BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bordat A, Boissenot T, Nicolas J, Tsapis N. Thermoresponsive polymer nanocarriers for biomedical applications. Adv Drug Deliv Rev 2019;138:167-92. [PMID: 30315832 DOI: 10.1016/j.addr.2018.10.005] [Cited by in Crossref: 158] [Cited by in F6Publishing: 167] [Article Influence: 39.5] [Reference Citation Analysis]
Number Citing Articles
1 Liu Y, Wu Y, Luo Z, Li M. Designing supramolecular self-assembly nanomaterials as stimuli-responsive drug delivery platforms for cancer therapy. iScience 2023;26:106279. [PMID: 36936787 DOI: 10.1016/j.isci.2023.106279] [Reference Citation Analysis]
2 Herrera SE, Agazzi ML, Apuzzo E, Cortez ML, Marmisollé WA, Tagliazucchi M, Azzaroni O. Polyelectrolyte-multivalent molecule complexes: physicochemical properties and applications. Soft Matter 2023;19:2013-41. [PMID: 36811333 DOI: 10.1039/d2sm01507b] [Reference Citation Analysis]
3 Le HV, Dulong V, Picton L, Le Cerf D. Lyophilization for Formulation Optimization of Drug-Loaded Thermoresponsive Polyelectrolyte Complex Nanogels from Functionalized Hyaluronic Acid. Pharmaceutics 2023;15:929. [DOI: 10.3390/pharmaceutics15030929] [Reference Citation Analysis]
4 Xu Y, Wu C, Wang P, Zhan S, Zeng J, Wu X, Liu Y. Enhanced thermometry sensitivity in upconversion nanoparticles via near-field manipulation. Ceramics International 2023. [DOI: 10.1016/j.ceramint.2023.03.145] [Reference Citation Analysis]
5 Koide H, Saito K, Yoshimatsu K, Chou B, Hoshino Y, Yonezawa S, Oku N, Asai T, Shea KJ. Cooling-induced, localized release of cytotoxic peptides from engineered polymer nanoparticles in living mice for cancer therapy. J Control Release 2023;355:745-59. [PMID: 36804558 DOI: 10.1016/j.jconrel.2023.02.020] [Reference Citation Analysis]
6 Xie W, Wei X, Kang H, Jiang H, Chu Z, Lin Y, Hou Y, Wei Q. Static and Dynamic: Evolving Biomaterial Mechanical Properties to Control Cellular Mechanotransduction. Adv Sci (Weinh) 2023;10:e2204594. [PMID: 36658771 DOI: 10.1002/advs.202204594] [Reference Citation Analysis]
7 Salim MG, Vasudevan V, Schulman N, Zamani S, Kersey KD, Joshi Y, AlAmer M, Choi JI, Jang SS, Joo YL. Thermoresponsive Conductivity of Graphene-Based Fibers. Small 2023;:e2204981. [PMID: 36828800 DOI: 10.1002/smll.202204981] [Reference Citation Analysis]
8 Park SC, Sharma G, Kim J. Temperature- and oxidation-dependent doxorubicin release from poly(hydroxyethyl acrylate-co-phenyl vinyl sulfide) cryogel. Colloid Polym Sci 2023. [DOI: 10.1007/s00396-023-05069-2] [Reference Citation Analysis]
9 Manayia AH, Ilhami FB, Huang SY, Su TH, Huang CW, Chiu CW, Lee DJ, Lai JY, Cheng CC. Photoreactive Mercury-Containing Metallosupramolecular Nanoparticles with Tailorable Properties That Promote Enhanced Cellular Uptake for Effective Cancer Chemotherapy. Biomacromolecules 2023;24:943-56. [PMID: 36645325 DOI: 10.1021/acs.biomac.2c01369] [Reference Citation Analysis]
10 Xing W, Tang Y, Ji Y, Cheng D, Wang B, Fu Y, Xu Y, Qian X, Zhu W. Engineering near-infrared laser-activated gold nanorod vesicles with upper critical solution temperature for photothermal therapy and chemotherapy. J Colloid Interface Sci 2023;640:41-51. [PMID: 36827847 DOI: 10.1016/j.jcis.2023.02.049] [Reference Citation Analysis]
