BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Donahue ND, Acar H, Wilhelm S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv Drug Deliv Rev 2019;143:68-96. [PMID: 31022434 DOI: 10.1016/j.addr.2019.04.008] [Cited by in Crossref: 302] [Cited by in F6Publishing: 330] [Article Influence: 75.5] [Reference Citation Analysis]
Number Citing Articles
1 Zhou J, Li K, Qin H, Xie B, Liao H, Su X, Li C, He X, Chen W, Jiang X. Programmed-stimuli responsive carrier-free multidrug delivery system for highly efficient trimodal combination therapy. J Colloid Interface Sci 2023;637:453-64. [PMID: 36716669 DOI: 10.1016/j.jcis.2023.01.091] [Reference Citation Analysis]
2 Vu TQ, Sant'Anna LE, Kamat NP. Tuning Targeted Liposome Avidity to Cells via Lipid Phase Separation. Biomacromolecules 2023. [PMID: 36943688 DOI: 10.1021/acs.biomac.2c01338] [Reference Citation Analysis]
3 Kanakari E, Dendrinou-samara C. Fighting Phytopathogens with Engineered Inorganic-Based Nanoparticles. Materials 2023;16:2388. [DOI: 10.3390/ma16062388] [Reference Citation Analysis]
4 Wu C, Sun Y, He X, Weng W, Cheng K, Chen Z. Photothermal extracellular matrix based nanocomposite films and their effect on the osteogenic differentiation of BMSCs. Nanoscale 2023;15:5379-90. [PMID: 36825767 DOI: 10.1039/d2nr05889h] [Reference Citation Analysis]
5 Sánchez-lópez L, Ropero de Torres N, Chico B, Soledad Fagali N, de los Ríos V, Escudero ML, García-alonso MC, Lozano RM. Effect of Wear-Corrosion of Reduced Graphene Oxide Functionalized with Hyaluronic Acid on Inflammatory and Proteomic Response of J774A.1 Macrophages. Metals 2023;13:598. [DOI: 10.3390/met13030598] [Reference Citation Analysis]
6 Zhao D, Feng W, Kang X, Li H, Liu F, Zheng W, Li G, Wang X. Dual-targeted poly(amino acid) nanoparticles deliver drug combinations on-site: an intracellular synergistic strategy to eliminate intracellular bacteria. J Mater Chem B 2023. [PMID: 36919349 DOI: 10.1039/d3tb00125c] [Reference Citation Analysis]
7 Ragab EM, El Gamal DM, Mohamed TM, Khamis AA. Impairment of electron transport chain and induction of apoptosis by chrysin nanoparticles targeting succinate-ubiquinone oxidoreductase in pancreatic and lung cancer cells. Genes Nutr 2023;18:4. [PMID: 36906524 DOI: 10.1186/s12263-023-00723-4] [Reference Citation Analysis]
8 Gimondi S, Vieira de Castro J, Reis RL, Ferreira H, Neves NM. On the size-dependent internalization of sub-hundred polymeric nanoparticles. Colloids Surf B Biointerfaces 2023;225:113245. [PMID: 36905835 DOI: 10.1016/j.colsurfb.2023.113245] [Reference Citation Analysis]
9 Soares S, Pereira C, Sousa AP, Oliveira AC, Sales MG, Correa-Duarte MA, Guerreiro SG, Fernandes R. Metabolic Disruption of Gold Nanospheres, Nanostars and Nanorods in Human Metastatic Prostate Cancer Cells. Cells 2023;12. [PMID: 36899923 DOI: 10.3390/cells12050787] [Reference Citation Analysis]
10 Spleis H, Sandmeier M, Claus V, Bernkop-Schnürch A. Surface design of nanocarriers: Key to more efficient oral drug delivery systems. Adv Colloid Interface Sci 2023;313:102848. [PMID: 36780780 DOI: 10.1016/j.cis.2023.102848] [Reference Citation Analysis]
11 Wang L, Wilhelm S. Exploiting endothelial transcytosis to reach into the brain. Nat Mater 2023;22:282-3. [PMID: 36864160 DOI: 10.1038/s41563-023-01487-3] [Reference Citation Analysis]
12 Singh N, Kim J, Kim J, Lee K, Zunbul Z, Lee I, Kim E, Chi S, Kim JS. Covalent organic framework nanomedicines: Biocompatibility for advanced nanocarriers and cancer theranostics applications. Bioactive Materials 2023;21:358-380. [DOI: 10.1016/j.bioactmat.2022.08.016] [Reference Citation Analysis]
13 Yang J, Luly KM, Green JJ. Nonviral nanoparticle gene delivery into the CNS for neurological disorders and brain cancer applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2023;15:e1853. [PMID: 36193561 DOI: 10.1002/wnan.1853] [Reference Citation Analysis]
14 O'Brien Laramy MN, Luthra S, Brown MF, Bartlett DW. Delivering on the promise of protein degraders. Nat Rev Drug Discov 2023. [PMID: 36810917 DOI: 10.1038/s41573-023-00652-2] [Reference Citation Analysis]
15 Sun R, Zhang Y, Lin X, Piao Y, Xie T, He Y, Xiang J, Shao S, Zhou Q, Zhou Z, Tang J, Shen Y. Aminopeptidase N-Responsive Conjugates with Tunable Charge-Reversal Properties for Highly Efficient Tumor Accumulation and Penetration. Angew Chem Int Ed Engl 2023;62:e202217408. [PMID: 36594796 DOI: 10.1002/anie.202217408] [Reference Citation Analysis]
16 Spencer AP, Leiro V, Pêgo AP. Unravelling the interactions of biodegradable dendritic nucleic acid carriers and neural cells. Biomater Sci 2023;11:1499-516. [PMID: 36602540 DOI: 10.1039/d2bm01114j] [Reference Citation Analysis]
17 Zhao P, Li H, Bu W. A Forward Vision for Chemodynamic Therapy: Issues and Opportunities. Angew Chem Int Ed Engl 2023;62:e202210415. [PMID: 36650984 DOI: 10.1002/anie.202210415] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Boinapalli Y, Shankar Pandey R, Singh Chauhan A, Sudheesh MS. Physiological relevance of in-vitro cell-nanoparticle interaction studies as a predictive tool in cancer nanomedicine research. Int J Pharm 2023;632:122579. [PMID: 36603671 DOI: 10.1016/j.ijpharm.2022.122579] [Reference Citation Analysis]
19 Chen S, Pounraj S, Sivakumaran N, Kakkanat A, Sam G, Kabir MT, Rehm BHA. Precision-engineering of subunit vaccine particles for prevention of infectious diseases. Front Immunol 2023;14:1131057. [PMID: 36817419 DOI: 10.3389/fimmu.2023.1131057] [Reference Citation Analysis]
20 Yang X, Peng Y, Wang Y, Zheng Y, He Y, Pan J, Liu N, Xu Y, Ma R, Zhai J, Ma Y, Guan S. Curcumae Rhizoma Exosomes-like nanoparticles loaded Astragalus components improve the absorption and enhance anti-tumor effect. Journal of Drug Delivery Science and Technology 2023. [DOI: 10.1016/j.jddst.2023.104274] [Reference Citation Analysis]
21 Zhang P, Wu G, Zhang D, Lai WF. Mechanisms and strategies to enhance penetration during intravesical drug therapy for bladder cancer. J Control Release 2023;354:69-79. [PMID: 36603810 DOI: 10.1016/j.jconrel.2023.01.001] [Reference Citation Analysis]
22 Yang S, Niu Y, Li S, Lv M, Liu J, Zhang L, Cui L, Qu L. TPGS and Doca dual-modified mesoporous silica nanoparticle-supported lipid bilayers enhance the efficient delivery and in vivo absorption of Coenzyme Q10. Journal of Drug Delivery Science and Technology 2023. [DOI: 10.1016/j.jddst.2023.104243] [Reference Citation Analysis]
23 Liu S, Zhang X, Zeng K, He C, Huang Y, Xin G, Huang X. Insights into eco-corona formation and its role in the biological effects of nanomaterials from a molecular mechanisms perspective. Science of The Total Environment 2023;858:159867. [DOI: 10.1016/j.scitotenv.2022.159867] [Reference Citation Analysis]
24 Wu J, Xing L, Zheng Y, Yu Y, Wu R, Liu X, Li L, Huang Y. Disease-specific protein corona formed in pathological intestine enhances the oral absorption of nanoparticles. Acta Pharmaceutica Sinica B 2023. [DOI: 10.1016/j.apsb.2023.02.012] [Reference Citation Analysis]
25 Talukdar D, Kumar P, Chaudhary B, Sharma D, Yadav N, Afzal O, Altamimi ASA, Almalki WH, Alzarea SI, Kazmi I, Pareek A, Gupta G, Gupta MM. Biotransformation, multifunctional recycling mechanism of nanostructures, and evaluation of the safety of nanoscale materials. Particuology 2023. [DOI: 10.1016/j.partic.2023.01.009] [Reference Citation Analysis]
26 Li Z, Xie H, Shi H, Chen H, Gao Y. Photosensitizers Dispersed on Nanosized Triterpenoid Matrix with Deaggregation-Enhanced Singlet Oxygen Production. ACS Appl Mater Interfaces 2023;15:4973-83. [PMID: 36661249 DOI: 10.1021/acsami.2c20364] [Reference Citation Analysis]
27 Sisin NNT, Rahman WN. Potentials of Bismuth-Based Nanoparticles and Baicalein Natural Compounds as Radiosensitizers in Cancer Radiotherapy: a Review. BioNanoSci 2023. [DOI: 10.1007/s12668-022-01057-y] [Reference Citation Analysis]
28 Moon Y, Jeon SI, Shim MK, Kim K. Cancer-Specific Delivery of Proteolysis-Targeting Chimeras (PROTACs) and Their Application to Cancer Immunotherapy. Pharmaceutics 2023;15. [PMID: 36839734 DOI: 10.3390/pharmaceutics15020411] [Reference Citation Analysis]
29 Frickenstein AN, Mukherjee S, Harcourt T, He Y, Sheth V, Wang L, Malik Z, Wilhelm S. Quantification of monodisperse and biocompatible gold nanoparticles by single-particle ICP-MS. Anal Bioanal Chem 2023. [PMID: 36670192 DOI: 10.1007/s00216-023-04540-x] [Reference Citation Analysis]
30 Cheng H, Wang C, Lyu Z, Zhu Z, Xia Y. Controlling the Nucleation and Growth of Au on a-Se Nanospheres to Enhance Their Cellular Uptake and Cytotoxicity. J Am Chem Soc 2023;145:1216-26. [PMID: 36621988 DOI: 10.1021/jacs.2c11053] [Reference Citation Analysis]
31 Zhao P, Li H, Bu W. A Forward Vision for Chemodynamic Therapy: Issues and Opportunities. Angewandte Chemie 2023. [DOI: 10.1002/ange.202210415] [Reference Citation Analysis]
32 Algar WR, Szwarczewski A, Massey M. Are We There Yet? Intracellular Sensing with Luminescent Nanoparticles and FRET. Anal Chem 2023;95:551-9. [PMID: 36595310 DOI: 10.1021/acs.analchem.2c03751] [Reference Citation Analysis]
33 Hughes KA, Misra B, Maghareh M, Bobbala S. Use of stimulatory responsive soft nanoparticles for intracellular drug delivery. Nano Res 2023;:1-17. [PMID: 36685637 DOI: 10.1007/s12274-022-5267-5] [Reference Citation Analysis]
34 Bari E, Ferrera F, Altosole T, Perteghella S, Mauri P, Rossi R, Passignani G, Mastracci L, Galati M, Astone GI, Mastrogiacomo M, Castagnola P, Fenoglio D, Di Silvestre D, Torre ML, Filaci G. Trojan-horse silk fibroin nanocarriers loaded with a re-call antigen to redirect immunity against cancer. J Immunother Cancer 2023;11. [PMID: 36697251 DOI: 10.1136/jitc-2022-005916] [Reference Citation Analysis]
35 Liu M, Thijssen S, Hennink WE, Garssen J, van Nostrum CF, Willemsen LEM. Oral pretreatment with β-lactoglobulin derived peptide and CpG co-encapsulated in PLGA nanoparticles prior to sensitizations attenuates cow's milk allergy development in mice. Front Immunol 2022;13:1053107. [PMID: 36703973 DOI: 10.3389/fimmu.2022.1053107] [Reference Citation Analysis]
36 Zou Y, Gao W, Jin H, Mao C, Zhang Y, Wang X, Mei D, Zhao L. Cellular Uptake and Transport Mechanism of 6-Mercaptopurine Nanomedicines for Enhanced Oral Bioavailability. Int J Nanomedicine 2023;18:79-94. [PMID: 36636639 DOI: 10.2147/IJN.S394819] [Reference Citation Analysis]
37 Wei W, Zhang Y, Lin Z, Wu X, Fan W, Chen J. Advances, challenge and prospects in cell-mediated nanodrug delivery for cancer therapy: a review. J Drug Target 2023;31:1-13. [PMID: 35857432 DOI: 10.1080/1061186X.2022.2104299] [Reference Citation Analysis]
38 Costanzo M, Malatesta M. Diaminobenzidine Photooxidation to Visualize Fluorescent Nanoparticles in Adhering Cultured Cells at Transmission Electron Microscopy. Methods in Molecular Biology 2023. [DOI: 10.1007/978-1-0716-2675-7_27] [Reference Citation Analysis]
39 Ma Y, Lin H, Wang P, Yang H, Yu J, Tian H, Li T, Ge S, Wang Y, Jia R, Leong KW, Ruan J. A miRNA-based gene therapy nanodrug synergistically enhances pro-inflammatory antitumor immunity against melanoma. Acta Biomater 2023;155:538-53. [PMID: 36400349 DOI: 10.1016/j.actbio.2022.11.016] [Reference Citation Analysis]
40 Sahu KK, Pradhan M, Singh D, Singh MR, Yadav K. Non-viral nucleic acid delivery approach: A boon for state-of-the-art gene delivery. Journal of Drug Delivery Science and Technology 2023. [DOI: 10.1016/j.jddst.2023.104152] [Reference Citation Analysis]
41 Mazahir F, Bhogale D, Palai AK, Yadav AK. Nanomedicine: Principles, properties, and regulatory issues. Smart Polymeric Nano-Constructs in Drug Delivery 2023. [DOI: 10.1016/b978-0-323-91248-8.00014-3] [Reference Citation Analysis]
42 Mandal D, Kushwaha K, Gupta J. Emerging nano-strategies against tumour microenvironment (TME): a review. OpenNano 2023;9:100112. [DOI: 10.1016/j.onano.2022.100112] [Reference Citation Analysis]
43 da Silva Brito WA, Singer D, Miebach L, Saadati F, Wende K, Schmidt A, Bekeschus S. Comprehensive in vitro polymer type, concentration, and size correlation analysis to microplastic toxicity and inflammation. Science of The Total Environment 2023;854:158731. [DOI: 10.1016/j.scitotenv.2022.158731] [Reference Citation Analysis]
44 Swetha KL, Maravajjala KS, Li SD, Singh MS, Roy A. Breaking the niche: multidimensional nanotherapeutics for tumor microenvironment modulation. Drug Deliv Transl Res 2023;13:105-34. [PMID: 35697894 DOI: 10.1007/s13346-022-01194-7] [Reference Citation Analysis]
45 Pinto IS, Cordeiro RA, Faneca H. Polymer- and lipid-based gene delivery technology for CAR T cell therapy. J Control Release 2023;353:196-215. [PMID: 36423871 DOI: 10.1016/j.jconrel.2022.11.038] [Reference Citation Analysis]
46 de Macedo EF, Santos NS, Nascimento LS, Mathey R, Brenet S, de Moura MS, Hou Y, Tada DB. Interaction between Nanoparticles, Membranes and Proteins: A Surface Plasmon Resonance Study. Int J Mol Sci 2022;24. [PMID: 36614033 DOI: 10.3390/ijms24010591] [Reference Citation Analysis]
47 Brettner FEB, Schreiner J, Vogel-Kindgen S, Windbergs M. Engineered Self-Assembly of Amphiphilic Cyclodextrin Conjugates for Drug Encapsulation. ACS Biomater Sci Eng 2022. [PMID: 36562386 DOI: 10.1021/acsbiomaterials.2c01023] [Reference Citation Analysis]
48 Wan F, Dong Z, Liu B, Yan S, Wu N, Yang M, Chang L. Sensitive Interrogation of Enhancer Activity in Living Cells on a Nanoelectroporation-Probing Platform. ACS Sens 2022;7:3671-81. [PMID: 36410738 DOI: 10.1021/acssensors.2c01187] [Reference Citation Analysis]
