1 |
Sun B, Lovell JF, Zhang Y. Current development of cabazitaxel drug delivery systems. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2023;15:e1854. [PMID: 36161272 DOI: 10.1002/wnan.1854] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
2 |
Shi X, Tian Y, Zhai S, Liu Y, Chu S, Xiong Z. The progress of research on the application of redox nanomaterials in disease therapy. Front Chem 2023;11:1115440. [PMID: 36814542 DOI: 10.3389/fchem.2023.1115440] [Reference Citation Analysis]
|
3 |
He Y, Tian X, Fan X, Gong X, Tan S, Pan A, Liang S, Xu H, Zhou F. Enzyme-Triggered Size-Switchable Nanosystem for Deep Tumor Penetration and Hydrogen Therapy. ACS Appl Mater Interfaces 2023;15:552-65. [PMID: 36594282 DOI: 10.1021/acsami.2c18184] [Reference Citation Analysis]
|
4 |
Gu L, Liao P, Liu H. Cancer-associated fibroblasts in acute leukemia. Front Oncol 2022;12:1022979. [PMID: 36601484 DOI: 10.3389/fonc.2022.1022979] [Reference Citation Analysis]
|
5 |
Indrakumar J, Sankar S, Madhyastha H, Muthukaliannan GK. Progressive Application of Marine Biomaterials in Targeted Cancer Nanotherapeutics. Curr Pharm Des 2022;28:3337-50. [PMID: 35466870 DOI: 10.2174/1381612828666220422091611] [Reference Citation Analysis]
|
6 |
Wu W, Li T. Deepening the understanding of the in vivo and cellular fate of nanocarriers. Adv Drug Deliv Rev 2022;189:114529. [PMID: 36064031 DOI: 10.1016/j.addr.2022.114529] [Reference Citation Analysis]
|
7 |
Yun WS, Shim MK, Lim S, Song S, Kim J, Yang S, Hwang HS, Kim MR, Yoon HY, Lim D, Sun I, Kim K. Mesenchymal Stem Cell-Mediated Deep Tumor Delivery of Gold Nanorod for Photothermal Therapy. Nanomaterials 2022;12:3410. [DOI: 10.3390/nano12193410] [Reference Citation Analysis]
|
8 |
Wang N, Li J, Wang J, Nie D, Jiang X, Zhuo Y, Yu M. Shape-directed drug release and transport of erythrocyte-like nanodisks augment chemotherapy. J Control Release 2022;350:886-97. [PMID: 36087799 DOI: 10.1016/j.jconrel.2022.09.005] [Reference Citation Analysis]
|
9 |
Yu X, Wang X, Sun L, Yamazaki A, Li X. Tumor microenvironment regulation - enhanced radio - immunotherapy. Biomaterials Advances 2022;138:212867. [DOI: 10.1016/j.bioadv.2022.212867] [Reference Citation Analysis]
|
10 |
Liu N, Wu L, Zuo W, Lin Q, Liu J, Jin Q, Xiao Z, Chen L, Zhao Y, Zhou J, Zhu X. pH/Thermal-Sensitive Nanoplatform Capable of On-Demand Specific Release to Potentiate Drug Delivery and Combinational Hyperthermia/Chemo/Chemodynamic Therapy. ACS Appl Mater Interfaces 2022. [PMID: 35749592 DOI: 10.1021/acsami.2c09685] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
|
11 |
Ghiarasim R, Tiron CE, Tiron A, Dimofte MG, Pinteala M, Rotaru A. Solid-Phase Synthesized Copolymers for the Assembly of pH-Sensitive Micelles Suitable for Drug Delivery Applications. Nanomaterials (Basel) 2022;12:1798. [PMID: 35683654 DOI: 10.3390/nano12111798] [Reference Citation Analysis]
|
12 |
Gong X, Wu J, Wen J, Ding X, Xu N, Sun M, Yu G, Liu S, Zhang B, Liu H. Dual-Ligand-Modified Nanoscale Liposomes Loaded with Curcumin and Metformin Inhibit Drug Resistance and Metastasis of Hepatocellular Carcinoma. ACS Appl Nano Mater 2022;5:7063-77. [DOI: 10.1021/acsanm.2c01027] [Reference Citation Analysis]
|
13 |
Hadadian Y, Masoomi H, Dinari A, Ryu C, Hwang S, Kim S, Cho BK, Lee JY, Yoon J. From Low to High Saturation Magnetization in Magnetite Nanoparticles: The Crucial Role of the Molar Ratios Between the Chemicals. ACS Omega 2022;7:15996-6012. [PMID: 35571799 DOI: 10.1021/acsomega.2c01136] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
