BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Pozzi S, Scomparin A, Israeli Dangoor S, Rodriguez Ajamil D, Ofek P, Neufeld L, Krivitsky A, Vaskovich-Koubi D, Kleiner R, Dey P, Koshrovski-Michael S, Reisman N, Satchi-Fainaro R. Meet me halfway: Are in vitro 3D cancer models on the way to replace in vivo models for nanomedicine development? Adv Drug Deliv Rev 2021;175:113760. [PMID: 33838208 DOI: 10.1016/j.addr.2021.04.001] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
Number Citing Articles
1 Wang G, Jiang Y, Xu J, Shen J, Lin T, Chen J, Fei W, Qin Y, Zhou Z, Shen Y, Huang P. Unraveling the Plasma Protein Corona by Ultrasonic Cavitation Augments Active-Transporting of Liposome in Solid Tumor. Adv Mater 2023;35:e2207271. [PMID: 36479742 DOI: 10.1002/adma.202207271] [Reference Citation Analysis]
2 Pape J, Micalet A, Alsheikh W, Ezbakh N, Virjee RI, Al Hosni R, Moeendarbary E, Cheema U. Biophysical Parameters Can Induce Epithelial-to-Mesenchymal Phenotypic and Genotypic Changes in HT-29 Cells: A Preliminary Study. Int J Mol Sci 2023;24. [PMID: 36835368 DOI: 10.3390/ijms24043956] [Reference Citation Analysis]
3 Ahmed T. Functional biomaterials for biomimetic 3D in vitro tumor microenvironment modeling. In vitro models 2023. [DOI: 10.1007/s44164-023-00043-2] [Reference Citation Analysis]
4 Dozzo A, Chullipalliyalil K, McAuliffe M, O'Driscoll CM, Ryan KB. Nano-Hydroxyapatite/PLGA Mixed Scaffolds as a Tool for Drug Development and to Study Metastatic Prostate Cancer in the Bone. Pharmaceutics 2023;15. [PMID: 36678871 DOI: 10.3390/pharmaceutics15010242] [Reference Citation Analysis]
5 Neufeld L, Yeini E, Pozzi S, Satchi-Fainaro R. 3D bioprinted cancer models: from basic biology to drug development. Nat Rev Cancer 2022;22:679-92. [PMID: 36280768 DOI: 10.1038/s41568-022-00514-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
6 Han S, Wu J. Three-dimensional (3D) scaffolds as powerful weapons for tumor immunotherapy. Bioact Mater 2022;17:300-19. [PMID: 35386452 DOI: 10.1016/j.bioactmat.2022.01.020] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
7 Marshall SK, Saelim B, Taweesap M, Pachana V, Panrak Y, Makchuchit N, Jaroenpakdee P. Anti-EGFR Targeted Multifunctional I-131 Radio-Nanotherapeutic for Treating Osteosarcoma: In Vitro 3D Tumor Spheroid Model. Nanomaterials (Basel) 2022;12. [PMID: 36234645 DOI: 10.3390/nano12193517] [Reference Citation Analysis]
8 Bühler A, Krüger R, Monavari M, Fuentes-chandía M, Palmisano R, Schödel J, Boccaccini AR, Boßerhoff AK, Kappelmann-fenzl M, Letort G, Leal-egaña A. When Mechanical Stress Matters: Generation of Polyploid Giant Cancer Cells in Tumor-like Microcapsules.. [DOI: 10.1101/2022.09.22.508846] [Reference Citation Analysis]
9 Moya-garcia CR, Okuyama H, Sadeghi N, Li J, Tabrizian M, Li-jessen NYK. In vitro models for head and neck cancer: Current status and future perspective. Front Oncol 2022;12:960340. [DOI: 10.3389/fonc.2022.960340] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Straehla JP, Hajal C, Safford HC, Offeddu GS, Boehnke N, Dacoba TG, Wyckoff J, Kamm RD, Hammond PT. A predictive microfluidic model of human glioblastoma to assess trafficking of blood-brain barrier-penetrant nanoparticles. Proc Natl Acad Sci U S A 2022;119:e2118697119. [PMID: 35648828 DOI: 10.1073/pnas.2118697119] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