49 Sayed FA, Eissa NG, Shen Y, Hunstad DA, Wooley KL, Elsabahy M. Morphologic design of nanostructures for enhanced antimicrobial activity. J Nanobiotechnology 2022;20:536. [PMID: 36539809 DOI: 10.1186/s12951-022-01733-x] [Reference Citation Analysis]
50 Jiang Y, Fan M, Yang Z, Liu X, Xu Z, Liu S, Feng G, Tang S, Li Z, Zhang Y, Chen S, Yang C, Law WC, Dong B, Xu G, Yong KT. Recent advances in nanotechnology approaches for non-viral gene therapy. Biomater Sci 2022;10:6862-92. [PMID: 36222758 DOI: 10.1039/d2bm01001a] [Reference Citation Analysis]
51 Reschke M, Piotrowski-Daspit AS, Pober JS, Saltzman WM. Nucleic Acid Delivery to the Vascular Endothelium. Mol Pharm 2022;19:4466-86. [PMID: 36251765 DOI: 10.1021/acs.molpharmaceut.2c00653] [Reference Citation Analysis]
52 Shi S, Li H, Zheng X, Lv L, Liao S, Lu P, Liu M, Zhao H, Mei Z. Visualization system based on hierarchical targeting for diagnosis and treatment of hepatocellular carcinoma. Materials Today Bio 2022;16:100398. [DOI: 10.1016/j.mtbio.2022.100398] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
53 Aqeel S, Gupta A, Singh L. A Review on Unknown Repercussions Associated with Metallic Nanoparticles and their Rectification Techniques. CNM 2022;7:181-192. [DOI: 10.2174/2405461507666220304204152] [Reference Citation Analysis]
54 Dowling CV, Cevaal PM, Faria M, Johnston ST. On predicting heterogeneity in nanoparticle dosage. Math Biosci 2022;354:108928. [PMID: 36334785 DOI: 10.1016/j.mbs.2022.108928] [Reference Citation Analysis]
55 Wang D, Gu W, Chen W, Zhou J, Yu L, Kook Kim B, Zhang X, Seung Kim J. Advanced nanovaccines based on engineering nanomaterials for accurately enhanced cancer immunotherapy. Coordination Chemistry Reviews 2022;472:214788. [DOI: 10.1016/j.ccr.2022.214788] [Reference Citation Analysis]
56 Mettenbrink EM, Yang W, Wilhelm S. Bioimaging with Upconversion Nanoparticles. Adv Photonics Res 2022;3:2200098. [PMID: 36686152 DOI: 10.1002/adpr.202200098] [Reference Citation Analysis]
57 Nishinaka T, Hatipoglu OF, Wake H, Watanabe M, Toyomura T, Mori S, Nishibori M, Takahashi H. Glycolaldehyde-derived advanced glycation end products suppress STING/TBK1/IRF3 signaling via CD36. Life Sciences 2022;310:121116. [DOI: 10.1016/j.lfs.2022.121116] [Reference Citation Analysis]
58 Wang D, Bai L, Huang X, Yan W, Li S. Size-dependent acute toxicity and oxidative damage caused by cobalt-based framework (ZIF-67) to Photobacterium phosphoreum. Science of The Total Environment 2022;851:158317. [DOI: 10.1016/j.scitotenv.2022.158317] [Reference Citation Analysis]
59 Cho H, Su Choi Y, Gyeom Choung D, Gu Choi W, Seo Lee M, Cho Y, Young Lee J, Suk Lee H, Chang Kang H. ε-Poly(L-lysine)-Based Bioreducible Nanogels for Mitochondria-Targeted Delivery and Release: Hydrophobicity-Tuned Nucleus-to-Mitochondria Organelle-Targeting Switch and Slow Disulfide Cleavage. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.141090] [Reference Citation Analysis]
60 Armenia I, Cuestas Ayllón C, Torres Herrero B, Bussolari F, Alfranca G, Grazú V, Martínez de la Fuente J. Photonic and magnetic materials for on-demand local drug delivery. Advanced Drug Delivery Reviews 2022;191:114584. [DOI: 10.1016/j.addr.2022.114584] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
61 Yedgar S, Barshtein G, Gural A. Hemolytic Activity of Nanoparticles as a Marker of Their Hemocompatibility. Micromachines (Basel) 2022;13. [PMID: 36557391 DOI: 10.3390/mi13122091] [Reference Citation Analysis]
62 Fang L, Liu J, Liu Z, Zhou H. Immune modulating nanoparticles for the treatment of ocular diseases. J Nanobiotechnol 2022;20:496. [DOI: 10.1186/s12951-022-01658-5] [Reference Citation Analysis]
63 Youden B, Jiang R, Carrier AJ, Servos MR, Zhang X. A Nanomedicine Structure-Activity Framework for Research, Development, and Regulation of Future Cancer Therapies. ACS Nano 2022;16:17497-551. [PMID: 36322785 DOI: 10.1021/acsnano.2c06337] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
64 Farabegoli F, Granja A, Magalhães J, Purgato S, Voltattorni M, Pinheiro M. Epigallocatechin-3-gallate Delivered in Nanoparticles Increases Cytotoxicity in Three Breast Carcinoma Cell Lines. ACS Omega 2022. [DOI: 10.1021/acsomega.2c01829] [Reference Citation Analysis]
65 Zhang N, Xiong G, Liu Z. Toxicity of metal-based nanoparticles: Challenges in the nano era. Front Bioeng Biotechnol 2022;10:1001572. [PMID: 36619393 DOI: 10.3389/fbioe.2022.1001572] [Reference Citation Analysis]
66 Zhong W, Guo F, Chen F, Law M, Lu J, Shao D, Yu H, Chan G, Chen M. A multifunctional oxidative stress nanoamplifier with ROS amplification and GSH exhaustion for enhanced chemodynamic therapy. Front Pharmacol 2022;13. [DOI: 10.3389/fphar.2022.1044083] [Reference Citation Analysis]
67 Salah M, Sallam MA, Abdelmoneem MA, Teleb M, Elkhodairy KA, Bekhit AA, Khafaga AF, Noreldin AE, Elzoghby AO, Khattab SN. Sequential Delivery of Novel Triple Drug Combination via Crosslinked Alginate/Lactoferrin Nanohybrids for Enhanced Breast Cancer Treatment. Pharmaceutics 2022;14:2404. [DOI: 10.3390/pharmaceutics14112404] [Reference Citation Analysis]
68 Mohiuddin SMUG, Saeed A, Alshahrie A, Memić A, Aljoud F, Abdullahi S, Organji HA, Salah N. Carbon Nanoparticles Extracted from Date Palm Fronds for Fluorescence Bioimaging: In Vitro Study. J Funct Biomater 2022;13. [PMID: 36412859 DOI: 10.3390/jfb13040218] [Reference Citation Analysis]
69 Abdel-hakeem MA, Abdel Maksoud AI, Aladhadh MA, Almuryif KA, Elsanhoty RM, Elebeedy D. Gentamicin–Ascorbic Acid Encapsulated in Chitosan Nanoparticles Improved In Vitro Antimicrobial Activity and Minimized Cytotoxicity. Antibiotics 2022;11:1530. [DOI: 10.3390/antibiotics11111530] [Reference Citation Analysis]
70 Czaja AJ. Advancing Biologic Therapy for Refractory Autoimmune Hepatitis. Dig Dis Sci 2022;67:4979-5005. [PMID: 35147819 DOI: 10.1007/s10620-021-07378-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
71 Esim O, Oztuna A, Sarper M, Hascicek C. Chitosan-coated bovine serum albumin nanocarriers mediate efficient delivery of methotrexate in breast cancer therapeutics. Journal of Drug Delivery Science and Technology 2022;77:103906. [DOI: 10.1016/j.jddst.2022.103906] [Reference Citation Analysis]
72 Wang Y, Zhang C, Xiao M, Ganesan K, Gao F, Liu Q, Ye Z, Sui Y, Zhang F, Wei K, Wu Y, Wu J, Du B, Xu C, Li Y, Li P, Zhang J, Chen J. A tumor-targeted delivery of oral isoliquiritigenin through encapsulated zein phosphatidylcholine hybrid nanoparticles prevents triple-negative breast cancer. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2022.103922] [Reference Citation Analysis]
73 Wang L, Shi Y, Jiang J, Li C, Zhang H, Zhang X, Jiang T, Wang L, Wang Y, Feng L. Micro-Nanocarriers Based Drug Delivery Technology for Blood-Brain Barrier Crossing and Brain Tumor Targeting Therapy. Small 2022;18:e2203678. [PMID: 36103614 DOI: 10.1002/smll.202203678] [Reference Citation Analysis]
74 Sobhani T, Shahbazi-gahrouei D, Zahraei M, Hejazi SH, Dousti F, Rostami M. Novel MR imaging nanoprobe for hepatocellular carcinoma detection based on manganese–zinc ferrite nanoparticles: in vitro and in vivo assessments. J Cancer Res Clin Oncol 2022. [DOI: 10.1007/s00432-022-04427-x] [Reference Citation Analysis]
75 Wu J, Zhu Z, Liu W, Zhang Y, Kang Y, Liu J, Hu C, Wang R, Zhang M, Chen L, Shao L. How Nanoparticles Open the Paracellular Route of Biological Barriers: Mechanisms, Applications, and Prospects. ACS Nano 2022;16:15627-52. [PMID: 36121682 DOI: 10.1021/acsnano.2c05317] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
76 Choi K, Kim JH, Ryu K, Kaushik N. Current Nanomedicine for Targeted Vascular Disease Treatment: Trends and Perspectives. IJMS 2022;23:12397. [DOI: 10.3390/ijms232012397] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
77 Huang S, Ding X. Precise Design Strategies of Nanotechnologies for Controlled Drug Delivery. J Funct Biomater 2022;13:188. [PMID: 36278656 DOI: 10.3390/jfb13040188] [Reference Citation Analysis]
78 Wu W, Li T. Deepening the understanding of the in vivo and cellular fate of nanocarriers. Adv Drug Deliv Rev 2022;189:114529. [PMID: 36064031 DOI: 10.1016/j.addr.2022.114529] [Reference Citation Analysis]
79 Zhou Q, Li J, Xiang J, Shao S, Zhou Z, Tang J, Shen Y. Transcytosis-enabled active extravasation of tumor nanomedicine. Adv Drug Deliv Rev 2022;189:114480. [PMID: 35952830 DOI: 10.1016/j.addr.2022.114480] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
80 Liu Y, Zhu S, Gu Z, Chen C, Zhao Y. Toxicity of manufactured nanomaterials. Particuology 2022;69:31-48. [DOI: 10.1016/j.partic.2021.11.007] [Cited by in Crossref: 16] [Cited by in F6Publishing: 20] [Article Influence: 16.0] [Reference Citation Analysis]
81 Lv L, You Y, Liu Y, Yang Z. Advanced Research in Cellular Pharmacokinetics and its Cutting-edge Technologies. Curr Pharm Des 2022;28:3095-104. [PMID: 36082865 DOI: 10.2174/1381612828666220907102606] [Reference Citation Analysis]
82 Wu ZC, Liu XY, Liu JY, Piao JS, Piao MG. Preparation of Betulinic Acid Galactosylated Chitosan Nanoparticles and Their Effect on Liver Fibrosis. Int J Nanomedicine 2022;17:4195-210. [PMID: 36134203 DOI: 10.2147/IJN.S373430] [Reference Citation Analysis]
83 Jaber M, Jaber B, Hamed S, AlKhatib HS. Preparation and evaluation of ascorbyl glucoside and ascorbic acid solid in oil nanodispersions for corneal epithelial wound healing. Int J Pharm 2022;627:122227. [PMID: 36155791 DOI: 10.1016/j.ijpharm.2022.122227] [Reference Citation Analysis]
84 Liu Y, Liu R, Dong J, Xia X, Yang H, Wei S, Fan L, Fang M, Zou Y, Zheng M, Leong KW, Shi B. Targeted Protein Degradation via Nanoparticles.. [DOI: 10.1101/2022.09.21.508905] [Reference Citation Analysis]
85 Kubiatowicz LJ, Mohapatra A, Krishnan N, Fang RH, Zhang L. mRNA nanomedicine: Design and recent applications. Exploration 2022. [DOI: 10.1002/exp.20210217] [Reference Citation Analysis]
86 Zalba S, Ten Hagen TLM, Burgui C, Garrido MJ. Stealth nanoparticles in oncology: Facing the PEG dilemma. J Control Release 2022;351:22-36. [PMID: 36087801 DOI: 10.1016/j.jconrel.2022.09.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
87 Faizullin B, Dayanova I, Strelnik I, Kholin K, Nizameev I, Gubaidullin A, Voloshina A, Gerasimova T, Kashnik I, Brylev K, Sibgatullina G, Samigullin D, Petrov K, Musina E, Karasik A, Mustafina A. pH-Driven Intracellular Nano-to-Molecular Disassembly of Heterometallic [Au2L2]{Re6Q8} Colloids (L = PNNP Ligand; Q = S2- or Se2-). Nanomaterials (Basel) 2022;12:3229. [PMID: 36145017 DOI: 10.3390/nano12183229] [Reference Citation Analysis]
88 Nakanishi J, Yamamoto S. Static and photoresponsive dynamic materials to dissect physical regulation of cellular functions. Biomater Sci 2022. [PMID: 36111810 DOI: 10.1039/d2bm00789d] [Reference Citation Analysis]
89 Torres-vanegas JD, Cifuentes J, Puentes PR, Quezada V, Garcia-brand AJ, Cruz JC, Reyes LH. Assessing cellular internalization and endosomal escape abilities of novel BUFII-Graphene oxide nanobioconjugates. Front Chem 2022;10:974218. [DOI: 10.3389/fchem.2022.974218] [Reference Citation Analysis]
90 Liu X, Sun S, Wang N, Kang R, Xie L, Liu X. Therapeutic application of hydrogels for bone-related diseases. Front Bioeng Biotechnol 2022;10:998988. [DOI: 10.3389/fbioe.2022.998988] [Reference Citation Analysis]
91 Chen K, Liu S, Zhu W, Yin P. Surface Engineering Promoted Insulin-Sensitizing Activities of Sub-Nanoscale Vanadate Clusters through Regulated Pharmacokinetics and Bioavailability. Small 2022;:e2203957. [PMID: 36058647 DOI: 10.1002/smll.202203957] [Reference Citation Analysis]
92 Yang W, Frickenstein AN, Sheth V, Holden A, Mettenbrink EM, Wang L, Woodward AA, Joo BS, Butterfield SK, Donahue ND, Green DE, Thomas AG, Harcourt T, Young H, Tang M, Malik ZA, Harrison RG, Mukherjee P, DeAngelis PL, Wilhelm S. Controlling Nanoparticle Uptake in Innate Immune Cells with Heparosan Polysaccharides. Nano Lett 2022. [PMID: 36048773 DOI: 10.1021/acs.nanolett.2c02226] [Reference Citation Analysis]
93 Cong VT, Houng JL, Kavallaris M, Chen X, Tilley RD, Gooding JJ. How can we use the endocytosis pathways to design nanoparticle drug-delivery vehicles to target cancer cells over healthy cells? Chem Soc Rev 2022;51:7531-59. [PMID: 35938511 DOI: 10.1039/d1cs00707f] [Reference Citation Analysis]
94 Wu Q, Karthivashan G, Nakhaei-Nejad M, Anand BG, Giuliani F, Kar S. Native PLGA nanoparticles regulate APP metabolism and protect neurons against β-amyloid toxicity: Potential significance in Alzheimer's disease pathology. Int J Biol Macromol 2022:S0141-8130(22)01851-7. [PMID: 36030976 DOI: 10.1016/j.ijbiomac.2022.08.148] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
95 Blanco S, Martínez-Lara E, Siles E, Peinado MÁ. New Strategies for Stroke Therapy: Nanoencapsulated Neuroglobin. Pharmaceutics 2022;14:1737. [PMID: 36015363 DOI: 10.3390/pharmaceutics14081737] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
96 Yin Y, Tian BM, Li X, Yu YC, Deng DK, Sun LJ, Qu HL, Wu RX, Xu XY, Sun HH, An Y, He XT, Chen FM. Gold nanoparticles targeting the autophagy-lysosome system to combat the inflammation-compromised osteogenic potential of periodontal ligament stem cells: From mechanism to therapy. Biomaterials 2022;:121743. [PMID: 36030103 DOI: 10.1016/j.biomaterials.2022.121743] [Reference Citation Analysis]
97 Huang K, Wang J, Zhang Q, Yuan K, Yang Y, Li F, Sun X, Chang H, Liang Y, Zhao J, Tang T, Yang S. Sub 150 nm Nanoscale Gallium Based Metal–Organic Frameworks Armored Antibiotics as Super Penetrating Bombs for Eradicating Persistent Bacteria. Adv Funct Materials. [DOI: 10.1002/adfm.202204906] [Reference Citation Analysis]