11 Manoswini M, Majumdar AG, Pany B, Sahu BR, Mohanty PS. Rapid detections of food pathogens using metal, semiconducting nanoparticles, and their hybrids: a review. emergent mater 2023. [DOI: 10.1007/s42247-022-00441-4] [Reference Citation Analysis]
12 Milewska S, Siemiaszko G, Wilczewska AZ, Misztalewska-Turkowicz I, Markiewicz KH, Szymczuk D, Sawicka D, Car H, Lazny R, Niemirowicz-Laskowska K. Folic-Acid-Conjugated Thermoresponsive Polymeric Particles for Targeted Delivery of 5-Fluorouracil to CRC Cells. Int J Mol Sci 2023;24. [PMID: 36674883 DOI: 10.3390/ijms24021364] [Reference Citation Analysis]
13 Kozhunova EY, Plutalova AV, Sybachin AV, Chertovich AV, Chernikova EV. Double Stimuli-Responsive di- and Triblock Copolymers of Poly(N-isopropylacrylamide) and Poly(1-vinylimidazole): Synthesis and Self-Assembly. Int J Mol Sci 2023;24. [PMID: 36614322 DOI: 10.3390/ijms24010879] [Reference Citation Analysis]
14 Verma A, Panda PK, Mangal S, Bais S. Thermoresponsive polymers: Phase behavior, drug delivery, and biomedical applications. Smart Polymeric Nano-Constructs in Drug Delivery 2023. [DOI: 10.1016/b978-0-323-91248-8.00005-2] [Reference Citation Analysis]
15 Yazdi MK, Zarrintaj P, Ganjali MR, Salehnia F, Rezapour M, Seidi F, Saeb MR. Grafted polysaccharides in drug delivery. Tailor-Made Polysaccharides in Drug Delivery 2023. [DOI: 10.1016/b978-0-12-821286-8.00007-0] [Reference Citation Analysis]
16 de Santana WMO, Pochapski DJ, Pulcinelli SH, Fontana CR, Santilli CV. Polymeric micelles–mediated photodynamic therapy. Nanomaterials for Photodynamic Therapy 2023. [DOI: 10.1016/b978-0-323-85595-2.00003-7] [Reference Citation Analysis]
17 Fauzi MB, Lo S, Thambirajoo M, Mazlan Z, Zulkiflee I, Masri S, Mohd Isa IL, Mokhtar SA. Thermoresponsive polymers and polymeric composites. Advances in Biomedical Polymers and Composites 2023. [DOI: 10.1016/b978-0-323-88524-9.00007-3] [Reference Citation Analysis]
18 Gardoni G, Manfredini N, Monzani M, Sponchioni M, Moscatelli D. Thermoresponsive Modular Nano-Objects Via RAFT Dispersion Polymerization in a Non-Polar Solvent. ACS Appl Polym Mater 2022. [DOI: 10.1021/acsapm.2c01598] [Reference Citation Analysis]
19 Dinakar YH, Karole A, Parvez S, Jain V, Mudavath SL. Organ-restricted delivery through stimuli-responsive nanocarriers for lung cancer therapy. Life Sciences 2022;310:121133. [DOI: 10.1016/j.lfs.2022.121133] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
20 Son S, Park H, Jang W, Ju S. Larger diameter selection of carbon nanotubes by two phase extraction using amphiphilic polymeric surfactant. Journal of Molecular Liquids 2022;367:120425. [DOI: 10.1016/j.molliq.2022.120425] [Reference Citation Analysis]
21 Mohammad Gholiha H, Ehsani M, Saeidi A, Ghadami A. Albumin-loaded thermo/pH dual-responsive nanogels based on sodium alginate and poly (N-vinyl caprolactam). Prog Biomater 2023;12:41-9. [PMID: 36445685 DOI: 10.1007/s40204-022-00211-9] [Reference Citation Analysis]
22 Rodchenko S, Kurlykin M, Tenkovtsev A, Milenin S, Sokolova M, Yakimansky A, Filippov A. Amphiphilic Molecular Brushes with Regular Polydimethylsiloxane Backbone and Poly-2-isopropyl-2-oxazoline Side Chains. 3. Influence of Grafting Density on Behavior in Organic and Aqueous Solutions. Polymers (Basel) 2022;14. [PMID: 36501510 DOI: 10.3390/polym14235118] [Reference Citation Analysis]
23 López ÁM, Tirado-guizar A, Licea-claverie A, Ramírez-jiménez A. Thermo and pH-Responsive Poly(DEGMA-co-OEGMA)-b-Poly(DEAEM) Synthesized by RAFT Polymerization and Its Self-Assembly Study. Macromol Res 2022. [DOI: 10.1007/s13233-022-0093-x] [Reference Citation Analysis]