14 |
Zheng X, Pan D, Zhu G, Zhang L, Bhamra A, Chen R, Zhang H, Gong Q, Gu Z, Luo K. A Dendritic Polymer-Based Nanosystem Mediates Drug Penetration and Irreversible Endoplasmic Reticulum Stresses in Tumor via Neighboring Effect. Adv Mater 2022;34:e2201200. [PMID: 35289966 DOI: 10.1002/adma.202201200] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 15.0] [Reference Citation Analysis]
|
15 |
Xu Y, Fourniols T, Labrak Y, Préat V, Beloqui A, des Rieux A. Surface Modification of Lipid-Based Nanoparticles. ACS Nano 2022. [PMID: 35446546 DOI: 10.1021/acsnano.2c02347] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|
16 |
Liu N, Zuo W, Wu L, Chen L, Xiao Z, Jin Q, Liu J, Tu L, Huo S, Zhu X. Myeloperoxidase-targeted nanotheranostics for self-enhanced synergetic photo/chemo/chemodynamic therapy. Materials Today Chemistry 2022;23:100740. [DOI: 10.1016/j.mtchem.2021.100740] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
17 |
Zhuang Y, Han S, Fang Y, Huang H, Wu J. Multidimensional transitional metal-actuated nanoplatforms for cancer chemodynamic modulation. Coordination Chemistry Reviews 2022;455:214360. [DOI: 10.1016/j.ccr.2021.214360] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
|
18 |
Zhang J, Lin Y, Lin Z, Wei Q, Qian J, Ruan R, Jiang X, Hou L, Song J, Ding J, Yang H. Stimuli-Responsive Nanoparticles for Controlled Drug Delivery in Synergistic Cancer Immunotherapy. Adv Sci (Weinh) 2022;9:e2103444. [PMID: 34927373 DOI: 10.1002/advs.202103444] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 15.0] [Reference Citation Analysis]
|
19 |
Souri M, Soltani M, Kashkooli FM, Shahvandi MK, Chiani M, Shariati FS, Mehrabi MR, Munn LL. Towards principled design of cancer nanomedicine to accelerate clinical translation. Materials Today Bio 2022. [DOI: 10.1016/j.mtbio.2022.100208] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
|
20 |
He Y, Fan X, Wu X, Hu T, Zhou F, Tan S, Chen B, Pan A, Liang S, Xu H. pH-Responsive size-shrinkable mesoporous silica-based nanocarriers for improving tumor penetration and therapeutic efficacy. Nanoscale 2022;14:1271-84. [PMID: 35006226 DOI: 10.1039/d1nr07513f] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
|
21 |
Han R, Liu Q, Lu Y, Peng J, Pan M, Wang G, Chen W, Xiao Y, Yang C, Qian Z. Tumor microenvironment-responsive Ag2S-PAsp(DOX)-cRGD nanoparticles-mediated photochemotherapy enhances the immune response to tumor therapy. Biomaterials 2021;281:121328. [PMID: 34953333 DOI: 10.1016/j.biomaterials.2021.121328] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
|
22 |
Petrov SA, Zyk NY, Machulkin AE, Beloglazkina EK, Majouga AG. PSMA-targeted low-molecular double conjugates for diagnostics and therapy. Eur J Med Chem 2021;225:113752. [PMID: 34464875 DOI: 10.1016/j.ejmech.2021.113752] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
23 |
Chen Y, Lu Y, Hu D, Peng J, Xiao Y, Hao Y, Pan M, Yuan L, Qian Z. Cabazitaxel-loaded MPEG-PCL copolymeric nanoparticles for enhanced colorectal cancer therapy. Applied Materials Today 2021;25:101210. [DOI: 10.1016/j.apmt.2021.101210] [Reference Citation Analysis]
|
24 |
Wang S, Hu X, Wei W, Ma G. Transformable vesicles for cancer immunotherapy. Adv Drug Deliv Rev 2021;179:113905. [PMID: 34331988 DOI: 10.1016/j.addr.2021.113905] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