98 Tao Y, Lan X, Zhang Y, Xiao Y, Wang J, Chen H, Liu L, Liang XJ, Guo W. Navigations of the targeting pathway of nanomedicines towards tumor. Expert Opin Drug Deliv 2022. [PMID: 35929954 DOI: 10.1080/17425247.2022.2110064] [Reference Citation Analysis]
99 Zhang M, He S, Pang W, Wei W, Zhou F, Wu X, Qi H, Duan X, Wang Y. On chip manipulation of carbon dots via gigahertz acoustic streaming for enhanced bioimaging and biosensing. Talanta 2022;245:123462. [DOI: 10.1016/j.talanta.2022.123462] [Reference Citation Analysis]
100 Liu S, Li L, Zhang X, Meng Q. Nanotherapies from an oncologist doctor's view. Smart Materials in Medicine 2022. [DOI: 10.1016/j.smaim.2022.07.005] [Reference Citation Analysis]
101 Topuz F, Uyar T. Advances in the development of cyclodextrin-based nanogels/microgels for biomedical applications: Drug delivery and beyond. Carbohydrate Polymers 2022. [DOI: 10.1016/j.carbpol.2022.120033] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
102 Woodward A, Faria GN, Harrison RG. Annexin A5 as a targeting agent for cancer treatment. Cancer Letters 2022. [DOI: 10.1016/j.canlet.2022.215857] [Reference Citation Analysis]
103 Varzandeh M, Labbaf S, Varshosaz J, Laurent S. An overview of the intracellular localization of high-Z nanoradiosensitizers. Progress in Biophysics and Molecular Biology 2022. [DOI: 10.1016/j.pbiomolbio.2022.08.006] [Reference Citation Analysis]
104 Zyuzin MV, Hartmann R, Timin AS, Carregal-romero S, Parak WJ, Escudero A. Biodegradable particles for protein delivery: Estimation of the release kinetics inside cells. Biomaterials Advances 2022;139:212966. [DOI: 10.1016/j.bioadv.2022.212966] [Reference Citation Analysis]
105 Holjencin C, Jakymiw A. MicroRNAs and Their Big Therapeutic Impacts: Delivery Strategies for Cancer Intervention. Cells 2022;11:2332. [DOI: 10.3390/cells11152332] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
106 Ganda S, Wong CK, Biazik J, Raveendran R, Zhang L, Chen F, Ariotti N, Stenzel MH. Macrophage-Targeting and Complete Lysosomal Degradation of Self-assembled Two-Dimensional Poly(ε-caprolactone) Platelet Particles. ACS Appl Mater Interfaces 2022. [PMID: 35895018 DOI: 10.1021/acsami.2c06555] [Reference Citation Analysis]
107 Subedi L, Pandey P, Kang SH, Kim KT, Cho SS, Chang KY, Byun Y, Shim JH, Park JW. Enhanced oral absorption of teriparatide with therapeutic potential for management of osteoporosis. J Control Release 2022;349:502-19. [PMID: 35835400 DOI: 10.1016/j.jconrel.2022.07.012] [Reference Citation Analysis]
108 Flores de los Rios PA, Casañas Pimentel RG, San Martín Martínez E. Nanodrugs against cancer: biological considerations in its redesign. International Journal of Polymeric Materials and Polymeric Biomaterials. [DOI: 10.1080/00914037.2022.2097680] [Reference Citation Analysis]
109 Bie N, Yong T, Wei Z, Gan L, Yang X. Extracellular vesicles for improved tumor accumulation and penetration. Adv Drug Deliv Rev 2022;188:114450. [PMID: 35841955 DOI: 10.1016/j.addr.2022.114450] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
110 Lv Q, Ma B, Li W, Fu G, Wang X, Xiao Y. Nanomaterials-Mediated Therapeutics and Diagnosis Strategies for Myocardial Infarction. Front Chem 2022;10:943009. [DOI: 10.3389/fchem.2022.943009] [Reference Citation Analysis]
111 Liu H, Zhao X, Bai Y, Xie H, Yang Z, Wang Y, Chen Y, Luo Y, Ma M, Lu W, Ma J, Yang T, Jin B, Ding P. Amphiphilic cationic triblock polymers for p53-mediated triple-negative breast cancer gene therapy. Materials & Design 2022;219:110758. [DOI: 10.1016/j.matdes.2022.110758] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
112 Cai J, Peng J, Zang X, Feng J, Li R, Ren P, Zheng B, Wang J, Wang J, Yan M, Liu J, Deng R, Wang D. Mammary Leukocyte-Assisted Nanoparticle Transport Enhances Targeted Milk Trace Mineral Delivery. Adv Sci (Weinh) 2022;:e2200841. [PMID: 35773238 DOI: 10.1002/advs.202200841] [Reference Citation Analysis]
113 Griffiths G, Gruenberg J, Marsh M, Wohlmann J, Jones AT, Parton RG. Nanoparticle entry into cells; the cell biology weak link. Adv Drug Deliv Rev 2022;188:114403. [PMID: 35777667 DOI: 10.1016/j.addr.2022.114403] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
114 Rajendran JV, Parani S, Pillay R. Remya V, Lebepe TC, Maluleke R, Aladesuyi OA, Thomas S, Oluwafemi OS. Gelatin stabilized mesoporous silica CuInS2/ZnS nanocomposite as a potential near-infrared probe and their effect on cancer cell lines. J Mater Sci 2022;57:11911-7. [DOI: 10.1007/s10853-022-07406-2] [Reference Citation Analysis]
115 Zanoni I, Keller JG, Sauer UG, Müller P, Ma-Hock L, Jensen KA, Costa AL, Wohlleben W. Dissolution Rate of Nanomaterials Determined by Ions and Particle Size under Lysosomal Conditions: Contributions to Standardization of Simulant Fluids and Analytical Methods. Chem Res Toxicol 2022;35:963-80. [PMID: 35593714 DOI: 10.1021/acs.chemrestox.1c00418] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
116 Liao H, Ye J, Gao Y, Lian C, Liu L, Xu X, Feng Y, Yang Y, Yang Y, Shen Q, Gao L, Liu Z, Liu Y. Baicalein self-microemulsion based on drug-phospholipid complex for the alleviation of cytokine storm. Bioeng Transl Med 2023;8:e10357. [PMID: 36684101 DOI: 10.1002/btm2.10357] [Reference Citation Analysis]
117 Grilli F, Hajimohammadi Gohari P, Zou S. Characteristics of Graphene Oxide for Gene Transfection and Controlled Release in Breast Cancer Cells. Int J Mol Sci 2022;23:6802. [PMID: 35743245 DOI: 10.3390/ijms23126802] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
118 Zha H, Xu Z, Xu X, Lu X, Shi P, Xiao Y, Tsai HI, Su D, Cheng F, Cheng X, Chen H. PD-1 Cellular Nanovesicles Carrying Gemcitabine to Inhibit the Proliferation of Triple Negative Breast Cancer Cell. Pharmaceutics 2022;14:1263. [PMID: 35745835 DOI: 10.3390/pharmaceutics14061263] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
119 Wang QX, Chen X, Li ZL, Gong YC, Xiong XY. Transferrin/folate dual-targeting Pluronic F127/poly(lactic acid) polymersomes for effective anticancer drug delivery. Journal of Biomaterials Science, Polymer Edition 2022;33:1140-1156. [DOI: 10.1080/09205063.2022.2044434] [Reference Citation Analysis]
120 Fliedel L, Alhareth K, Seguin J, El-khashab M, Chissey A, Mignet N, Fournier T, Andrieux K. Influence of Liposomes’ and Lipoplexes’ Physicochemical Characteristics on Their Uptake Rate and Mechanisms by the Placenta. IJMS 2022;23:6299. [DOI: 10.3390/ijms23116299] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
121 Ma H, Guo L, Zhang H, Wang Y, Miao Y, Liu X, Peng M, Deng X, Peng Y, Fan H. The Metal Ion Release of Manganese Ferrite Nanoparticles: Kinetics, Effects on Magnetic Resonance Relaxivities, and Toxicity. ACS Appl Bio Mater 2022. [PMID: 35658068 DOI: 10.1021/acsabm.2c00338] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
122 Wang Y, Wang J, Ma J, Zhou Y, Lu R. Focusing on Future Applications and Current Challenges of Plant Derived Extracellular Vesicles. Pharmaceuticals 2022;15:708. [DOI: 10.3390/ph15060708] [Reference Citation Analysis]
123 Li X, Omonova Tuychi Qizi C, Mohamed Khamis A, Zhang C, Su Z. Nanotechnology for Enhanced Cytoplasmic and Organelle Delivery of Bioactive Molecules to Immune Cells. Pharm Res 2022. [PMID: 35661086 DOI: 10.1007/s11095-022-03284-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
124 Li Z, Lai X, Fu S, Ren L, Cai H, Zhang H, Gu Z, Ma X, Luo K. Immunogenic Cell Death Activates the Tumor Immune Microenvironment to Boost the Immunotherapy Efficiency. Adv Sci (Weinh) 2022;:e2201734. [PMID: 35652198 DOI: 10.1002/advs.202201734] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 33.0] [Reference Citation Analysis]
125 Zou H, Li M, Li X, Zheng W, Kuang H, Wang M, Zhang W, Ran H, Ma H, Zhou X. Multimodal imaging and photothermal synergistic immunotherapy of retinoblastoma with tuftsin-loaded carbonized MOF nanoparticles. Drug Deliv 2022;29:1785-99. [PMID: 35642917 DOI: 10.1080/10717544.2022.2081379] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
126 Sabatelle RC, Liu R, Hung YP, Bressler E, Neal EJ, Martin A, Ekladious I, Grinstaff MW, Colson YL. Ultra-high drug loading improves nanoparticle efficacy against peritoneal mesothelioma. Biomaterials 2022;285:121534. [PMID: 35487067 DOI: 10.1016/j.biomaterials.2022.121534] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
127 Ma Z, Wong S, Forgham H, Esser L, Lai M, Leiske M, Kempe K, Sharbeen G, Youkhana J, Mansfeld F, Quinn J, Phillips P, Davis T, Kavallaris M, Mccarroll J. Aerosol delivery of star polymer-siRNA nanoparticles as a therapeutic strategy to inhibit lung tumor growth. Biomaterials 2022;285:121539. [DOI: 10.1016/j.biomaterials.2022.121539] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
128 Stahl M, Holzinger J, Bülow S, Goepferich AM. Enzyme-triggered antigen release enhances cross-presentation by dendritic cells. Nanomedicine 2022;42:102545. [PMID: 35283290 DOI: 10.1016/j.nano.2022.102545] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
129 Koga MM, Comberlato A, Rodríguez-Franco HJ, Bastings MMC. Strategic Insights into Engineering Parameters Affecting Cell Type-Specific Uptake of DNA-Based Nanomaterials. Biomacromolecules 2022. [PMID: 35641881 DOI: 10.1021/acs.biomac.2c00282] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
130 Dowling CV, Cevaal PM, Faria M, Johnston ST. On predicting heterogeneity in nanoparticle dosage.. [DOI: 10.1101/2022.05.26.493665] [Reference Citation Analysis]
131 Roy S, Deo K, Abhay Singh K, Pang Lee H, Jaiswal A, Gaharwar AK. Nano-bio Interactions of 2D Molybdenum disulfide. Adv Drug Deliv Rev 2022;:114361. [PMID: 35636569 DOI: 10.1016/j.addr.2022.114361] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
132 Curdt F, Haase K, Ziegenbalg L, Greb H, Heyers D, Winklhofer M. Prussian blue technique is prone to yield false negative results in magnetoreception research. Sci Rep 2022;12:8803. [PMID: 35614116 DOI: 10.1038/s41598-022-12398-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
133 Olivieri PH Jr, Jesus MB, Nader HB, Justo GZ, Sousa AA. Cell-surface glycosaminoglycans regulate the cellular uptake of charged polystyrene nanoparticles. Nanoscale 2022;14:7350-63. [PMID: 35535683 DOI: 10.1039/d1nr07279j] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
134 Fuentes-domínguez R, Naznin S, La Cavera Iii S, Cousins R, Pérez-cota F, Smith RJ, Clark M. Polarization-Sensitive Super-Resolution Phononic Reconstruction of Nanostructures. ACS Photonics 2022;9:1919-25. [DOI: 10.1021/acsphotonics.1c01607] [Reference Citation Analysis]
135 Yang X, Wen X, Dai J, Chen Y, Ding W, Wang J, Gu X, Zhang X, Chen J, Sutliff RL, Emory SR, Ruan G. Probing the Intracellular Delivery of Nanoparticles into Hard-to-Transfect Cells. ACS Nano 2022. [PMID: 35579595 DOI: 10.1021/acsnano.1c07648] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
136 Wu RS, Lin YS, Nain A, Unnikrishnan B, Lin YF, Yang CR, Chen TH, Huang YF, Huang CC, Chang HT. Evaluation of chemotherapeutic response in living cells using subcellular Organelle‒Selective amphipathic carbon dots. Biosens Bioelectron 2022;211:114362. [PMID: 35617797 DOI: 10.1016/j.bios.2022.114362] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
137 Donahue ND, Sheth V, Frickenstein AN, Holden A, Kanapilly S, Stephan C, Wilhelm S. Absolute Quantification of Nanoparticle Interactions with Individual Human B Cells by Single Cell Mass Spectrometry. Nano Lett 2022. [PMID: 35510841 DOI: 10.1021/acs.nanolett.2c01037] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
138 Liu C, Tang C, Yin C. Co-delivery of doxorubicin and siRNA by all-trans retinoic acid conjugated chitosan-based nanocarriers for multiple synergistic antitumor efficacy. Carbohydrate Polymers 2022;283:119097. [DOI: 10.1016/j.carbpol.2022.119097] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
139 Maravajjala KS, Swetha KL, Roy A. pH-responsive nanoparticles for multidimensional combined chemo-immunotherapy of cancer. Journal of Pharmaceutical Sciences 2022. [DOI: 10.1016/j.xphs.2022.05.008] [Reference Citation Analysis]
140 Ferreira LF, Giordano GF, Gobbi AL, Piazzetta MHO, Schleder GR, Lima RS. Real-Time and In Situ Monitoring of the Synthesis of Silica Nanoparticles. ACS Sens 2022;7:1045-57. [PMID: 35417147 DOI: 10.1021/acssensors.1c02697] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
141 Alghamdi MA, Fallica AN, Virzì N, Kesharwani P, Pittalà V, Greish K. The Promise of Nanotechnology in Personalized Medicine. JPM 2022;12:673. [DOI: 10.3390/jpm12050673] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
142 Chen C, Yaari Z, Apfelbaum E, Grodzinski P, Shamay Y, Heller DA. Merging data curation and machine learning to improve nanomedicines. Adv Drug Deliv Rev 2022;183:114172. [PMID: 35189266 DOI: 10.1016/j.addr.2022.114172] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
143 Wang X, Zhang W. The Janus of Protein Corona on nanoparticles for tumor targeting, immunotherapy and diagnosis. J Control Release 2022:S0168-3659(22)00189-4. [PMID: 35367478 DOI: 10.1016/j.jconrel.2022.03.056] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
144 Bruno F, Granata V, Cobianchi Bellisari F, Sgalambro F, Tommasino E, Palumbo P, Arrigoni F, Cozzi D, Grassi F, Brunese MC, Pradella S, di S Stefano MLM, Cutolo C, Di Cesare E, Splendiani A, Giovagnoni A, Miele V, Grassi R, Masciocchi C, Barile A. Advanced Magnetic Resonance Imaging (MRI) Techniques: Technical Principles and Applications in Nanomedicine. Cancers (Basel) 2022;14:1626. [PMID: 35406399 DOI: 10.3390/cancers14071626] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