24 Viana DB, Mathieu-gaedke M, Leao NM, Böker A, Ferreira Soares DC, Glebe U, Tebaldi ML. Hybrid protein-polymer nanoparticles based on P(NVCL-co-DMAEMA) loaded with cisplatin as a potential anti-cancer agent. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2022.103995] [Reference Citation Analysis]
25 Yang M, Abdalkarim SYH, Yu H, Asad RA, Ge D, Zhou Y. Thermo-sensitive composite microspheres incorporating cellulose nanocrystals for regulated drug release kinetics. Carbohydrate Polymers 2022. [DOI: 10.1016/j.carbpol.2022.120350] [Reference Citation Analysis]
26 Umapathi R, Kumar K, Ghoreishian SM, Rani GM, Park SY, Huh YS, Venkatesu P. Effect of Imidazolium Nitrate Ionic Liquids on Conformational Changes of Poly(N-vinylcaprolactam). ACS Omega 2022. [DOI: 10.1021/acsomega.2c03650] [Reference Citation Analysis]
27 Ali AA, Abuwatfa WH, Al-Sayah MH, Husseini GA. Gold-Nanoparticle Hybrid Nanostructures for Multimodal Cancer Therapy. Nanomaterials (Basel) 2022;12:3706. [PMID: 36296896 DOI: 10.3390/nano12203706] [Reference Citation Analysis]
28 Zeng K, Doberenz F, Lu YT, Nong JP, Fischer S, Groth T, Zhang K. Synthesis of Thermoresponsive PNIPAM-Grafted Cellulose Sulfates for Bioactive Multilayers via Layer-by-Layer Technique. ACS Appl Mater Interfaces 2022. [PMID: 36264178 DOI: 10.1021/acsami.2c12803] [Reference Citation Analysis]
29 Tamura A, Kang TW, Tonegawa A, Arisaka Y, Masuda H, Mikami R, Iwata T, Yoda T, Yui N. Supramolecular Surface Coatings with Acetylated Polyrotaxane-Based Triblock Copolymers for Thermal Regulation of Cell Adhesion and Fabrication of Cell Sheets. Biomacromolecules 2022. [PMID: 36206115 DOI: 10.1021/acs.biomac.2c01043] [Reference Citation Analysis]
30 Amin M, Lammers T, Ten Hagen TLM. Temperature-sensitive polymers to promote heat-triggered drug release from liposomes: Towards bypassing EPR. Adv Drug Deliv Rev 2022;189:114503. [PMID: 35998827 DOI: 10.1016/j.addr.2022.114503] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
31 Zhu X, Hu N, Xu Z, Cai X, Müller‐buschbaum P, Zhong Q. Easy care of silk fabrics realized by crosslinking thermo‐responsive copolymer film on its surface. Journal of Polymer Science. [DOI: 10.1002/pol.20220421] [Reference Citation Analysis]
32 Guo Y, Sun L, Wang Y, Wang Q, Jing D, Liu S. Nanomaterials based on thermosensitive polymer in biomedical field. Front Chem 2022;10:946183. [DOI: 10.3389/fchem.2022.946183] [Reference Citation Analysis]
33 Kitayama Y, Yazaki Y, Emoto J, Yuba E, Harada A. Programed Thermoresponsive Polymers with Cleavage-Induced Phase Transition. Molecules 2022;27:6082. [PMID: 36144815 DOI: 10.3390/molecules27186082] [Reference Citation Analysis]
34 Quader S, Van Guyse JFR. Bioresponsive Polymers for Nanomedicine-Expectations and Reality! Polymers (Basel) 2022;14:3659. [PMID: 36080733 DOI: 10.3390/polym14173659] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
35 Hiruta Y. Poly(N-isopropylacrylamide)-based temperature- and pH-responsive polymer materials for application in biomedical fields. Polym J. [DOI: 10.1038/s41428-022-00687-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Wang X, Li C, Wang Y, Chen H, Zhang X, Luo C, Zhou W, Li L, Teng L, Yu H, Wang J. Smart drug delivery systems for precise cancer therapy. Acta Pharmaceutica Sinica B 2022. [DOI: 10.1016/j.apsb.2022.08.013] [Reference Citation Analysis]