|
25 |
Zhang Y, Hu M, Zhang W, Zhang X. Construction of tellurium-doped mesoporous bioactive glass nanoparticles for bone cancer therapy by promoting ROS-mediated apoptosis and antibacterial activity. J Colloid Interface Sci 2021:S0021-9797(21)02032-4. [PMID: 34848060 DOI: 10.1016/j.jcis.2021.11.122] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
|
26 |
Bao W, Liu M, Meng J, Liu S, Wang S, Jia R, Wang Y, Ma G, Wei W, Tian Z. MOFs-based nanoagent enables dual mitochondrial damage in synergistic antitumor therapy via oxidative stress and calcium overload. Nat Commun 2021;12:6399. [PMID: 34737274 DOI: 10.1038/s41467-021-26655-4] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 11.0] [Reference Citation Analysis]
|
27 |
Liu J, Zuo W, Jin Q, Liu C, Liu N, Tian H, Zhu X. Mn(II)-directed dual-photosensitizers co-assemblies for multimodal imaging-guided self-enhanced phototherapy. Mater Sci Eng C Mater Biol Appl 2021;129:112351. [PMID: 34579877 DOI: 10.1016/j.msec.2021.112351] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
28 |
Zhao Y, Xie YQ, Van Herck S, Nassiri S, Gao M, Guo Y, Tang L. Switchable immune modulator for tumor-specific activation of anticancer immunity. Sci Adv 2021;7:eabg7291. [PMID: 34516776 DOI: 10.1126/sciadv.abg7291] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
29 |
Yang Y, Guo J, Huang L. Tackling TAMs for Cancer Immunotherapy: It's Nano Time. Trends Pharmacol Sci 2020;41:701-14. [PMID: 32946772 DOI: 10.1016/j.tips.2020.08.003] [Cited by in Crossref: 30] [Cited by in F6Publishing: 35] [Article Influence: 15.0] [Reference Citation Analysis]
|
30 |
Nagesetti A, Dulikravich GS, Orlande HRB, Colaco MJ, McGoron AJ. Computational model of silica nanoparticle penetration into tumor spheroids: Effects of methoxy and carboxy PEG surface functionalization and hyperthermia. Int J Numer Method Biomed Eng 2021;37:e3504. [PMID: 34151543 DOI: 10.1002/cnm.3504] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
31 |
Luo Q, Shi W, Wang P, Zhang Y, Meng J, Zhang L. Tumor Microenvironment-Responsive Shell/Core Composite Nanoparticles for Enhanced Stability and Antitumor Efficiency Based on a pH-Triggered Charge-Reversal Mechanism. Pharmaceutics 2021;13:895. [PMID: 34208641 DOI: 10.3390/pharmaceutics13060895] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
32 |
Zu J, Tan L, Yang L, Wang Q, Qin J, Peng J, Jiang H, Tan R, Gu J. Hypoxia Engineered Bone Marrow Mesenchymal Stem Cells Targeting System with Tumor Microenvironment Regulation for Enhanced Chemotherapy of Breast Cancer. Biomedicines 2021;9:575. [PMID: 34069607 DOI: 10.3390/biomedicines9050575] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
|
33 |
Wang P, Lin H. [Research progress of nanomaterials in osteomyelitis treatment]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2021;35:648-55. [PMID: 33998221 DOI: 10.7507/1002-1892.202012044] [Reference Citation Analysis]
|
34 |
Sun Y, Li Y, Shi S, Dong C. Exploiting a New Approach to Destroy the Barrier of Tumor Microenvironment: Nano-Architecture Delivery Systems. Molecules 2021;26:2703. [PMID: 34062992 DOI: 10.3390/molecules26092703] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
|
35 |