145 Jahangiri-manesh A, Mousazadeh M, Taji S, Bahmani A, Zarepour A, Zarrabi A, Sharifi E, Azimzadeh M. Gold Nanorods for Drug and Gene Delivery: An Overview of Recent Advancements. Pharmaceutics 2022;14:664. [DOI: 10.3390/pharmaceutics14030664] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
146 Samiei M, Arablouye Moghaddam F, Dalir Abdolahinia E, Ahmadian E, Sharifi S, Maleki Dizaj S, Prasad R. Influence of Curcumin Nanocrystals on the Early Osteogenic Differentiation and Proliferation of Dental Pulp Stem Cells. Journal of Nanomaterials 2022;2022:1-8. [DOI: 10.1155/2022/8517543] [Reference Citation Analysis]
147 Wu K, Yu B, Li D, Tian Y, Liu Y, Jiang J. Recent Advances in Nanoplatforms for the Treatment of Osteosarcoma. Front Oncol 2022;12:805978. [PMID: 35242707 DOI: 10.3389/fonc.2022.805978] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
148 Akhmadeev BS, Gerasimova TP, Gilfanova AR, Katsyuba SA, Islamova LN, Fazleeva GM, Kalinin AA, Daminova AG, Fedosimova SV, Amerhanova SK, Voloshina AD, Tanysheva EG, Sinyashin OG, Mustafina AR. Temperature-sensitive emission of dialkylaminostyrylhetarene dyes and their incorporation into phospholipid aggregates: Applicability for thermal sensing and cellular uptake behavior. Spectrochim Acta A Mol Biomol Spectrosc 2022;268:120647. [PMID: 34840053 DOI: 10.1016/j.saa.2021.120647] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
149 Hernández Becerra E, Quinchia J, Castro C, Orozco J. Light-Triggered Polymersome-Based Anticancer Therapeutics Delivery. Nanomaterials 2022;12:836. [DOI: 10.3390/nano12050836] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
150 Yilmaz D, Sharp PS, Main MJ, Simpson PB. Advanced molecular imaging for the characterisation of complex medicines. Drug Discovery Today 2022. [DOI: 10.1016/j.drudis.2022.03.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
151 Jena PV, Gravely M, Cupo C, Safaee MM, Roxbury D, Heller DA. Hyperspectral Counting of Multiplexed Nanoparticle Emitters in Single Cells and Organelles. ACS Nano 2022;16:3092-104. [PMID: 35049273 DOI: 10.1021/acsnano.1c10708] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
152 van Leent MMT, Priem B, Schrijver DP, de Dreu A, Hofstraat SRJ, Zwolsman R, Beldman TJ, Netea MG, Mulder WJM. Regulating trained immunity with nanomedicine. Nat Rev Mater. [DOI: 10.1038/s41578-021-00413-w] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
153 Bloomer H, Khirallah J, Li Y, Xu Q. CRISPR/Cas9 ribonucleoprotein-mediated genome and epigenome editing in mammalian cells. Adv Drug Deliv Rev 2022;181:114087. [PMID: 34942274 DOI: 10.1016/j.addr.2021.114087] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
154 Cox A, Lim SA, Chung EJ. Strategies to deliver RNA by nanoparticles for therapeutic potential. Mol Aspects Med 2022;83:100991. [PMID: 34366123 DOI: 10.1016/j.mam.2021.100991] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
155 Sharma N, Bietar K, Stochaj U. Targeting nanoparticles to malignant tumors. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2022. [DOI: 10.1016/j.bbcan.2022.188703] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
156 Mercer TR, Munro T, Mattick JS. The potential of long noncoding RNA therapies. Trends in Pharmacological Sciences 2022. [DOI: 10.1016/j.tips.2022.01.008] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
157 Niaz S, Forbes B, Raimi-abraham BT. Exploiting Endocytosis for Non-Spherical Nanoparticle Cellular Uptake. Nanomanufacturing 2022;2:1-16. [DOI: 10.3390/nanomanufacturing2010001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
158 Khan NH, Mir M, Qian L, Baloch M, Ali Khan MF, Rehman A, Ngowi EE, Wu D, Ji X. Skin cancer biology and barriers to treatment: Recent applications of polymeric micro/nanostructures. Journal of Advanced Research 2022;36:223-47. [DOI: 10.1016/j.jare.2021.06.014] [Cited by in Crossref: 6] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
159 Souri M, Soltani M, Kashkooli FM, Shahvandi MK, Chiani M, Shariati FS, Mehrabi MR, Munn LL. Towards principled design of cancer nanomedicine to accelerate clinical translation. Materials Today Bio 2022. [DOI: 10.1016/j.mtbio.2022.100208] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
160 Rauf MA, Alam MT, Ishtikhar M, Ali N, Alghamdi A, Alasmari AF. Investigating Chaperone like Activity of Green Silver Nanoparticles: Possible Implications in Drug Development. Molecules 2022;27:944. [DOI: 10.3390/molecules27030944] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
161 Shanmugam H, Rengarajan C, Nataraj S, Sharma A. Interactions of plant food bioactives‐loaded nano delivery systems at the nano‐bio interface and its pharmacokinetics: An overview. Food Frontiers. [DOI: 10.1002/fft2.130] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
162 Wiwatchaitawee K, Ebeid K, Quarterman JC, Naguib Y, Ali MY, Oliva C, Griguer C, Salem AK. Surface Modification of Nanoparticles Enhances Drug Delivery to the Brain and Improves Survival in a Glioblastoma Multiforme Murine Model. Bioconjug Chem 2022. [PMID: 35041398 DOI: 10.1021/acs.bioconjchem.1c00479] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
163 Zou Y, Ito S, Fujiwara M, Komatsu N. Probing the Role of Charged Functional Groups on Nanoparticles Grafted with Polyglycerol in Protein Adsorption and Cellular Uptake. Adv Funct Materials 2022;32:2111077. [DOI: 10.1002/adfm.202111077] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
164 Le TS, Takahashi M, Isozumi N, Miyazato A, Hiratsuka Y, Matsumura K, Taguchi T, Maenosono S. Quick and Mild Isolation of Intact Lysosomes Using Magnetic-Plasmonic Hybrid Nanoparticles. ACS Nano 2022. [PMID: 34978188 DOI: 10.1021/acsnano.1c08474] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
165 Johnston ST, Faria M. Equation learning to identify nano-engineered particle–cell interactions: an interpretable machine learning approach. Nanoscale 2022. [DOI: 10.1039/d2nr04668g] [Reference Citation Analysis]
166 He Z, Han X, Yan Z, Guo B, Cai Q, Yao Y. Backbone flexibility/amphiphilicity modulation of AIE active polyelectrolytes for mitochondria- and nucleus-targeted synergistic photodynamic therapy of cancer cells. Mater Chem Front 2022. [DOI: 10.1039/d2qm00761d] [Reference Citation Analysis]
167 Ji W, Li Y, Peng H, Zhao R, Zhang X. Nature-inspired dynamic gene-loaded nanoassemblies for the treatment of brain diseases. Adv Drug Deliv Rev 2022;180:114029. [PMID: 34752841 DOI: 10.1016/j.addr.2021.114029] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
168 Alghamdi MA, Mohamad N, Alsobyan FM, Greish K, Amin MCIM. Cellular interaction of polymeric micelles in targeted drug delivery systems: the road from tissue to cell. Polymeric Micelles for Drug Delivery 2022. [DOI: 10.1016/b978-0-323-89868-3.00012-4] [Reference Citation Analysis]
169 Badawy MT, Mostafa M, Khalil MS, Abd-elsalam KA. Agri-food and environmental applications of bionanomaterials produced from agri-waste and microbes. Agri-Waste and Microbes for Production of Sustainable Nanomaterials 2022. [DOI: 10.1016/b978-0-12-823575-1.00024-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
170 Das SS, Dubey AK, Verma P, Singh SK, Singh SK. Inorganic nanoconjugates for cancer theragnosis. Nanotherapeutics in Cancer Vaccination and Challenges 2022. [DOI: 10.1016/b978-0-12-823686-4.00003-3] [Reference Citation Analysis]
171 Mendes BB, Conniot J, Avital A, Yao D, Jiang X, Zhou X, Sharf-Pauker N, Xiao Y, Adir O, Liang H, Shi J, Schroeder A, Conde J. Nanodelivery of nucleic acids. Nat Rev Methods Primers 2022;2:24. [PMID: 35480987 DOI: 10.1038/s43586-022-00104-y] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 29.0] [Reference Citation Analysis]
172 Chen P, Liu X, Gu C, Zhong P, Song N, Li M, Dai Z, Fang X, Liu Z, Zhang J, Tang R, Fan S, Lin X. A plant-derived natural photosynthetic system for improving cell anabolism. Nature 2022;612:546-54. [PMID: 36477541 DOI: 10.1038/s41586-022-05499-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
173 Deng J, Wang J, Shi J, Li H, Lu M, Fan Z, Gu Z, Cheng H. Tailoring the physicochemical properties of nanomaterials for immunomodulation. Adv Drug Deliv Rev 2022;180:114039. [PMID: 34742825 DOI: 10.1016/j.addr.2021.114039] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
174 Qudsiani K, Sutriyo S, Rahmasari R. Polyamidoamine-Remdesivir Conjugate: Physical Stability and Cellular Uptake Enhancement. Biomed Pharmacol J 2021;14:2073-83. [DOI: 10.13005/bpj/2304] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
175 Roy SM, Garg V, Barman S, Ghosh C, Maity AR, Ghosh SK. Kinetics of Nanomedicine in Tumor Spheroid as an In Vitro Model System for Efficient Tumor-Targeted Drug Delivery With Insights From Mathematical Models. Front Bioeng Biotechnol 2021;9:785937. [PMID: 34926430 DOI: 10.3389/fbioe.2021.785937] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
176 Zhang J, Zhang Y, Zhao B, Lv M, Chen E, Zhao C, Jiang L, Qian H, Huang D, Zhong Y, Chen W. Cascade-Responsive Hierarchical Nanosystems for Multisite Specific Drug Exposure and Boosted Chemoimmunotherapy. ACS Appl Mater Interfaces 2021;13:58319-28. [PMID: 34855343 DOI: 10.1021/acsami.1c16636] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
177 Chen T, Zhang Y, Li X, Li C, Lu T, Xiao S, Liang H. Curvature-Mediated Pair Interactions of Soft Nanoparticles Adhered to a Cell Membrane. J Chem Theory Comput 2021;17:7850-61. [PMID: 34865469 DOI: 10.1021/acs.jctc.1c00897] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
178 Choi YS, Cho H, Choi WG, Lee SS, Huh KM, Shim MS, Park IS, Cho YY, Lee JY, Lee HS, Kang HC. Beyond hydrophilic polymers in amphiphilic polymer-based self-assembled NanoCarriers: Small hydrophilic carboxylate-capped disulfide drug delivery system and its multifunctionality and multispatial targetability. Biomaterials 2022;280:121307. [PMID: 34894582 DOI: 10.1016/j.biomaterials.2021.121307] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
179 He Z, Bao K, Jian J, Zhao Y, Jian Z, Hu C, Gao X. Biotin-Targeted Multifunctional Nanoparticles Encapsulating 10-Hydroxycamptothecin and Apoptin Plasmid for Synergistic Hepatocellular Carcinoma Treatment. ACS Appl Polym Mater 2022;4:497-508. [DOI: 10.1021/acsapm.1c01393] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
180 Han M, Evans S, Mustafa S, Wiederman S, Ebendorff-Heidepriem H. Controlled delivery of quantum dots using microelectrophoresis technique: Intracellular behavior and preservation of cell viability. Bioelectrochemistry 2021;144:108035. [PMID: 34906817 DOI: 10.1016/j.bioelechem.2021.108035] [Reference Citation Analysis]
181 Gupta P, Neupane YR, Parvez S, Kohli K. Recent advances in targeted nanotherapeutic approaches for breast cancer management. Nanomedicine (Lond) 2021;16:2605-31. [PMID: 34854336 DOI: 10.2217/nnm-2021-0281] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
182 Elistratova JG, Mikhaylov MA, Sukhikh TS, Kholin KV, Nizameev IR, Khazieva AR, Gubaidullin AT, Voloshina AD, Sibgatullina GV, Samigullin DV, Petrov KA, Sokolov MN, Mustafina AR. Anticancer potential of hexamolybdenum clusters [{Mo6I8}(L)6]2− (L = CF3COO− and C6F5COO−) incorporated into different nanoparticulate forms. Journal of Molecular Liquids 2021;343:117601. [DOI: 10.1016/j.molliq.2021.117601] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
183 de Andrades EO, da Costa JMAR, de Lima Neto FEM, de Araujo AR, de Oliveira Silva Ribeiro F, Vasconcelos AG, de Jesus Oliveira AC, Sobrinho JLS, de Almeida MP, Carvalho AP, Dias JN, Silva IGM, Albuquerque P, Pereira IS, do Amaral Rabello D, das Graças Nascimento Amorim A, de Souza de Almeida Leite JR, da Silva DA. Acetylated cashew gum and fucan for incorporation of lycopene rich extract from red guava (Psidium guajava L.) in nanostructured systems: Antioxidant and antitumor capacity. Int J Biol Macromol 2021;191:1026-37. [PMID: 34563578 DOI: 10.1016/j.ijbiomac.2021.09.116] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
184 Jena PV, Gravely M, Cupo CC, Safaee MM, Roxbury D, Heller DA. Hyperspectral Counting of Multiplexed Nanoparticle Emitters in Single Cells and Organelles.. [DOI: 10.1101/2021.11.24.469882] [Reference Citation Analysis]
185 Boehnke N, Hammond PT. Power in Numbers: Harnessing Combinatorial and Integrated Screens to Advance Nanomedicine. JACS Au 2022;2:12-21. [DOI: 10.1021/jacsau.1c00313] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
186 Zhao L, Li H, Huang X, Liu T, Xin Y, Xiao Z, Zhao W, Miao S, Chen J, Li Z, Mi Y. The endocytic pathway of Pt nanoclusters and their induced apoptosis of A549 and A549/Cis cells through c-Myc/p53 and Bcl-2/caspase-3 signaling pathways. Biomed Pharmacother 2021;144:112360. [PMID: 34794242 DOI: 10.1016/j.biopha.2021.112360] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
187 Tan H, Zhang M, Wang Y, Timashev P, Zhang Y, Zhang S, Liang XJ, Li F. Innovative nanochemotherapy for overcoming cancer multidrug resistance. Nanotechnology 2021;33. [PMID: 34700307 DOI: 10.1088/1361-6528/ac3355] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
188 Qiao J, Cui S, Xiong MP. ROS-sensitive micelles for controlled delivery of antibiotics to combat intracellular Staphylococcus aureus-associated infections. J Mater Chem B 2021;9:8951-61. [PMID: 34606554 DOI: 10.1039/d1tb01702k] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
189 Xu MQ, Hao YL, Wang JR, Li ZY, Li H, Feng ZH, Wang H, Wang JW, Zhang X. Antitumor Activity of α-Linolenic Acid-Paclitaxel Conjugate Nanoparticles: In vitro and in vivo. Int J Nanomedicine 2021;16:7269-81. [PMID: 34737564 DOI: 10.2147/IJN.S331578] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