37 Sastri KT, Gupta NV, M S, Chakraborty S, Kumar H, Chand P, Balamuralidhara V, Gowda D. Nanocarrier facilitated drug delivery to the brain through intranasal route: A promising approach to transcend bio-obstacles and alleviate neurodegenerative conditions. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2022.103656] [Reference Citation Analysis]
38 Griffiths G, Gruenberg J, Marsh M, Wohlmann J, Jones AT, Parton RG. Nanoparticle entry into cells; the cell biology weak link. Adv Drug Deliv Rev 2022;188:114403. [PMID: 35777667 DOI: 10.1016/j.addr.2022.114403] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
39 Barman R, Rajdev P, Mondal T, Dey P, Ghosh S. Amphiphilic Alternating Copolymers with an Adjustable Lower Critical Solution Temperature (LCST) and Correlation with Nonspecific Protein Adsorption. ACS Appl Polym Mater . [DOI: 10.1021/acsapm.2c00938] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
40 Šálek P, Dvořáková J, Hladysh S, Oleshchuk D, Pavlova E, Kučka J, Proks V. Stimuli-responsive polypeptide nanogels for trypsin inhibition. Beilstein J Nanotechnol 2022;13:538-48. [DOI: 10.3762/bjnano.13.45] [Reference Citation Analysis]
41 Kaur J, Gulati M, Zacconi F, Dureja H, Loebenberg R, Ansari MS, AlOmeir O, Alam A, Chellappan DK, Gupta G, Jha NK, Pinto TJA, Morris A, Choonara YE, Adams J, Dua K, Singh SK. Biomedical Applications of polymeric micelles in the treatment of diabetes mellitus: Current success and future approaches. Expert Opin Drug Deliv 2022;:1-23. [PMID: 35695697 DOI: 10.1080/17425247.2022.2087629] [Reference Citation Analysis]
42 Wen L, Yan T, xiao Y, Xia W, Li X, Guo C, Lang M. A hypothermia-sensitive micelle with controlled release of hydrogen sulfide for protection against anoxia/reoxygenation-induced cardiomyocyte injury. European Polymer Journal 2022. [DOI: 10.1016/j.eurpolymj.2022.111325] [Reference Citation Analysis]
43 Bossion A, Zhu C, Guerassimoff L, Mougin J, Nicolas J. Vinyl copolymers with faster hydrolytic degradation than aliphatic polyesters and tunable upper critical solution temperatures. Nat Commun 2022;13:2873. [PMID: 35610204 DOI: 10.1038/s41467-022-30220-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
44 Sixdenier L, Augé A, Zhao Y, Marie E, Tribet C. UCST-Type Polymer Capsules Formed by Interfacial Complexation. ACS Macro Lett 2022;11:651-6. [PMID: 35570812 DOI: 10.1021/acsmacrolett.2c00021] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Liu Y, Zhao C, Chen C. Chirality-Governed UCST Behavior in Polypeptides. Macromolecules. [DOI: 10.1021/acs.macromol.2c00291] [Reference Citation Analysis]
46 Zarrin NK, Mottaghitalab F, Reis RL, Kundu SC, Farokhi M. Thermosensitive chitosan/poly(N-isopropyl acrylamide) nanoparticles embedded in aniline pentamer/silk fibroin/polyacrylamide as an electroactive injectable hydrogel for healing critical-sized calvarial bone defect in aging rat model. International Journal of Biological Macromolecules 2022. [DOI: 10.1016/j.ijbiomac.2022.05.176] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