Gao Q, Zhang J, Gao J, Zhang Z, Zhu H, Wang D. Gold Nanoparticles in Cancer Theranostics. Front Bioeng Biotechnol 2021;9:647905. [PMID: 33928072 DOI: 10.3389/fbioe.2021.647905] [Cited by in Crossref: 17] [Cited by in F6Publishing: 21] [Article Influence: 8.5] [Reference Citation Analysis]
|
36 |
Peng J, Xiao Y, Yang Q, Liu Q, Chen Y, Shi K, Hao Y, Han R, Qian Z. Intracellular aggregation of peptide-reprogrammed small molecule nanoassemblies enhances cancer chemotherapy and combinatorial immunotherapy. Acta Pharm Sin B 2021;11:1069-82. [PMID: 33996418 DOI: 10.1016/j.apsb.2020.06.013] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
|
37 |
Xiao Q, Li X, Li Y, Wu Z, Xu C, Chen Z, He W. Biological drug and drug delivery-mediated immunotherapy. Acta Pharm Sin B 2021;11:941-60. [PMID: 33996408 DOI: 10.1016/j.apsb.2020.12.018] [Cited by in Crossref: 38] [Cited by in F6Publishing: 42] [Article Influence: 19.0] [Reference Citation Analysis]
|
38 |
Chen M, Yang D, Sun Y, Liu T, Wang W, Fu J, Wang Q, Bai X, Quan G, Pan X, Wu C. In Situ Self-Assembly Nanomicelle Microneedles for Enhanced Photoimmunotherapy via Autophagy Regulation Strategy. ACS Nano 2021;15:3387-401. [PMID: 33576607 DOI: 10.1021/acsnano.0c10396] [Cited by in Crossref: 35] [Cited by in F6Publishing: 40] [Article Influence: 17.5] [Reference Citation Analysis]
|
39 |
Alsaab HO, Al-Hibs AS, Alzhrani R, Alrabighi KK, Alqathama A, Alwithenani A, Almalki AH, Althobaiti YS. Nanomaterials for Antiangiogenic Therapies for Cancer: A Promising Tool for Personalized Medicine. Int J Mol Sci 2021;22:1631. [PMID: 33562829 DOI: 10.3390/ijms22041631] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
|
40 |
Chen Y, Pan Y, Hu D, Peng J, Hao Y, Pan M, Yuan L, Yu Y, Qian Z. Recent progress in nanoformulations of cabazitaxel. Biomed Mater 2021. [PMID: 33545700 DOI: 10.1088/1748-605X/abe396] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
|
41 |
Wang J, Ni X, Shen S, Zhang D, Ni X, Suo T, Lu P, Fan K, Liu H, Liu H. Phosphorylation at Ser10 triggered p27 degradation and promoted gallbladder carcinoma cell migration and invasion by regulating stathmin1 under glucose deficiency. Cell Signal 2021;80:109923. [PMID: 33444777 DOI: 10.1016/j.cellsig.2021.109923] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
42 |
Gomi M, Sakurai Y, Okada T, Miura N, Tanaka H, Akita H. Development of Sentinel LN Imaging with a Combination of HAase Based on a Comprehensive Analysis of the Intra-lymphatic Kinetics of LPs. Mol Ther 2021;29:225-35. [PMID: 32966771 DOI: 10.1016/j.ymthe.2020.09.014] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
43 |
Mhaske A, Dighe S, Ghosalkar S, Tanna V, Ravikumar P, Sawarkar SP. Limitations of Current Cancer Theranostics. Nanotechnology in the Life Sciences 2021. [DOI: 10.1007/978-3-030-76263-6_12] [Reference Citation Analysis]
|
44 |
Jafari R, Rahbarghazi R, Ahmadi M, Hassanpour M, Rezaie J. Hypoxic exosomes orchestrate tumorigenesis: molecular mechanisms and therapeutic implications. J Transl Med 2020;18:474. [PMID: 33302971 DOI: 10.1186/s12967-020-02662-9] [Cited by in Crossref: 31] [Cited by in F6Publishing: 35] [Article Influence: 10.3] [Reference Citation Analysis]
|
45 |
Wang W, Huang Z, Huang Y, Pan X, Wu C. Updates on the applications of iron-based nanoplatforms in tumor theranostics. Int J Pharm 2020;589:119815. [PMID: 32877726 DOI: 10.1016/j.ijpharm.2020.119815] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
|
46 |