190 Liu X, Zhang H, Zhang T, Wang Y, Jiao W, Lu X, Gao X, Xie M, Shan Q, Wen N, Liu C, Lee WSV, Fan H. Magnetic nanomaterials-mediated cancer diagnosis and therapy. Prog Biomed Eng 2021;4:012005. [DOI: 10.1088/2516-1091/ac3111] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
191 Lee R, Erstling JA, Hinckley JA, Chapman DV, Wiesner UB. Addressing Particle Compositional Heterogeneities in Super-Resolution-Enhanced Live-Cell Ratiometric pH Sensing with Ultrasmall Fluorescent Core-Shell Aluminosilicate Nanoparticles. Adv Funct Mater 2021;31:2106144. [PMID: 34899116 DOI: 10.1002/adfm.202106144] [Reference Citation Analysis]
192 Ang MJY, Chan SY, Goh YY, Luo Z, Lau JW, Liu X. Emerging strategies in developing multifunctional nanomaterials for cancer nanotheranostics. Adv Drug Deliv Rev 2021;178:113907. [PMID: 34371084 DOI: 10.1016/j.addr.2021.113907] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 5.5] [Reference Citation Analysis]
193 Rastin H, Mansouri N, Tung TT, Hassan K, Mazinani A, Ramezanpour M, Yap PL, Yu L, Vreugde S, Losic D. Converging 2D Nanomaterials and 3D Bioprinting Technology: State-of-the-Art, Challenges, and Potential Outlook in Biomedical Applications. Adv Healthc Mater 2021;10:e2101439. [PMID: 34468088 DOI: 10.1002/adhm.202101439] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
194 Tracey SR, Smyth P, Barelle CJ, Scott CJ. Development of next generation nanomedicine-based approaches for the treatment of cancer: we've barely scratched the surface. Biochem Soc Trans 2021;49:2253-69. [PMID: 34709394 DOI: 10.1042/BST20210343] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
195 Mou L, Tian X, Zhou B, Zhan Y, Chen J, Lu Y, Deng J, Deng Y, Wu Z, Li Q, Song Y, Zhang H, Chen J, Tian K, Ni Y, Pu Z. Improving Outcomes of Tyrosine Kinase Inhibitors in Hepatocellular Carcinoma: New Data and Ongoing Trials. Front Oncol 2021;11:752725. [PMID: 34707994 DOI: 10.3389/fonc.2021.752725] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
196 Wang X, Deng B, Yu M, Zeng T, Chen Y, Hu J, Wu Q, Li A. Constructing a passive targeting and long retention therapeutic nanoplatform based on water-soluble, non-toxic and highly-stable core-shell poly(amino acid) nanocomplexes. Biomater Sci 2021;9:7065-75. [PMID: 34590101 DOI: 10.1039/d1bm01246k] [Reference Citation Analysis]
197 Zhang J, Qin M, Yang D, Yuan L, Zou X, Dai W, Zhang H, Wang X, He B, Zhang Q. Nanoprotein Interaction Atlas Reveals the Transport Pathway of Gold Nanoparticles across Epithelium and Its Association with Wnt/β-Catenin Signaling. ACS Nano 2021. [PMID: 34672537 DOI: 10.1021/acsnano.1c06452] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
198 Quevedo AC, Lynch I, Valsami-Jones E. Mechanisms of Silver Nanoparticle Uptake by Embryonic Zebrafish Cells. Nanomaterials (Basel) 2021;11:2699. [PMID: 34685144 DOI: 10.3390/nano11102699] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
199 Kulikov PP, Luss AL, Nelemans LC, Shtilman MI, Mezhuev YO, Kuznetsov IA, Sizova OY, Christiansen G, Pennisi CP, Gurevich L. Synthesis, Self-Assembly and In Vitro Cellular Uptake Kinetics of Nanosized Drug Carriers Based on Aggregates of Amphiphilic Oligomers of N-Vinyl-2-pyrrolidone. Materials (Basel) 2021;14:5977. [PMID: 34683572 DOI: 10.3390/ma14205977] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
200 Summers HD, Gomes CP, Varela-Moreira A, Spencer AP, Gomez-Lazaro M, Pêgo AP, Rees P. Data-Driven Modeling of the Cellular Pharmacokinetics of Degradable Chitosan-Based Nanoparticles. Nanomaterials (Basel) 2021;11:2606. [PMID: 34685047 DOI: 10.3390/nano11102606] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
201 Du X, Hou Y, Huang J, Pang Y, Ruan C, Wu W, Xu C, Zhang H, Yin L, He W. Cytosolic delivery of the immunological adjuvant Poly I:C and cytotoxic drug crystals via a carrier-free strategy significantly amplifies immune response. Acta Pharm Sin B 2021;11:3272-85. [PMID: 34729315 DOI: 10.1016/j.apsb.2021.03.014] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
202 Dutta B, Barick KC, Hassan PA. Recent advances in active targeting of nanomaterials for anticancer drug delivery. Adv Colloid Interface Sci 2021;296:102509. [PMID: 34455211 DOI: 10.1016/j.cis.2021.102509] [Cited by in Crossref: 16] [Cited by in F6Publishing: 21] [Article Influence: 8.0] [Reference Citation Analysis]
203 Mala R, Keerthana R. Protein Nanoparticle Interactions and Factors Influencing These Interactions. Microbial Interactions at Nanobiotechnology Interfaces 2021. [DOI: 10.1002/9781119617181.ch6] [Reference Citation Analysis]
204 Kawassaki RK, Romano M, Dietrich N, Araki K. Titanium and Iron Oxide Nanoparticles for Cancer Therapy: Surface Chemistry and Biological Implications. Front Nanotechnol 2021;3:735434. [DOI: 10.3389/fnano.2021.735434] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
205 Mendes D, Valentão P, Oliveira MM, Andrade P, Videira RA. A nanophytosomes formulation based on elderberry anthocyanins and Codium lipids to mitigate mitochondrial dysfunctions. Biomed Pharmacother 2021;143:112157. [PMID: 34517282 DOI: 10.1016/j.biopha.2021.112157] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
206 Sohrabi Kashani A, Packirisamy M. Cancer-Nano-Interaction: From Cellular Uptake to Mechanobiological Responses. Int J Mol Sci 2021;22:9587. [PMID: 34502495 DOI: 10.3390/ijms22179587] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
207 Yang J, Xu L, Di L, Su Y, Zhu X. Journey of Poly(ethylene Glycol) in Living Cells. ACS Appl Mater Interfaces 2021;13:40267-77. [PMID: 34424662 DOI: 10.1021/acsami.1c09366] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
208 Yang Y, Guo J, Huang L. Tackling TAMs for Cancer Immunotherapy: It's Nano Time. Trends Pharmacol Sci 2020;41:701-14. [PMID: 32946772 DOI: 10.1016/j.tips.2020.08.003] [Cited by in Crossref: 30] [Cited by in F6Publishing: 35] [Article Influence: 15.0] [Reference Citation Analysis]
209 Liu L, Wannemuehler MJ, Narasimhan B. Biomaterial nanocarrier-driven mechanisms to modulate anti-tumor immunity. Curr Opin Biomed Eng 2021;20:100322. [PMID: 34423179 DOI: 10.1016/j.cobme.2021.100322] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
210 Wen J, Moloney EB, Canning A, Donohoe E, Ritter T, Wang J, Xiang D, Wu J, Li Y. Synthesized nanoparticles, biomimetic nanoparticles and extracellular vesicles for treatment of autoimmune disease: Comparison and prospect. Pharmacol Res 2021;172:105833. [PMID: 34418563 DOI: 10.1016/j.phrs.2021.105833] [Reference Citation Analysis]
211 Zamora-Perez P, Pelaz B, Tsoutsi D, Soliman MG, Parak WJ, Rivera-Gil P. Hyperspectral-enhanced dark field analysis of individual and collective photo-responsive gold-copper sulfide nanoparticles. Nanoscale 2021;13:13256-72. [PMID: 34477734 DOI: 10.1039/d0nr08256b] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
212 Fekete T, Mészáros M, Szegletes Z, Vizsnyiczai G, Zimányi L, Deli MA, Veszelka S, Kelemen L. Optically Manipulated Microtools to Measure Adhesion of the Nanoparticle-Targeting Ligand Glutathione to Brain Endothelial Cells. ACS Appl Mater Interfaces 2021;13:39018-29. [PMID: 34397215 DOI: 10.1021/acsami.1c08454] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
213 Kang Y, Liu J, Jiang Y, Yin S, Huang Z, Zhang Y, Wu J, Chen L, Shao L. Understanding the interactions between inorganic-based nanomaterials and biological membranes. Adv Drug Deliv Rev 2021;175:113820. [PMID: 34087327 DOI: 10.1016/j.addr.2021.05.030] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
214 Cortez-Jugo C, Czuba-Wojnilowicz E, Tan A, Caruso F. A Focus on "Bio" in Bio-Nanoscience: The Impact of Biological Factors on Nanomaterial Interactions. Adv Healthc Mater 2021;10:e2100574. [PMID: 34170631 DOI: 10.1002/adhm.202100574] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
215 Wang X, Mohammad IS, Fan L, Zhao Z, Nurunnabi M, Sallam MA, Wu J, Chen Z, Yin L, He W. Delivery strategies of amphotericin B for invasive fungal infections. Acta Pharm Sin B 2021;11:2585-604. [PMID: 34522599 DOI: 10.1016/j.apsb.2021.04.010] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
216 Shi Q, Tang J, Liu R, Wang L. Toxicity in vitro reveals potential impacts of microplastics and nanoplastics on human health: A review. Critical Reviews in Environmental Science and Technology. [DOI: 10.1080/10643389.2021.1951528] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
217 Park JY, Hyun JS, Jee JG, Park SJ, Khang D. Structural Deformation of MTX Induced by Nanodrug Conjugation Dictate Intracellular Drug Transport and Drug Efficacy. Int J Nanomedicine 2021;16:4943-57. [PMID: 34326636 DOI: 10.2147/IJN.S317231] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
218 Liao C, Liu S. Tuning the physicochemical properties of reticular covalent organic frameworks (COFs) for biomedical applications. J Mater Chem B 2021;9:6116-28. [PMID: 34278394 DOI: 10.1039/d1tb01124c] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
219 Zhang X, Ma G, Wei W. Simulation of nanoparticles interacting with a cell membrane: probing the structural basis and potential biomedical application. NPG Asia Mater 2021;13. [DOI: 10.1038/s41427-021-00320-0] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 5.5] [Reference Citation Analysis]
220 de Lázaro I, Mooney DJ. Obstacles and opportunities in a forward vision for cancer nanomedicine. Nat Mater 2021. [PMID: 34226688 DOI: 10.1038/s41563-021-01047-7] [Cited by in Crossref: 54] [Cited by in F6Publishing: 59] [Article Influence: 27.0] [Reference Citation Analysis]
221 Goodarzi S, Prunet A, Rossetti F, Bort G, Tillement O, Porcel E, Lacombe S, Wu TD, Guerquin-Kern JL, Delanoë-Ayari H, Lux F, Rivière C. Quantifying nanotherapeutic penetration using a hydrogel-based microsystem as a new 3D in vitro platform. Lab Chip 2021;21:2495-510. [PMID: 34110341 DOI: 10.1039/d1lc00192b] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
222 Das R, Mukhopadhyay B. A brief insight to the role of glyconanotechnology in modern day diagnostics and therapeutics. Carbohydr Res 2021;507:108394. [PMID: 34265516 DOI: 10.1016/j.carres.2021.108394] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
223 Liang T, Wen D, Chen G, Chan A, Chen Z, Li H, Wang Z, Han X, Jiang L, Zhu JJ, Gu Z. Adipocyte-Derived Anticancer Lipid Droplets. Adv Mater 2021;33:e2100629. [PMID: 33987883 DOI: 10.1002/adma.202100629] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
224 Oliveira FA, Nucci MP, Mamani JB, Alves AH, Rego GNA, Kondo AT, Hamerschlak N, Junqueira MS, de Souza LEB, Gamarra LF. Multimodal Tracking of Hematopoietic Stem Cells from Young and Old Mice Labeled with Magnetic-Fluorescent Nanoparticles and Their Grafting by Bioluminescence in a Bone Marrow Transplant Model. Biomedicines 2021;9:752. [PMID: 34209598 DOI: 10.3390/biomedicines9070752] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
225 Gravely M, Roxbury D. Multispectral Fingerprinting Resolves Dynamics of Nanomaterial Trafficking in Primary Endothelial Cells. ACS Nano 2021. [PMID: 34180232 DOI: 10.1021/acsnano.1c04500] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
226 Wang X, Li L, Song F. Interplay of Nanoparticle Properties during Endocytosis. Crystals 2021;11:728. [DOI: 10.3390/cryst11070728] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
227 Li X, Dai B, Guo J, Zheng L, Guo Q, Peng J, Xu J, Qin L. Nanoparticle-Cartilage Interaction: Pathology-Based Intra-articular Drug Delivery for Osteoarthritis Therapy. Nanomicro Lett 2021;13:149. [PMID: 34160733 DOI: 10.1007/s40820-021-00670-y] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
228 Endre ZH, Erlich JH. Targeted protection of proximal tubular cells by nanoparticle-enhanced delivery of a TLR9-antagonist. Kidney Int 2020;98:48-50. [PMID: 32571488 DOI: 10.1016/j.kint.2020.04.024] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
229 Liu L, Dou H. Obstacles impeding the development of nanocarriers for anticancer drugs. Nanomedicine (Lond) 2021;16:1447-50. [PMID: 34142559 DOI: 10.2217/nnm-2021-0101] [Reference Citation Analysis]
230 Friedl JD, Nele V, De Rosa G, Bernkop‐schnürch A. Bioinert, Stealth or Interactive: How Surface Chemistry of Nanocarriers Determines Their Fate In Vivo. Adv Funct Materials 2021;31:2103347. [DOI: 10.1002/adfm.202103347] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
231 Mares AG, Pacassoni G, Marti JS, Pujals S, Albertazzi L. Formulation of tunable size PLGA-PEG nanoparticles for drug delivery using microfluidic technology. PLoS One 2021;16:e0251821. [PMID: 34143792 DOI: 10.1371/journal.pone.0251821] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
232 Kooijmans SAA, de Jong OG, Schiffelers RM. Exploring interactions between extracellular vesicles and cells for innovative drug delivery system design. Adv Drug Deliv Rev 2021;173:252-78. [PMID: 33798644 DOI: 10.1016/j.addr.2021.03.017] [Cited by in Crossref: 17] [Cited by in F6Publishing: 21] [Article Influence: 8.5] [Reference Citation Analysis]
233 Boix-Montesinos P, Soriano-Teruel PM, Armiñán A, Orzáez M, Vicent MJ. The past, present, and future of breast cancer models for nanomedicine development. Adv Drug Deliv Rev 2021;173:306-30. [PMID: 33798642 DOI: 10.1016/j.addr.2021.03.018] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 11.0] [Reference Citation Analysis]
234 Cong VT, Wang W, Tilley RD, Sharbeen G, Phillips PA, Gaus K, Gooding JJ. Can the Shape of Nanoparticles Enable the Targeting to Cancer Cells over Healthy Cells? Adv Funct Materials 2021;31:2007880. [DOI: 10.1002/adfm.202007880] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