47 Chen W, Chen Q, Chen Q, Cui C, Duan S, Kang Y, Liu Y, Liu Y, Muhammad W, Shao S, Tang C, Wang J, Wang L, Xiong M, Yin L, Zhang K, Zhang Z, Zhen X, Feng J, Gao C, Gu Z, He C, Ji J, Jiang X, Liu W, Liu Z, Peng H, Shen Y, Shi L, Sun X, Wang H, Wang J, Xiao H, Xu F, Zhong Z, Zhang X, Chen X. Biomedical polymers: synthesis, properties, and applications. Sci China Chem . [DOI: 10.1007/s11426-022-1243-5] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
48 Mba JC, Mitomo H, Yonamine Y, Wang G, Matsuo Y, Ijiro K. Hysteresis in the Thermo-Responsive Assembly of Hexa(ethylene glycol) Derivative-Modified Gold Nanodiscs as an Effect of Shape. Nanomaterials 2022;12:1421. [DOI: 10.3390/nano12091421] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
49 García MC, Calderón-Montaño JM, Rueda M, Longhi M, Rabasco AM, López-Lázaro M, Prieto-Dapena F, González-Rodríguez ML. pH-temperature dual-sensitive nucleolipid-containing stealth liposomes anchored with PEGylated AuNPs for triggering delivery of doxorubicin. Int J Pharm 2022;:121691. [PMID: 35331830 DOI: 10.1016/j.ijpharm.2022.121691] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
50 Le M, Huang W, Chen K, Lin C, Cai L, Zhang H, Jia Y. Upper critical solution temperature polymeric drug carriers. Chemical Engineering Journal 2022;432:134354. [DOI: 10.1016/j.cej.2021.134354] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
51 Ji Y, Sun Y, Hei M, Cheng D, Wang B, Tang Y, Fu Y, Zhu W, Xu Y, Qian X. NIR Activated Upper Critical Solution Temperature Polymeric Micelles for Trimodal Combinational Cancer Therapy. Biomacromolecules 2022. [PMID: 35195416 DOI: 10.1021/acs.biomac.1c01356] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
52 Calosi M, Guazzelli E, Braccini S, Lessi M, Bellina F, Galli G, Martinelli E. Self-Assembled Amphiphilic Fluorinated Random Copolymers for the Encapsulation and Release of the Hydrophobic Combretastatin A-4 Drug. Polymers (Basel) 2022;14:774. [PMID: 35215686 DOI: 10.3390/polym14040774] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
53 Kumar K, Venkatesu P. Role of protein-copolymer assembly in controlling micellization process of amphiphilic triblock copolymer. J Colloid Interface Sci 2022;608:2142-57. [PMID: 34758421 DOI: 10.1016/j.jcis.2021.10.117] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
54 Zhang Y, Wang P, Chen R. Effect of the macromolecular architecture on the thermoresponsive behavior of poly(N-isopropylacrylamide) in copolymers with poly(N,N-dimethylacrylamide) in aqueous solutions: Block vs random copolymers. Reactive and Functional Polymers 2022;171:105150. [DOI: 10.1016/j.reactfunctpolym.2021.105150] [Reference Citation Analysis]
55 Xu X, Shen S, Mo R. Bioresponsive nanogels for protein delivery. VIEW 2022;3:20200136. [DOI: 10.1002/viw.20200136] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
56 Soleimanbeigi M, Dousti F, Hassanzadeh F, Mirian M, Varshosaz J, Kasesaz Y, Rostami M. Boron Phenyl Alanine Targeted Chitosan-PNIPAAm Core-Shell Thermo-Responsive Nanoparticles; Boosting Drug Delivery to Glioblastoma in BNCT. Drug Development and Industrial Pharmacy. [DOI: 10.1080/03639045.2022.2032132] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
57 Sun J, Lu J, Li C, Tian Y, Liu K, Liu L, Zhao C, Zhang M. Design of a UCST Polymer with Strong Hydrogen Bonds and Reactive Moieties for Facile Polymer-Protein Hybridization. Biomacromolecules 2022. [PMID: 35049291 DOI: 10.1021/acs.biomac.1c01520] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