Jhawat V, Gulia M, Gupta S, Maddiboyina B, Dutt R. Integration of pharmacogenomics and theranostics with nanotechnology as quality by design (QbD) approach for formulation development of novel dosage forms for effective drug therapy. J Control Release 2020;327:500-11. [PMID: 32858073 DOI: 10.1016/j.jconrel.2020.08.039] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
|
47 |
Zheng W, Li ZY, Zhao DL, Li XL, Liu R. microRNA-26a Directly Targeting MMP14 and MMP16 Inhibits the Cancer Cell Proliferation, Migration and Invasion in Cutaneous Squamous Cell Carcinoma. Cancer Manag Res 2020;12:7087-95. [PMID: 32848463 DOI: 10.2147/CMAR.S265775] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
|
48 |
Liang C, Zhang X, Yang M, Wang W, Chen P, Dong X. Remodeling Tumor Microenvironment by Multifunctional Nanoassemblies for Enhanced Photodynamic Cancer Therapy. ACS Materials Lett 2020;2:1268-86. [DOI: 10.1021/acsmaterialslett.0c00259] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 9.7] [Reference Citation Analysis]
|
49 |
Zhang Z, Wang T, Yang R, Fu S, Guan L, Hou T, Mu W, Pang X, Liang S, Liu Y, Zhang N. Small Morph Nanoparticles for Deep Tumor Penetration via Caveolae-Mediated Transcytosis. ACS Appl Mater Interfaces 2020;12:38499-511. [PMID: 32805954 DOI: 10.1021/acsami.0c06872] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 4.7] [Reference Citation Analysis]
|
50 |
Moradi Kashkooli F, Soltani M, Souri M. Controlled anti-cancer drug release through advanced nano-drug delivery systems: Static and dynamic targeting strategies. J Control Release 2020;327:316-49. [PMID: 32800878 DOI: 10.1016/j.jconrel.2020.08.012] [Cited by in Crossref: 84] [Cited by in F6Publishing: 67] [Article Influence: 28.0] [Reference Citation Analysis]
|
51 |
Tan L, Wang Y, Jiang Y, Wang R, Zu J, Tan R. Hydroxysafflor Yellow A Together with Blood-Brain Barrier Regulator Lexiscan for Cerebral Ischemia Reperfusion Injury Treatment. ACS Omega 2020;5:19151-64. [PMID: 32775917 DOI: 10.1021/acsomega.0c02502] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
|
52 |
Low LE, Wu J, Lee J, Tey BT, Goh B, Gao J, Li F, Ling D. Tumor-responsive dynamic nanoassemblies for targeted imaging, therapy and microenvironment manipulation. Journal of Controlled Release 2020;324:69-103. [DOI: 10.1016/j.jconrel.2020.05.014] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 10.3] [Reference Citation Analysis]
|
53 |
Zhou X, Zhao W, Wang M, Zhang S, Li Y, Hu W, Ren L, Luo S, Chen Z. Dual-Modal Therapeutic Role of the Lactate Oxidase-Embedded Hierarchical Porous Zeolitic Imidazolate Framework as a Nanocatalyst for Effective Tumor Suppression. ACS Appl Mater Interfaces 2020;12:32278-88. [PMID: 32580547 DOI: 10.1021/acsami.0c05783] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 8.3] [Reference Citation Analysis]
|
54 |
Qu D, Qin Y, Liu Y, Liu T, Liu C, Han T, Chen Y, Ma C, Li X. Fever-Inducible Lipid Nanocomposite for Boosting Cancer Therapy through Synergistic Engineering of a Tumor Microenvironment. ACS Appl Mater Interfaces 2020;12:32301-11. [DOI: 10.1021/acsami.0c06949] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
|
55 |
Gong F, Yang N, Wang X, Zhao Q, Chen Q, Liu Z, Cheng L. Tumor microenvironment-responsive intelligent nanoplatforms for cancer theranostics. Nano Today 2020;32:100851. [DOI: 10.1016/j.nantod.2020.100851] [Cited by in Crossref: 143] [Cited by in F6Publishing: 152] [Article Influence: 47.7] [Reference Citation Analysis]
|
56 |