235 Xu E, Saltzman WM, Piotrowski-Daspit AS. Escaping the endosome: assessing cellular trafficking mechanisms of non-viral vehicles. J Control Release 2021;335:465-80. [PMID: 34077782 DOI: 10.1016/j.jconrel.2021.05.038] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 9.5] [Reference Citation Analysis]
236 Song Y, Wu Y, Xu L, Jiang T, Tang C, Yin C. Caveolae-Mediated Endocytosis Drives Robust siRNA Delivery of Polymeric Nanoparticles to Macrophages. ACS Nano 2021;15:8267-82. [PMID: 33915044 DOI: 10.1021/acsnano.0c08596] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
237 Laird NZ, Acri TM, Tingle K, Salem AK. Gene- and RNAi-activated scaffolds for bone tissue engineering: Current progress and future directions. Advanced Drug Delivery Reviews 2021;174:613-27. [DOI: 10.1016/j.addr.2021.05.009] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
238 Kamali Shahri SM, Sharifi S, Mahmoudi M. Interdependency of influential parameters in therapeutic nanomedicine. Expert Opin Drug Deliv 2021;:1-15. [PMID: 33887999 DOI: 10.1080/17425247.2021.1921732] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
239 Liang T, Xing Z, Jiang L, Zhu J. Tailoring nanoparticles for targeted drug delivery: From organ to subcellular level. VIEW 2021;2:20200131. [DOI: 10.1002/viw.20200131] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
240 Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, Hanson MG, Hexum JK, Reineke TM. Polymeric Delivery of Therapeutic Nucleic Acids. Chem Rev 2021. [PMID: 33939409 DOI: 10.1021/acs.chemrev.0c00997] [Cited by in Crossref: 41] [Cited by in F6Publishing: 51] [Article Influence: 20.5] [Reference Citation Analysis]
241 Exner AA, Kolios MC. Bursting Microbubbles: How Nanobubble Contrast Agents Can Enable the Future of Medical Ultrasound Molecular Imaging and Image-Guided Therapy. Curr Opin Colloid Interface Sci 2021;54:101463. [PMID: 34393610 DOI: 10.1016/j.cocis.2021.101463] [Cited by in Crossref: 12] [Cited by in F6Publishing: 17] [Article Influence: 6.0] [Reference Citation Analysis]
242 Shah S, Rangaraj N, Singh SB, Srivastava S. Exploring the unexplored avenues of surface charge in nano-medicine. Colloid and Interface Science Communications 2021;42:100406. [DOI: 10.1016/j.colcom.2021.100406] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
243 Abbasi M, Ghoran SH, Niakan MH, Jamali K, Moeini Z, Jangjou A, Izadpanah P, Amani AM. Mesoporous silica nanoparticle: Heralding a brighter future in cancer nanomedicine. Microporous and Mesoporous Materials 2021;319:110967. [DOI: 10.1016/j.micromeso.2021.110967] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
244 Pizzi D, Mahmoud AM, Klein T, Morrow JP, Humphries J, Houston ZH, Fletcher NL, Bell CA, Thurecht KJ, Kempe K. Poly(2-ethyl-2-oxazoline) bottlebrushes: How nanomaterial dimensions can influence biological interactions. European Polymer Journal 2021;151:110447. [DOI: 10.1016/j.eurpolymj.2021.110447] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
245 Ziemba B, Borowiec M, Franiak-Pietryga I. There and back again: a dendrimer's tale. Drug Chem Toxicol 2021;:1-16. [PMID: 33910437 DOI: 10.1080/01480545.2021.1915327] [Reference Citation Analysis]
246 Mahadevan G, Valiyaveettil S. Comparison of Genotoxicity and Cytotoxicity of Polyvinyl Chloride and Poly(methyl methacrylate) Nanoparticles on Normal Human Lung Cell Lines. Chem Res Toxicol 2021;34:1468-80. [PMID: 33861932 DOI: 10.1021/acs.chemrestox.0c00391] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
247 Cai W, Luo T, Mao L, Wang M. Spatiotemporal Delivery of CRISPR/Cas9 Genome Editing Machinery Using Stimuli‐Responsive Vehicles. Angew Chem 2021;133:8679-8689. [DOI: 10.1002/ange.202005644] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
248 Luo D, Wang X, Burda C, Basilion JP. Recent Development of Gold Nanoparticles as Contrast Agents for Cancer Diagnosis. Cancers (Basel) 2021;13:1825. [PMID: 33920453 DOI: 10.3390/cancers13081825] [Cited by in Crossref: 32] [Cited by in F6Publishing: 35] [Article Influence: 16.0] [Reference Citation Analysis]
249 Mazumdar S, Chitkara D, Mittal A. Exploration and insights into the cellular internalization and intracellular fate of amphiphilic polymeric nanocarriers. Acta Pharm Sin B 2021;11:903-24. [PMID: 33996406 DOI: 10.1016/j.apsb.2021.02.019] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 10.0] [Reference Citation Analysis]
250 Erlichman JS, Leiter JC. Complexity of the Nano-Bio Interface and the Tortuous Path of Metal Oxides in Biological Systems. Antioxidants (Basel) 2021;10:547. [PMID: 33915992 DOI: 10.3390/antiox10040547] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
251 Wang Y, Wang J, Zhu D, Wang Y, Qing G, Zhang Y, Liu X, Liang XJ. Effect of physicochemical properties on in vivo fate of nanoparticle-based cancer immunotherapies. Acta Pharm Sin B 2021;11:886-902. [PMID: 33996405 DOI: 10.1016/j.apsb.2021.03.007] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 6.5] [Reference Citation Analysis]
252 Xiao Q, Li X, Li Y, Wu Z, Xu C, Chen Z, He W. Biological drug and drug delivery-mediated immunotherapy. Acta Pharm Sin B 2021;11:941-60. [PMID: 33996408 DOI: 10.1016/j.apsb.2020.12.018] [Cited by in Crossref: 38] [Cited by in F6Publishing: 42] [Article Influence: 19.0] [Reference Citation Analysis]
253 Ji W, Li Y, Liu R, Lu Z, Liu L, Shi Z, Shen J, Zhang X. Synaptic vesicle-inspired nanoparticles with spatiotemporally controlled release ability as a "nanoguard" for synergistic treatment of synucleinopathies. Mater Horiz 2021;8:1199-206. [PMID: 34821912 DOI: 10.1039/d0mh01542c] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
254 Quevedo AC, Lynch I, Valsami-Jones E. Silver nanoparticle induced toxicity and cell death mechanisms in embryonic zebrafish cells. Nanoscale 2021;13:6142-61. [PMID: 33734251 DOI: 10.1039/d0nr09024g] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
255 Łukasiewicz S. Development of a New Polymeric Nanocarrier Dedicated to Controlled Clozapine Delivery at the Dopamine D2-Serotonin 5-HT1A Heteromers. Polymers (Basel) 2021;13:1000. [PMID: 33805130 DOI: 10.3390/polym13071000] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
256 Svitkova B, Zavisova V, Nemethova V, Koneracka M, Kretova M, Razga F, Ursinyova M, Gabelova A. Differences in surface chemistry of iron oxide nanoparticles result in different routes of internalization. Beilstein J Nanotechnol 2021;12:270-81. [PMID: 33842184 DOI: 10.3762/bjnano.12.22] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
257 Torres-Vanegas JD, Cruz JC, Reyes LH. Delivery Systems for Nucleic Acids and Proteins: Barriers, Cell Capture Pathways and Nanocarriers. Pharmaceutics 2021;13:428. [PMID: 33809969 DOI: 10.3390/pharmaceutics13030428] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 11.5] [Reference Citation Analysis]
258 Xu P, Wang R, Yang W, Liu Y, He D, Ye Z, Chen D, Ding Y, Tu J, Shen Y. A DM1-doped porous gold nanoshell system for NIR accelerated redox-responsive release and triple modal imaging guided photothermal synergistic chemotherapy. J Nanobiotechnology 2021;19:77. [PMID: 33741008 DOI: 10.1186/s12951-021-00824-5] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
259 Khan MA, Fugate M, Rogers DT, Sambi J, Littleton JM, Rankin SE, Knutson BL. Mechanism of Mesoporous Silica Nanoparticle Interaction with Hairy Root Cultures during Nanoharvesting of Biomolecules. Adv Biol (Weinh) 2021;5:e2000173. [PMID: 33729698 DOI: 10.1002/adbi.202000173] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
260 Sola F, Canonico B, Montanari M, Volpe A, Barattini C, Pellegrino C, Cesarini E, Guescini M, Battistelli M, Ortolani C, Ventola A, Papa S. Uptake and Intracellular Trafficking Studies of Multiple Dye-Doped Core-Shell Silica Nanoparticles in Lymphoid and Myeloid Cells. Nanotechnol Sci Appl 2021;14:29-48. [PMID: 33727804 DOI: 10.2147/NSA.S290867] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
261 Mani H, Chen YC, Chen YK, Liu WL, Lo SY, Lin SH, Liou JW. Nanosized Particles Assembled by a Recombinant Virus Protein Are Able to Encapsulate Negatively Charged Molecules and Structured RNA. Polymers (Basel) 2021;13:858. [PMID: 33799623 DOI: 10.3390/polym13060858] [Reference Citation Analysis]
262 Ashford MB, England RM, Akhtar N. Highway to Success—Developing Advanced Polymer Therapeutics. Adv Therap 2021;4:2000285. [DOI: 10.1002/adtp.202000285] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
263 Luo G, Zhang J, Sun Y, Wang Y, Wang H, Cheng B, Shu Q, Fang X. Nanoplatforms for Sepsis Management: Rapid Detection/Warning, Pathogen Elimination and Restoring Immune Homeostasis. Nanomicro Lett 2021;13:88. [PMID: 34138348 DOI: 10.1007/s40820-021-00598-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
264 Pan X, He G, Hai B, Liu Y, Bian L, Yong L, Zhang H, Yang C, Du C, Mao T, Ma Y, Jia F, Dou X, Zhai S, Liu X. VPS34 regulates dynamin to determine the endocytosis of mitochondria-targeted zinc oxide nanoparticles in human osteosarcoma cells. J Mater Chem B 2021;9:2641-55. [PMID: 33683276 DOI: 10.1039/d1tb00226k] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
265 Zou M, Du Y, Liu R, Zheng Z, Xu J. Nanocarrier-delivered small interfering RNA for chemoresistant ovarian cancer therapy. Wiley Interdiscip Rev RNA 2021;12:e1648. [PMID: 33682310 DOI: 10.1002/wrna.1648] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
266 Araujo VHS, de Souza MPC, Carvalho GC, Duarte JL, Chorilli M. Chitosan-based systems aimed at local application for vaginal infections. Carbohydr Polym 2021;261:117919. [PMID: 33766328 DOI: 10.1016/j.carbpol.2021.117919] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
267 Chatnahalli Gangadharappa S, Maisuls I, Salto IP, Niemann S, Bachtin V, Herrmann FC, Strassert CA. Intermolecular Interactions and Self-Assembly in Pt(II) Complex–Nanoclay Hybrids as Luminescent Reporters for Spectrally Resolved PLIM. J Phys Chem C 2021;125:5739-47. [DOI: 10.1021/acs.jpcc.0c09835] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
268 Pan C, Zhang T, Li S, Xu Z, Pan B, Xu S, Jin S, Lu G, Yang S, Xue Z, Chen P, Shen X, Wang F, Xu C. Hybrid Nanoparticles Modified by Hyaluronic Acid Loading an HSP90 Inhibitor as a Novel Delivery System for Subcutaneous and Orthotopic Colon Cancer Therapy. Int J Nanomedicine 2021;16:1743-55. [PMID: 33688189 DOI: 10.2147/IJN.S275805] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
269 Wang J, Ni Q, Wang Y, Zhang Y, He H, Gao D, Ma X, Liang X. Nanoscale drug delivery systems for controllable drug behaviors by multi-stage barrier penetration. Journal of Controlled Release 2021;331:282-95. [DOI: 10.1016/j.jconrel.2020.08.045] [Cited by in Crossref: 29] [Cited by in F6Publishing: 32] [Article Influence: 14.5] [Reference Citation Analysis]
270 Zhang L, He F, Gao L, Cong M, Sun J, Xu J, Wang Y, Hu Y, Asghar S, Hu L, Qiao H. Engineering Exosome-Like Nanovesicles Derived from Asparagus cochinchinensis Can Inhibit the Proliferation of Hepatocellular Carcinoma Cells with Better Safety Profile. Int J Nanomedicine 2021;16:1575-86. [PMID: 33664572 DOI: 10.2147/IJN.S293067] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 9.5] [Reference Citation Analysis]
271 Ximendes E, Benayas A, Jaque D, Marin R. Quo Vadis, Nanoparticle-Enabled In Vivo Fluorescence Imaging? ACS Nano 2021;15:1917-41. [PMID: 33465306 DOI: 10.1021/acsnano.0c08349] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 10.0] [Reference Citation Analysis]
272 Giesen B, Nickel AC, Barthel J, Kahlert UD, Janiak C. Augmented Therapeutic Potential of Glutaminase Inhibitor CB839 in Glioblastoma Stem Cells Using Gold Nanoparticle Delivery. Pharmaceutics 2021;13:295. [PMID: 33672398 DOI: 10.3390/pharmaceutics13020295] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
273 Jia W, Wang Y, Liu R, Yu X, Gao H. Shape Transformable Strategies for Drug Delivery. Adv Funct Mater 2021;31:2009765. [DOI: 10.1002/adfm.202009765] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 13.5] [Reference Citation Analysis]
274 Javed B, Ikram M, Farooq F, Sultana T, Mashwani ZU, Raja NI. Biogenesis of silver nanoparticles to treat cancer, diabetes, and microbial infections: a mechanistic overview. Appl Microbiol Biotechnol 2021;105:2261-75. [PMID: 33591386 DOI: 10.1007/s00253-021-11171-8] [Cited by in Crossref: 31] [Cited by in F6Publishing: 23] [Article Influence: 15.5] [Reference Citation Analysis]
275 Makvandi P, Baghbantaraghdari Z, Zhou W, Zhang Y, Manchanda R, Agarwal T, Wu A, Maiti TK, Varma RS, Smith BR. Gum polysaccharide/nanometal hybrid biocomposites in cancer diagnosis and therapy. Biotechnol Adv 2021;48:107711. [PMID: 33592279 DOI: 10.1016/j.biotechadv.2021.107711] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 8.5] [Reference Citation Analysis]
276 Correa TDS, Bocca AL, Figueiredo F, Lima ECO, Almeida Santos MFM, Lacava ZGM, Campos-da-Paz M. Anti-CEA tagged iron nanoparticles for targeting triple-negative breast cancer. Biomed Mater 2021. [PMID: 33540396 DOI: 10.1088/1748-605X/abe359] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
277 das Neves J, Sverdlov Arzi R, Sosnik A. Molecular and cellular cues governing nanomaterial-mucosae interactions: from nanomedicine to nanotoxicology. Chem Soc Rev 2020;49:5058-100. [PMID: 32538405 DOI: 10.1039/c8cs00948a] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 13.5] [Reference Citation Analysis]