58 Liu H, Prachyathipsakul T, Koyasseril-Yehiya TM, Le SP, Thayumanavan S. Molecular bases for temperature sensitivity in supramolecular assemblies and their applications as thermoresponsive soft materials. Mater Horiz 2022;9:164-93. [PMID: 34549764 DOI: 10.1039/d1mh01091c] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
59 Zhang W, Yang W, Chen J, Wang Y, Yan M, Zhou J. An amphiphilic water-soluble biphen[3]arene with a tunable lower critical solution temperature behavior. New J Chem 2022;46:21453-21457. [DOI: 10.1039/d2nj03918d] [Reference Citation Analysis]
60 Fang Z, Yang E, Du Y, Gao D, Wu G, Zhang Y, Shen Y. Biomimetic smart nanoplatform for dual imaging-guided synergistic cancer therapy. J Mater Chem B. [DOI: 10.1039/d1tb02306c] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
61 Soh WWM, Zhu J, Song X, Jain D, Yim EKF, Li J. Detachment of bovine corneal endothelial cell sheets by cooling-induced surface hydration of poly[(R)-3-hydroxybutyrate]-based thermoresponsive copolymer coating. J Mater Chem B 2022;10:8407-8418. [DOI: 10.1039/d2tb01926d] [Reference Citation Analysis]
62 Nisha R, Mishra N, Alka, Singh N, Singh P, Pal RR, Singh S, Maurya P, Saraf SA. Polymer conjugates. Multifunctional Nanocarriers 2022. [DOI: 10.1016/b978-0-323-85041-4.00014-7] [Reference Citation Analysis]
63 Sheshala R, Madheswaran T, Panneerselvam J, Vora L, Thakur RRS. Stimuli-responsive nanomaterials in infectious diseases. Nanotheranostics for Treatment and Diagnosis of Infectious Diseases 2022. [DOI: 10.1016/b978-0-323-91201-3.00005-0] [Reference Citation Analysis]
64 Cardoso VMDO, Ferreira LMB, Comparetti EJ, Sampaio I, Ferreira NN, Miranda RR, Zucolotto V. Stimuli-responsive polymeric nanoparticles as controlled drug delivery systems. Stimuli-Responsive Nanocarriers 2022. [DOI: 10.1016/b978-0-12-824456-2.00011-4] [Reference Citation Analysis]
65 Danquah MK, Jeevanandam J. Future of nanoparticles, nanomaterials, and nanomedicines in diabetes treatment. Emerging Nanomedicines for Diabetes Mellitus Theranostics 2022. [DOI: 10.1016/b978-0-323-85396-5.00013-0] [Reference Citation Analysis]
66 Zhao D, Rajan R, Yusa S, Nakada M, Matsumura K. Development and structural analysis of dual-thermo-responsive self-assembled zwitterionic micelles. Mater Adv 2022;3:4252-61. [DOI: 10.1039/d1ma01189h] [Reference Citation Analysis]
67 Razmimanesh F, Sodeifian G. Investigation of temperature-responsive tocosomal nanocarriers as the efficient and robust drug delivery system for Sunitinib malate anti-cancer drug: Effects of MW and chain length of PNIPAAm on LCST and dissolution rate. J Pharm Sci 2021:S0022-3549(21)00719-X. [PMID: 34963573 DOI: 10.1016/j.xphs.2021.12.022] [Reference Citation Analysis]
68 Wang F, Sha X, Song X, Bai M, Tian X, Liu L. A Dual-Responsive Peptide-Based Smart Biointerface with Biomimetic Adhesive Behaviors for Bacterial Isolation. Langmuir 2021;37:14638-45. [PMID: 34879653 DOI: 10.1021/acs.langmuir.1c02357] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
69 Lu H, Zhang S, Wang J, Chen Q. A Review on Polymer and Lipid-Based Nanocarriers and Its Application to Nano-Pharmaceutical and Food-Based Systems. Front Nutr 2021;8:783831. [PMID: 34926557 DOI: 10.3389/fnut.2021.783831] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
70 Kuang Y, Zhai J, Xiao Q, Zhao S, Li C. Polysaccharide/mesoporous silica nanoparticle-based drug delivery systems: A review. Int J Biol Macromol 2021;193:457-73. [PMID: 34710474 DOI: 10.1016/j.ijbiomac.2021.10.142] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