Li D, Su T, Ma L, Yin F, Xu W, Ding J, Li Z. Dual-acidity-labile polysaccharide-di-drugs conjugate for targeted cancer chemotherapy. Eur J Med Chem 2020;199:112367. [PMID: 32474350 DOI: 10.1016/j.ejmech.2020.112367] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 7.3] [Reference Citation Analysis]
|
57 |
Thorat ND, Townley HE, Patil RM, Tofail SAM, Bauer J. Comprehensive approach of hybrid nanoplatforms in drug delivery and theranostics to combat cancer. Drug Discov Today 2020;25:1245-52. [PMID: 32371139 DOI: 10.1016/j.drudis.2020.04.018] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
|
58 |
Tan S, Xia L, Yi P, Han Y, Tang L, Pan Q, Tian Y, Rao S, Oyang L, Liang J, Lin J, Su M, Shi Y, Cao D, Zhou Y, Liao Q. Exosomal miRNAs in tumor microenvironment. J Exp Clin Cancer Res. 2020;39:67. [PMID: 32299469 DOI: 10.1186/s13046-020-01570-6] [Cited by in Crossref: 53] [Cited by in F6Publishing: 55] [Article Influence: 17.7] [Reference Citation Analysis]
|
59 |
Yang X, Gao L, Guo Q, Li Y, Ma Y, Yang J, Gong C, Yi C. Nanomaterials for radiotherapeutics-based multimodal synergistic cancer therapy. Nano Res 2020;13:2579-94. [DOI: 10.1007/s12274-020-2722-z] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 9.3] [Reference Citation Analysis]
|
60 |
Wong XY, Sena-Torralba A, Álvarez-Diduk R, Muthoosamy K, Merkoçi A. Nanomaterials for Nanotheranostics: Tuning Their Properties According to Disease Needs. ACS Nano 2020;14:2585-627. [PMID: 32031781 DOI: 10.1021/acsnano.9b08133] [Cited by in Crossref: 151] [Cited by in F6Publishing: 166] [Article Influence: 50.3] [Reference Citation Analysis]
|
61 |
Tang J, Zhang R, Guo M, Zhou H, Zhao Y, Liu Y, Wu Y, Chen C. Gd-metallofullerenol drug delivery system mediated macrophage polarization enhances the efficiency of chemotherapy. J Control Release 2020;320:293-303. [PMID: 32004584 DOI: 10.1016/j.jconrel.2020.01.053] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
|
62 |
Wang Y. Challenges and Perspectives of Tumor-targeted Systems. New Nanomaterials and Techniques for Tumor-targeted Systems 2020. [DOI: 10.1007/978-981-15-5159-8_14] [Reference Citation Analysis]
|
63 |
Kondranova AM, Fomenko AN, Kazantsev SO, Lozhkomoev AS, Bakina OV. Hierarchically organized MgO/Mg2Al(OH)7 nanostructures for antitumor therapy. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PHYSICAL MESOMECHANICS. MATERIALS WITH MULTILEVEL HIERARCHICAL STRUCTURE AND INTELLIGENT MANUFACTURING TECHNOLOGY 2020. [DOI: 10.1063/5.0035318] [Reference Citation Analysis]
|
64 |
Yuan X, Yin Y, Zan W, Sun X, Yang Q. Hybrid manganese dioxide-bovine serum albumin nanostructure incorporated with doxorubicin and IR780 for enhanced breast cancer chemo-photothermal therapy. Drug Deliv 2019;26:1254-64. [PMID: 31760842 DOI: 10.1080/10717544.2019.1693706] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
|
65 |
Yin Y, Yuan X, Gao H, Yang Q. Nanoformulations of small molecule protein tyrosine kinases inhibitors potentiate targeted cancer therapy. Int J Pharm 2020;573:118785. [PMID: 31678384 DOI: 10.1016/j.ijpharm.2019.118785] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
|
66 |
Wu W, Li T. Unraveling the in vivo fate and cellular pharmacokinetics of drug nanocarriers. Adv Drug Deliv Rev 2019;143:1-2. [PMID: 31519263 DOI: 10.1016/j.addr.2019.08.003] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 4.3] [Reference Citation Analysis]
|