278 Khan AA, Allemailem KS, Almatroudi A, Almatroodi SA, Alsahli MA, Rahmani AH. Novel strategies of third level (Organelle-specific) drug targeting: An innovative approach of modern therapeutics. Journal of Drug Delivery Science and Technology 2021;61:102315. [DOI: 10.1016/j.jddst.2020.102315] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
279 Woythe L, Tito NB, Albertazzi L. A quantitative view on multivalent nanomedicine targeting. Adv Drug Deliv Rev 2021;169:1-21. [PMID: 33264593 DOI: 10.1016/j.addr.2020.11.010] [Cited by in Crossref: 19] [Cited by in F6Publishing: 25] [Article Influence: 9.5] [Reference Citation Analysis]
280 Shabana AM, Kambhampati SP, Hsia RC, Kannan RM, Kokkoli E. Thermosensitive and biodegradable hydrogel encapsulating targeted nanoparticles for the sustained co-delivery of gemcitabine and paclitaxel to pancreatic cancer cells. Int J Pharm 2021;593:120139. [PMID: 33278494 DOI: 10.1016/j.ijpharm.2020.120139] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
281 Goodarzi S, Prunet A, Rossetti F, Bort G, Tillement O, Porcel E, Lacombe S, Wu T, Guerquin-kern J, Delanoë-ayari H, Lux F, Rivière C. Quantifying nanotherapeutics penetration using hydrogel based microsystem as a new 3D in vitro platform.. [DOI: 10.1101/2021.01.17.427020] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
282 Apostolopoulos V, Bojarska J, Chai TT, Elnagdy S, Kaczmarek K, Matsoukas J, New R, Parang K, Lopez OP, Parhiz H, Perera CO, Pickholz M, Remko M, Saviano M, Skwarczynski M, Tang Y, Wolf WM, Yoshiya T, Zabrocki J, Zielenkiewicz P, AlKhazindar M, Barriga V, Kelaidonis K, Sarasia EM, Toth I. A Global Review on Short Peptides: Frontiers and Perspectives. Molecules 2021;26:E430. [PMID: 33467522 DOI: 10.3390/molecules26020430] [Cited by in Crossref: 63] [Cited by in F6Publishing: 72] [Article Influence: 31.5] [Reference Citation Analysis]
283 Bukchin A, Sanchez-navarro M, Carrera A, Resa-pares C, Castillo-ecija H, Balaguer-lluna L, Teixidó M, Olaciregui NG, Giralt E, Carcaboso AM, Sosnik A. Amphiphilic Polymeric Nanoparticles Modified with a Protease-Resistant Peptide Shuttle for the Delivery of SN-38 in Diffuse Intrinsic Pontine Glioma. ACS Appl Nano Mater 2021;4:1314-29. [DOI: 10.1021/acsanm.0c02888] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
284 Weiss M, Fan J, Claudel M, Lebeau L, Pons F, Ronzani C. Combined In Vitro and In Vivo Approaches to Propose a Putative Adverse Outcome Pathway for Acute Lung Inflammation Induced by Nanoparticles: A Study on Carbon Dots. Nanomaterials (Basel) 2021;11:180. [PMID: 33450894 DOI: 10.3390/nano11010180] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
285 Moraes S, Marinho A, Lima S, Granja A, Araújo JP, Reis S, Sousa CT, Nunes C. Targeted nanostructured lipid carriers for doxorubicin oral delivery. Int J Pharm 2021;592:120029. [PMID: 33130218 DOI: 10.1016/j.ijpharm.2020.120029] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
286 Chiarpotti MV, Longo GS, Del Pópolo MG. Nanoparticles modified with cell penetrating peptides: Assessing adsorption on membranes containing acidic lipids. Colloids and Surfaces B: Biointerfaces 2021;197:111373. [DOI: 10.1016/j.colsurfb.2020.111373] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
287 Johnston ST, Faria M, Crampin EJ. Understanding nano-engineered particle–cell interactions: biological insights from mathematical models. Nanoscale Adv 2021;3:2139-56. [DOI: 10.1039/d0na00774a] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
288 Fernandes LCC, Nogueira KAB, Martins JRP, Santos E, de Freitas PGC, Nogueira BAB, Raspantini GL, Petrilli R, Eloy JO. Nanotechnology: Concepts and Potential Applications in Medicine. Nanomaterials and Nanotechnology 2021. [DOI: 10.1007/978-981-33-6056-3_1] [Reference Citation Analysis]
289 Åberg C. Kinetics of nanoparticle uptake into and distribution in human cells. Nanoscale Adv 2021;3:2196-212. [DOI: 10.1039/d0na00716a] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
290 Kanwar N, U A, K.p. D, Singh SP, Bharati S, Kanwal A. Biological systems and nanopharmacokinetics. Nano-Pharmacokinetics and Theranostics 2021. [DOI: 10.1016/b978-0-323-85050-6.00010-4] [Reference Citation Analysis]
291 Amoabediny G, Rastegar G, Maleki M, Jafari D, Amoabediny Z, Rahimi F, Khodarahmi M. Dual Targeting Drug Delivery for Cancer Theranostics. Nanotechnology in the Life Sciences 2021. [DOI: 10.1007/978-3-030-74330-7_2] [Reference Citation Analysis]
292 Tang X, Wang Z, Wei F, Mu W, Han X. Recent Progress of Lung Cancer Diagnosis Using Nanomaterials. Crystals 2021;11:24. [DOI: 10.3390/cryst11010024] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
293 Gravely M, Roxbury D. Multispectral Fingerprinting Resolves Dynamics of Nanomaterial Trafficking in Primary Endothelial Cells.. [DOI: 10.1101/2020.12.14.422763] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
294 Pontes-Quero GM, Benito-Garzón L, Pérez Cano J, Aguilar MR, Vázquez-Lasa B. Amphiphilic polymeric nanoparticles encapsulating curcumin: Antioxidant, anti-inflammatory and biocompatibility studies. Mater Sci Eng C Mater Biol Appl 2021;121:111793. [PMID: 33579443 DOI: 10.1016/j.msec.2020.111793] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
295 Paranthaman S, Goravinahalli Shivananjegowda M, Mahadev M, Moin A, Hagalavadi Nanjappa S, Nanjaiyah N, Chidambaram SB, Gowda DV. Nanodelivery Systems Targeting Epidermal Growth Factor Receptors for Glioma Management. Pharmaceutics 2020;12:E1198. [PMID: 33321953 DOI: 10.3390/pharmaceutics12121198] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
296 Augustine R, Hasan A, Primavera R, Wilson RJ, Thakor AS, Kevadiya BD. Cellular uptake and retention of nanoparticles: Insights on particle properties and interaction with cellular components. Materials Today Communications 2020;25:101692. [DOI: 10.1016/j.mtcomm.2020.101692] [Cited by in Crossref: 33] [Cited by in F6Publishing: 36] [Article Influence: 11.0] [Reference Citation Analysis]
297 Jha SK, Chung JY, Pangeni R, Choi HS, Subedi L, Kweon S, Choi JU, Byun Y, Kim Y, Park JW. Enhanced antitumor efficacy of bile acid-lipid complex-anchored docetaxel nanoemulsion via oral metronomic scheduling. Journal of Controlled Release 2020;328:368-94. [DOI: 10.1016/j.jconrel.2020.08.067] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
298 D'Onofrio M, Munari F, Assfalg M. Alpha-Synuclein-Nanoparticle Interactions: Understanding, Controlling and Exploiting Conformational Plasticity. Molecules 2020;25:E5625. [PMID: 33260436 DOI: 10.3390/molecules25235625] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
299 Wang X, Qiu Y, Wang M, Zhang C, Zhang T, Zhou H, Zhao W, Zhao W, Xia G, Shao R. Endocytosis and Organelle Targeting of Nanomedicines in Cancer Therapy. Int J Nanomedicine 2020;15:9447-67. [PMID: 33268987 DOI: 10.2147/IJN.S274289] [Cited by in Crossref: 20] [Cited by in F6Publishing: 25] [Article Influence: 6.7] [Reference Citation Analysis]
300 Luo D, Wang X, Walker E, Wang J, Springer S, Lou J, Ramamurthy G, Burda C, Basilion JP. Nanoparticles Yield Increased Drug Uptake and Therapeutic Efficacy upon Sequential Near-Infrared Irradiation. ACS Nano 2020;14:15193-203. [PMID: 33090762 DOI: 10.1021/acsnano.0c05425] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
301 Cottura N, Howarth A, Rajoli RKR, Siccardi M. The Current Landscape of Novel Formulations and the Role of Mathematical Modeling in Their Development. J Clin Pharmacol 2020;60 Suppl 1:S77-97. [PMID: 33205431 DOI: 10.1002/jcph.1715] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
302 Wang W, Huang Z, Huang Y, Pan X, Wu C. Updates on the applications of iron-based nanoplatforms in tumor theranostics. Int J Pharm 2020;589:119815. [PMID: 32877726 DOI: 10.1016/j.ijpharm.2020.119815] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
303 Sheth V, Wang L, Bhattacharya R, Mukherjee P, Wilhelm S. Strategies for Delivering Nanoparticles across Tumor Blood Vessels. Adv Funct Mater 2021;31:2007363. [DOI: 10.1002/adfm.202007363] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
304 Pangeni R, Subedi L, Jha SK, Kweon S, Kang SH, Chang KY, Choi JU, Byun Y, Park JW. Improvements in the Oral Absorption and Anticancer Efficacy of an Oxaliplatin-Loaded Solid Formulation: Pharmacokinetic Properties in Rats and Nonhuman Primates and the Effects of Oral Metronomic Dosing on Colorectal Cancer. Int J Nanomedicine 2020;15:7719-43. [PMID: 33116497 DOI: 10.2147/IJN.S267424] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
305 Sabourian P, Yazdani G, Ashraf SS, Frounchi M, Mashayekhan S, Kiani S, Kakkar A. Effect of Physico-Chemical Properties of Nanoparticles on Their Intracellular Uptake. Int J Mol Sci 2020;21:E8019. [PMID: 33126533 DOI: 10.3390/ijms21218019] [Cited by in Crossref: 37] [Cited by in F6Publishing: 40] [Article Influence: 12.3] [Reference Citation Analysis]
306 Jiang X, Fan X, Zhang R, Xu W, Wu H, Zhao F, Xiao H, Zhang C, Zhao C, Wu G. In situ tumor-triggered subcellular precise delivery of multi-drugs for enhanced chemo-photothermal-starvation combination antitumor therapy. Theranostics 2020;10:12158-73. [PMID: 33204335 DOI: 10.7150/thno.52000] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
307 Li YX, Pang HB. Macropinocytosis as a cell entry route for peptide-functionalized and bystander nanoparticles. J Control Release 2021;329:1222-30. [PMID: 33622520 DOI: 10.1016/j.jconrel.2020.10.049] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
308 Lv W, Champion JA. Demonstration of intracellular trafficking, cytosolic bioavailability, and target manipulation of an antibody delivery platform. Nanomedicine 2021;32:102315. [PMID: 33065253 DOI: 10.1016/j.nano.2020.102315] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
309 Ashford M. Drug delivery-the increasing momentum. Drug Deliv Transl Res 2020;10:1888-94. [PMID: 33025537 DOI: 10.1007/s13346-020-00858-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
310 Fischer D, Dusek N, Hotzel K, Heinze T. The Role of Formamidine Groups in Dextran Based Nonviral Vectors for Gene Delivery on Their Physicochemical and Biological Characteristics. Macromol Biosci 2021;21:e2000220. [PMID: 33025658 DOI: 10.1002/mabi.202000220] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
311 Zhang A, Meng K, Liu Y, Pan Y, Qu W, Chen D, Xie S. Absorption, distribution, metabolism, and excretion of nanocarriers in vivo and their influences. Adv Colloid Interface Sci 2020;284:102261. [PMID: 32942181 DOI: 10.1016/j.cis.2020.102261] [Cited by in Crossref: 31] [Cited by in F6Publishing: 24] [Article Influence: 10.3] [Reference Citation Analysis]
312 Pereira-silva M, Jarak I, Santos AC, Veiga F, Figueiras A. Micelleplex-based nucleic acid therapeutics: From targeted stimuli-responsiveness to nanotoxicity and regulation. European Journal of Pharmaceutical Sciences 2020;153:105461. [DOI: 10.1016/j.ejps.2020.105461] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
313 Kashapov R, Gaynanova G, Gabdrakhmanov D, Kuznetsov D, Pavlov R, Petrov K, Zakharova L, Sinyashin O. Self-Assembly of Amphiphilic Compounds as a Versatile Tool for Construction of Nanoscale Drug Carriers. Int J Mol Sci 2020;21:E6961. [PMID: 32971917 DOI: 10.3390/ijms21186961] [Cited by in Crossref: 33] [Cited by in F6Publishing: 36] [Article Influence: 11.0] [Reference Citation Analysis]
314 Radchanka AV, Terpinskaya TI, Yanchanka TL, Balashevich TV, Artemyev MV. Influence of calcium ions on physical chemical characteristics of semiconductor quantum dots encapsulated by amphiphilic polymer and their efficiency of cellular uptake. Journal of the Belarusian State University Chemistry 2020. [DOI: 10.33581/2520-257x-2020-2-3-16] [Reference Citation Analysis]
315 Dong L, Li W, Yu L, Sun L, Chen Y, Hong G. Ultrasmall Ag 2 Te Quantum Dots with Rapid Clearance for Amplified Computed Tomography Imaging and Augmented Photonic Tumor Hyperthermia. ACS Appl Mater Interfaces 2020;12:42558-66. [DOI: 10.1021/acsami.0c12948] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
316 Cai W, Luo T, Mao L, Wang M. Spatiotemporal Delivery of CRISPR/Cas9 Genome Editing Machinery Using Stimuli-Responsive Vehicles. Angew Chem Int Ed Engl 2021;60:8596-606. [PMID: 32385892 DOI: 10.1002/anie.202005644] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 5.3] [Reference Citation Analysis]
317 Sánchez A, Mejía SP, Orozco J. Recent Advances in Polymeric Nanoparticle-Encapsulated Drugs against Intracellular Infections. Molecules 2020;25:E3760. [PMID: 32824757 DOI: 10.3390/molecules25163760] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 11.3] [Reference Citation Analysis]
318 Moradi Kashkooli F, Soltani M, Souri M. Controlled anti-cancer drug release through advanced nano-drug delivery systems: Static and dynamic targeting strategies. J Control Release 2020;327:316-49. [PMID: 32800878 DOI: 10.1016/j.jconrel.2020.08.012] [Cited by in Crossref: 84] [Cited by in F6Publishing: 67] [Article Influence: 28.0] [Reference Citation Analysis]
319 Ju Y, Guo H, Edman M, Hamm-Alvarez SF. Application of advances in endocytosis and membrane trafficking to drug delivery. Adv Drug Deliv Rev 2020;157:118-41. [PMID: 32758615 DOI: 10.1016/j.addr.2020.07.026] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
320 Teng C, Lin C, Huang F, Xing X, Chen S, Ye L, Azevedo HS, Xu C, Wu Z, Chen Z, He W. Intracellular codelivery of anti-inflammatory drug and anti-miR 155 to treat inflammatory disease. Acta Pharm Sin B 2020;10:1521-33. [PMID: 32963947 DOI: 10.1016/j.apsb.2020.06.005] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 7.7] [Reference Citation Analysis]