71 Panova IG, Sudareva EA, Novoskoltseva OA, Spiridonov VV, Shtilman MI, Richtering W, Yaroslavov AA. Temperature-induced unloading of liposomes bound to microgels. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021;630:127590. [DOI: 10.1016/j.colsurfa.2021.127590] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
72 Gadore V, Ahmaruzzaman M. Smart materials for remediation of aqueous environmental contaminants. Journal of Environmental Chemical Engineering 2021;9:106486. [DOI: 10.1016/j.jece.2021.106486] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
73 Prawatborisut M, Oberländer J, Jiang S, Graf R, Avlasevich Y, Morsbach S, Crespy D, Mailänder V, Landfester K. Temperature-Responsive Nanoparticles Enable Specific Binding of Apolipoproteins from Human Plasma. Small 2021;:e2103138. [PMID: 34761508 DOI: 10.1002/smll.202103138] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
74 Zhao G, Ren R, Wei X, Jia Z, Chen N, Sun Y, Zhao Z, Lele SM, Zhong HA, Goldring MB, Goldring SR, Wang D. Thermoresponsive polymeric dexamethasone prodrug for arthritis pain. J Control Release 2021;339:484-97. [PMID: 34653564 DOI: 10.1016/j.jconrel.2021.10.007] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
75 Wang Y, Xu X, Chen X, Li J. Multifunctional Biomedical Materials Derived from Biological Membranes. Adv Mater 2021;:e2107406. [PMID: 34739155 DOI: 10.1002/adma.202107406] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
76 Bholakant R, Dong B, Zhou X, Huang X, Zhao C, Huang D, Zhong Y, Qian H, Chen W, Feijen J. Multi-functional polymeric micelles for chemotherapy-based combined cancer therapy. J Mater Chem B 2021;9:8718-38. [PMID: 34635905 DOI: 10.1039/d1tb01771c] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
77 Nishimura T, Sasaki Y, Akiyoshi K. Thermoresponsive glycopolymer vesicles: in situ observation of morphological changes and triggered cargo release. Polym J 2021;53:1251-8. [DOI: 10.1038/s41428-021-00488-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
78 Aoki D, Miyake A, Tachaboonyakiat W, Ajiro H. Remarkable diastereomeric effect on thermoresponsive behavior of polyurethane based on lysine and tartrate ester derivatives. RSC Adv 2021;11:35607-13. [PMID: 35493186 DOI: 10.1039/d1ra05877k] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
79 Herlan CN, Feser D, Schepers U, Bräse S. Bio-instructive materials on-demand - combinatorial chemistry of peptoids, foldamers, and beyond. Chem Commun (Camb) 2021;57:11131-52. [PMID: 34611672 DOI: 10.1039/d1cc04237h] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
80 Biglione C, Neumann‐tran TMP, Kanwal S, Klinger D. Amphiphilic micro‐ and nanogels: Combining properties from internal hydrogel networks, solid particles, and micellar aggregates. Journal of Polymer Science 2021;59:2665-703. [DOI: 10.1002/pol.20210508] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
81 Drozdov AD, deClaville Christiansen J. A model for equilibrium swelling of the upper critical solution temperature type thermoresponsive hydrogels. Polymer International 2022;71:212-26. [DOI: 10.1002/pi.6304] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