11 Choi JR, Kozalak G, di Bari I, Babar Q, Niknam Z, Rasmi Y, Yong KW. In Vitro Human Cancer Models for Biomedical Applications. Cancers 2022;14:2284. [DOI: 10.3390/cancers14092284] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
12 Satchi-Fainaro R, Florindo HF, Vicent MJ. Clinically-relevant and predictive cancer models for nanomedicine evaluation. Adv Drug Deliv Rev 2022;183:114140. [PMID: 35134434 DOI: 10.1016/j.addr.2022.114140] [Reference Citation Analysis]
13 Chen J, Lv B, Zhan Y, Zhu K, Zhang R, Chen B, Jin Y, Li Y, Zheng J, Lin C. Comprehensive Exploration of Tumor Microenvironment Modulation Based on the ESTIMATE Algorithm in Bladder Urothelial Carcinoma Microenvironment. Front Oncol 2022;12:724261. [DOI: 10.3389/fonc.2022.724261] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Bidan N, Lores S, Vanhecke A, Nicolas V, Domenichini S, López R, de la Fuente M, Mura S. Before in vivo studies: In vitro screening of sphingomyelin nanosystems using a relevant 3D multicellular pancreatic tumor spheroid model. Int J Pharm 2022;:121577. [PMID: 35167901 DOI: 10.1016/j.ijpharm.2022.121577] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
15 Park H, Otte A, Park K. Evolution of drug delivery systems: From 1950 to 2020 and beyond. J Control Release 2022;342:53-65. [PMID: 34971694 DOI: 10.1016/j.jconrel.2021.12.030] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 38.0] [Reference Citation Analysis]
16 Rousset N, Sandoval RL, Modena MM, Hierlemann A, Misun PM. Modeling and measuring glucose diffusion and consumption by colorectal cancer spheroids in hanging drops using integrated biosensors. Microsyst Nanoeng 2022;8. [DOI: 10.1038/s41378-021-00348-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
17 Straehla JP, Hajal C, Safford HC, Offeddu GS, Boehnke N, Dacoba TG, Wyckoff J, Kamm RD, Hammond PT. A predictive microfluidic model of human glioblastoma to assess trafficking of blood-brain barrier penetrant nanoparticles.. [DOI: 10.1101/2021.12.07.471663] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
18 Liao Z, Liu H, Ma L, Lei J, Tong B, Li G, Ke W, Wang K, Feng X, Hua W, Li S, Yang C. Engineering Extracellular Vesicles Restore the Impaired Cellular Uptake and Attenuate Intervertebral Disc Degeneration. ACS Nano 2021;15:14709-24. [PMID: 34476937 DOI: 10.1021/acsnano.1c04514] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 8.0] [Reference Citation Analysis]
19 Li P, Fu L, Liao Z, Peng Y, Ning C, Gao C, Zhang D, Sui X, Lin Y, Liu S, Hao C, Guo Q. Chitosan hydrogel/3D-printed poly(ε-caprolactone) hybrid scaffold containing synovial mesenchymal stem cells for cartilage regeneration based on tetrahedral framework nucleic acid recruitment. Biomaterials 2021;278:121131. [PMID: 34543785 DOI: 10.1016/j.biomaterials.2021.121131] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 17.0] [Reference Citation Analysis]
20 Đorđević S, Gonzalez MM, Conejos-Sánchez I, Carreira B, Pozzi S, Acúrcio RC, Satchi-Fainaro R, Florindo HF, Vicent MJ. Current hurdles to the translation of nanomedicines from bench to the clinic. Drug Deliv Transl Res 2021. [PMID: 34302274 DOI: 10.1007/s13346-021-01024-2] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 10.0] [Reference Citation Analysis]