321 Lee JY, Jo Y, Shin H, Lee J, Chae SU, Bae SK, Na K. Anthocyanin-fucoidan nanocomplex for preventing carcinogen induced cancer: Enhanced absorption and stability. International Journal of Pharmaceutics 2020;586:119597. [DOI: 10.1016/j.ijpharm.2020.119597] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
322 Nikolopoulou SG, Boukos N, Sakellis E, Efthimiadou EK. Synthesis of biocompatible silver nanoparticles by a modified polyol method for theranostic applications: Studies on red blood cells, internalization ability and antibacterial activity. J Inorg Biochem 2020;211:111177. [PMID: 32795713 DOI: 10.1016/j.jinorgbio.2020.111177] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
323 Lee K, Huang ZN, Mirkin CA, Odom TW. Endosomal Organization of CpG Constructs Correlates with Enhanced Immune Activation. Nano Lett 2020;20:6170-5. [PMID: 32787186 DOI: 10.1021/acs.nanolett.0c02536] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
324 Pavlov RV, Gaynanova GA, Kuznetsova DA, Vasileva LA, Zueva IV, Sapunova AS, Buzyurova DN, Babaev VM, Voloshina AD, Lukashenko SS, Rizvanov IK, Petrov KA, Zakharova LY, Sinyashin OG. Biomedical potentialities of cationic geminis as modulating agents of liposome in drug delivery across biological barriers and cellular uptake. Int J Pharm 2020;587:119640. [PMID: 32673770 DOI: 10.1016/j.ijpharm.2020.119640] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 7.7] [Reference Citation Analysis]
325 Haddad Y, Charousova M, Zivotska H, Splichal Z, Merlos Rodrigo MA, Michalkova H, Krizkova S, Tesarova B, Richtera L, Vitek P, Stokowa-Soltys K, Hynek D, Milosavljevic V, Rex S, Heger Z. Norepinephrine transporter-derived homing peptides enable rapid endocytosis of drug delivery nanovehicles into neuroblastoma cells. J Nanobiotechnology 2020;18:95. [PMID: 32660596 DOI: 10.1186/s12951-020-00654-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
326 Li Y, Lee JS. Insights into Characterization Methods and Biomedical Applications of Nanoparticle-Protein Corona. Materials (Basel) 2020;13:E3093. [PMID: 32664362 DOI: 10.3390/ma13143093] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
327 Donahue ND, Francek ER, Kiyotake E, Thomas EE, Yang W, Wang L, Detamore MS, Wilhelm S. Assessing nanoparticle colloidal stability with single-particle inductively coupled plasma mass spectrometry (SP-ICP-MS). Anal Bioanal Chem 2020;412:5205-16. [DOI: 10.1007/s00216-020-02783-6] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
328 Peng C, Huang Y, Zheng J. Renal clearable nanocarriers: Overcoming the physiological barriers for precise drug delivery and clearance. Journal of Controlled Release 2020;322:64-80. [DOI: 10.1016/j.jconrel.2020.03.020] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
329 Kumar A, Ahmad A, Vyawahare A, Khan R. Membrane Trafficking and Subcellular Drug Targeting Pathways. Front Pharmacol 2020;11:629. [PMID: 32536862 DOI: 10.3389/fphar.2020.00629] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
330 Kim YK. RNA Therapy: Current Status and Future Potential. Chonnam Med J 2020;56:87-93. [PMID: 32509554 DOI: 10.4068/cmj.2020.56.2.87] [Cited by in Crossref: 37] [Cited by in F6Publishing: 41] [Article Influence: 12.3] [Reference Citation Analysis]
331 Di Gioacchino M, Petrarca C, Gatta A, Scarano G, Farinelli A, Della Valle L, Lumaca A, Del Biondo P, Paganelli R, Di Giampaolo L. Nanoparticle-based immunotherapy: state of the art and future perspectives. Expert Rev Clin Immunol 2020;16:513-25. [PMID: 32343153 DOI: 10.1080/1744666X.2020.1762572] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
332 Cai X, Liu X, Jiang J, Gao M, Wang W, Zheng H, Xu S, Li R. Molecular Mechanisms, Characterization Methods, and Utilities of Nanoparticle Biotransformation in Nanosafety Assessments. Small 2020;16:e1907663. [PMID: 32406193 DOI: 10.1002/smll.201907663] [Cited by in Crossref: 36] [Cited by in F6Publishing: 39] [Article Influence: 12.0] [Reference Citation Analysis]
333 Zhang Q, He S, Kuang G, Liu S, Lu H, Li X, Zhou D, Huang Y. Morphology tunable and acid-sensitive dextran-doxorubicin conjugate assemblies for targeted cancer therapy. J Mater Chem B 2020;8:6898-904. [PMID: 32400838 DOI: 10.1039/d0tb00746c] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
334 Patil-Sen Y, Torino E, De Sarno F, Ponsiglione AM, Chhabria V, Ahmed W, Mercer T. Biocompatible superparamagnetic core-shell nanoparticles for potential use in hyperthermia-enabled drug release and as an enhanced contrast agent. Nanotechnology 2020;31:375102. [PMID: 32392545 DOI: 10.1088/1361-6528/ab91f6] [Cited by in Crossref: 21] [Cited by in F6Publishing: 26] [Article Influence: 7.0] [Reference Citation Analysis]
335 He W, Xing X, Wang X, Wu D, Wu W, Guo J, Mitragotri S. Nanocarrier‐Mediated Cytosolic Delivery of Biopharmaceuticals. Adv Funct Mater 2020;30:1910566. [DOI: 10.1002/adfm.201910566] [Cited by in Crossref: 50] [Cited by in F6Publishing: 51] [Article Influence: 16.7] [Reference Citation Analysis]
336 Ajoolabady A, Aghanejad A, Bi Y, Zhang Y, Aslkhodapasandhukmabad H, Abhari A, Ren J. Enzyme-based autophagy in anti-neoplastic management: From molecular mechanisms to clinical therapeutics. Biochim Biophys Acta Rev Cancer 2020;1874:188366. [PMID: 32339608 DOI: 10.1016/j.bbcan.2020.188366] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 8.0] [Reference Citation Analysis]
337 Yuana Y, Balachandran B, van der Wurff-Jacobs KMG, Schiffelers RM, Moonen CT. Potential Use of Extracellular Vesicles Generated by Microbubble-Assisted Ultrasound as Drug Nanocarriers for Cancer Treatment. Int J Mol Sci 2020;21:E3024. [PMID: 32344752 DOI: 10.3390/ijms21083024] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
338 Higbee-Dempsey EM, Amirshaghaghi A, Case MJ, Bouché M, Kim J, Cormode DP, Tsourkas A. Biodegradable Gold Nanoclusters with Improved Excretion Due to pH-Triggered Hydrophobic-to-Hydrophilic Transition. J Am Chem Soc 2020;142:7783-94. [PMID: 32271558 DOI: 10.1021/jacs.9b13813] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 7.3] [Reference Citation Analysis]
339 Yin Y, Deng H, Wu K, He B, Dai W, Zhang H, Fu J, Le Y, Wang X, Zhang Q. A multiaspect study on transcytosis mechanism of sorafenib nanogranules engineered by high-gravity antisolvent precipitation. J Control Release 2020;323:600-12. [PMID: 32278828 DOI: 10.1016/j.jconrel.2020.04.008] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
340 Muley H, Fadó R, Rodríguez-Rodríguez R, Casals N. Drug uptake-based chemoresistance in breast cancer treatment. Biochem Pharmacol 2020;177:113959. [PMID: 32272110 DOI: 10.1016/j.bcp.2020.113959] [Cited by in Crossref: 45] [Cited by in F6Publishing: 39] [Article Influence: 15.0] [Reference Citation Analysis]
341 Alvarez-lorenzo C, Grinberg VY, Burova TV, Concheiro A. Stimuli-sensitive cross-linked hydrogels as drug delivery systems: Impact of the drug on the responsiveness. International Journal of Pharmaceutics 2020;579:119157. [DOI: 10.1016/j.ijpharm.2020.119157] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 7.7] [Reference Citation Analysis]
342 Carvalho IC, Mansur HS, Mansur AA, Carvalho SM, de Oliveira LCA, de Fatima Leite M. Luminescent switch of polysaccharide-peptide-quantum dot nanostructures for targeted-intracellular imaging of glioblastoma cells. Journal of Molecular Liquids 2020;304:112759. [DOI: 10.1016/j.molliq.2020.112759] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
343 Zhu S, Luo C, Feng W, Li Y, Zhu M, Sun S, Zhang X. Selenium-deposited tripterine phytosomes ameliorate the antiarthritic efficacy of the phytomedicine via a synergistic sensitization. International Journal of Pharmaceutics 2020;578:119104. [DOI: 10.1016/j.ijpharm.2020.119104] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 4.3] [Reference Citation Analysis]
344 Seynhaeve ALB, Amin M, Haemmerich D, van Rhoon GC, Ten Hagen TLM. Hyperthermia and smart drug delivery systems for solid tumor therapy. Adv Drug Deliv Rev 2020;163-164:125-44. [PMID: 32092379 DOI: 10.1016/j.addr.2020.02.004] [Cited by in Crossref: 70] [Cited by in F6Publishing: 78] [Article Influence: 23.3] [Reference Citation Analysis]
345 Zhou Q, Dong C, Fan W, Jiang H, Xiang J, Qiu N, Piao Y, Xie T, Luo Y, Li Z, Liu F, Shen Y. Tumor extravasation and infiltration as barriers of nanomedicine for high efficacy: The current status and transcytosis strategy. Biomaterials 2020;240:119902. [PMID: 32105817 DOI: 10.1016/j.biomaterials.2020.119902] [Cited by in Crossref: 82] [Cited by in F6Publishing: 90] [Article Influence: 27.3] [Reference Citation Analysis]
346 Lee JC, Donahue ND, Mao AS, Karim A, Komarneni M, Thomas EE, Francek ER, Yang W, Wilhelm S. Exploring Maleimide-Based Nanoparticle Surface Engineering to Control Cellular Interactions. ACS Appl Nano Mater 2020;3:2421-9. [DOI: 10.1021/acsanm.9b02541] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
347 Vilches C, Quidant R. Targeted hyperthermia with plasmonic nanoparticles. Frontiers of Nanoscience 2020. [DOI: 10.1016/b978-0-08-102828-5.00012-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
348 Borgheti-Cardoso LN, Viegas JSR, Silvestrini AVP, Caron AL, Praça FG, Kravicz M, Bentley MVLB. Nanotechnology approaches in the current therapy of skin cancer. Adv Drug Deliv Rev 2020;153:109-36. [PMID: 32113956 DOI: 10.1016/j.addr.2020.02.005] [Cited by in Crossref: 36] [Cited by in F6Publishing: 27] [Article Influence: 12.0] [Reference Citation Analysis]
349 Narum SM, Le T, Le DP, Lee JC, Donahue ND, Yang W, Wilhelm S. Passive targeting in nanomedicine: fundamental concepts, body interactions, and clinical potential. Nanoparticles for Biomedical Applications 2020. [DOI: 10.1016/b978-0-12-816662-8.00004-7] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 8.3] [Reference Citation Analysis]
350 Guan Q, Wang G, Zhou L, Li W, Dong Y. Nanoscale covalent organic frameworks as theranostic platforms for oncotherapy: synthesis, functionalization, and applications. Nanoscale Adv 2020;2:3656-733. [DOI: 10.1039/d0na00537a] [Cited by in Crossref: 58] [Cited by in F6Publishing: 59] [Article Influence: 19.3] [Reference Citation Analysis]
351 Zheng Z, Chen Q, Dai R, Jia Z, Yang C, Peng X, Zhang R. A continuous stimuli-responsive system for NIR-II fluorescence/photoacoustic imaging guided photothermal/gas synergistic therapy. Nanoscale 2020;12:11562-72. [DOI: 10.1039/d0nr02543g] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 8.7] [Reference Citation Analysis]
352 Pattnaik S, Siddhardha B. Understanding the Biological Activities of Nanoparticles Using Murine Models. Model Organisms to Study Biological Activities and Toxicity of Nanoparticles 2020. [DOI: 10.1007/978-981-15-1702-0_11] [Reference Citation Analysis]
353 Mcnamara K, Tofail SA, Thorat ND, Bauer J, Mulvihill JJ. Biomedical Applications of Nanoalloys. Nanoalloys 2020. [DOI: 10.1016/b978-0-12-819847-6.00016-4] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
354 Kim B, Park JH, Sailor MJ. Rekindling RNAi Therapy: Materials Design Requirements for In Vivo siRNA Delivery. Adv Mater 2019;31:e1903637. [PMID: 31566258 DOI: 10.1002/adma.201903637] [Cited by in Crossref: 107] [Cited by in F6Publishing: 120] [Article Influence: 26.8] [Reference Citation Analysis]
355 Luo Y, Yang H, Zhou YF, Hu B. Dual and multi-targeted nanoparticles for site-specific brain drug delivery. J Control Release 2020;317:195-215. [PMID: 31794799 DOI: 10.1016/j.jconrel.2019.11.037] [Cited by in Crossref: 43] [Cited by in F6Publishing: 41] [Article Influence: 10.8] [Reference Citation Analysis]
356 Kumar S, Nehra M, Dilbaghi N, Marrazza G, Tuteja SK, Kim KH. Nanovehicles for Plant Modifications towards Pest- and Disease-Resistance Traits. Trends Plant Sci 2020;25:198-212. [PMID: 31780333 DOI: 10.1016/j.tplants.2019.10.007] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 5.0] [Reference Citation Analysis]
357 Yin Y, Yuan X, Gao H, Yang Q. Nanoformulations of small molecule protein tyrosine kinases inhibitors potentiate targeted cancer therapy. Int J Pharm 2020;573:118785. [PMID: 31678384 DOI: 10.1016/j.ijpharm.2019.118785] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
358 Zhu Y, Yu F, Tan Y, Hong Y, Meng T, Liu Y, Dai S, Qiu G, Yuan H, Hu F. Reversing activity of cancer associated fibroblast for staged glycolipid micelles against internal breast tumor cells. Theranostics 2019;9:6764-79. [PMID: 31660067 DOI: 10.7150/thno.36334] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
359 Osman NM, Sexton DW, Saleem IY. Toxicological assessment of nanoparticle interactions with the pulmonary system. Nanotoxicology 2020;14:21-58. [PMID: 31502904 DOI: 10.1080/17435390.2019.1661043] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
360 Huai Y, Hossen MN, Wilhelm S, Bhattacharya R, Mukherjee P. Nanoparticle Interactions with the Tumor Microenvironment. Bioconjug Chem 2019;30:2247-63. [PMID: 31408324 DOI: 10.1021/acs.bioconjchem.9b00448] [Cited by in Crossref: 41] [Cited by in F6Publishing: 42] [Article Influence: 10.3] [Reference Citation Analysis]
361 Nieto C, Centa A, Rodríguez-Rodríguez JA, Pandiella A, Martín Del Valle EM. Paclitaxel-Trastuzumab Mixed Nanovehicle to Target HER2-Overexpressing Tumors. Nanomaterials (Basel) 2019;9:E948. [PMID: 31261957 DOI: 10.3390/nano9070948] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
362 Wu W, Li T. Unraveling the in vivo fate and cellular pharmacokinetics of drug nanocarriers. Adv Drug Deliv Rev 2019;143:1-2. [PMID: 31519263 DOI: 10.1016/j.addr.2019.08.003] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 4.3] [Reference Citation Analysis]