID: 33840678 DOI: 10.1262/jrd.2021-025] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
17 Ghorbani A, Hadifar S, Salari R, Izadpanah K, Burmistrz M, Afsharifar A, Eskandari MH, Niazi A, Denes CE, Neely GG. A short overview of CRISPR-Cas technology and its application in viral disease control. Transgenic Res 2021;30:221-38. [PMID: 33830423 DOI: 10.1007/s11248-021-00247-w] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 10.0] [Reference Citation Analysis]
18 Fan J, Liao Y, Zhang M, Liu C, Li Z, Li Y, Li X, Wu K, Yi L, Ding H, Zhao M, Fan S, Chen J. Anti-Classical Swine Fever Virus Strategies. Microorganisms 2021;9:761. [PMID: 33917361 DOI: 10.3390/microorganisms9040761] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
19 Ryczek N, Hryhorowicz M, Zeyland J, Lipiński D, Słomski R. CRISPR/Cas Technology in Pig-to-Human Xenotransplantation Research. Int J Mol Sci 2021;22:3196. [PMID: 33801123 DOI: 10.3390/ijms22063196] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
20 Perisse IV, Fan Z, Singina GN, White KL, Polejaeva IA. Improvements in Gene Editing Technology Boost Its Applications in Livestock. Front Genet 2020;11:614688. [PMID: 33603767 DOI: 10.3389/fgene.2020.614688] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
21 Huang J, Yang X, Wang A, Huang C, Tang H, Zhang Q, Fang Q, Yu Z, Liu X, Huang Q, Zhou R, Li L. Pigs Overexpressing Porcine β-Defensin 2 Display Increased Resilience to Glaesserella parasuis Infection. Antibiotics (Basel) 2020;9:E903. [PMID: 33327385 DOI: 10.3390/antibiotics9120903] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
22 Xie Z, Sun R, Qi C, Jiao S, Jiang Y, Liu Z, Zhao D, Liu R, Li Q, Yang K, Hu L, Wang X, Tang X, Ouyang H, Pang D. Generation of a pHSPA6 gene-based multifunctional live cell sensor. Biochim Biophys Acta Mol Cell Res 2021;1868:118919. [PMID: 33279608 DOI: 10.1016/j.bbamcr.2020.118919] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]