82 Prawatborisut M, Jiang S, Oberländer J, Mailänder V, Crespy D, Landfester K. Modulating Protein Corona and Materials–Cell Interactions with Temperature‐Responsive Materials. Adv Funct Materials 2022;32:2106353. [DOI: 10.1002/adfm.202106353] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
83 Du Y, Liu D, Sun M, Shu G, Qi J, You Y, Xu Y, Fan K, Xu X, Jin F, Wang J, Shen Q, Zhu L, Ying X, Ji J, Wu L, Liu D, Du Y. Multifunctional Gd-CuS loaded UCST polymeric micelles for MR/PA imaging-guided chemo-photothermal tumor treatment. Nano Res 2022;15:2288-99. [DOI: 10.1007/s12274-021-3812-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
84 Pereira P, Serra AC, Coelho JF. Vinyl Polymer-based technologies towards the efficient delivery of chemotherapeutic drugs. Progress in Polymer Science 2021;121:101432. [DOI: 10.1016/j.progpolymsci.2021.101432] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
85 Leer K, Cinar G, Solomun JI, Martin L, Nischang I, Traeger A. Core-crosslinked, temperature- and pH-responsive micelles: design, physicochemical characterization, and gene delivery application. Nanoscale 2021. [PMID: 34591061 DOI: 10.1039/d1nr04223h] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
86 Eckert T, Klein FC, Frieler P, Thunich O, Abetz V. Experimental Design in Polymer Chemistry-A Guide towards True Optimization of a RAFT Polymerization Using Design of Experiments (DoE). Polymers (Basel) 2021;13:3147. [PMID: 34578048 DOI: 10.3390/polym13183147] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
87 Flemming P, Münch AS, Fery A, Uhlmann P. Constrained thermoresponsive polymers - new insights into fundamentals and applications. Beilstein J Org Chem 2021;17:2123-63. [PMID: 34476018 DOI: 10.3762/bjoc.17.138] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
88 Guazzelli E, Masotti E, Calosi M, Kriechbaum M, Uhlig F, Galli G, Martinelli E. Single-chain folding and self-assembling of amphiphilic polyethyleneglycol-modified fluorinated styrene homopolymers in water solution. Polymer 2021;231:124107. [DOI: 10.1016/j.polymer.2021.124107] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
89 Xia W, Tao Z, Zhu B, Zhang W, Liu C, Chen S, Song M. Targeted Delivery of Drugs and Genes Using Polymer Nanocarriers for Cancer Therapy. Int J Mol Sci 2021;22:9118. [PMID: 34502028 DOI: 10.3390/ijms22179118] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 5.5] [Reference Citation Analysis]
90 Yang C, Gao M, Zhao H, Liu Y, Gao N, Jing J, Zhang X. A dual-functional biomimetic-mineralized nanoplatform for glucose detection and therapy with cancer cells in vitro. J Mater Chem B 2021;9:3885-91. [PMID: 33928327 DOI: 10.1039/d1tb00324k] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
91 Zhu L, Liu K, Zheng S, Zhang X, Yan J, Li W, Zhang A. Upper Critical Solution Temperature-Type Responsive Cyclodextrins with Characteristic Inclusion Abilities. Chemistry 2021;27:10470-6. [PMID: 34008253 DOI: 10.1002/chem.202101283] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
92 Molza AE, Gao P, Jakpou J, Nicolas J, Tsapis N, Ha-Duong T. Simulations of the Upper Critical Solution Temperature Behavior of Poly(ornithine-co-citrulline)s Using MARTINI-Based Coarse-Grained Force Fields. J Chem Theory Comput 2021;17:4499-511. [PMID: 34101464 DOI: 10.1021/acs.jctc.1c00140] [Reference Citation Analysis]
93 Dong W, Song Z, Liu S, Yu P, Shen Z, Yang J, Yang D, Hu Q, Zhang H, Gu Y. Adipose-Derived Stem Cells Based on Electrospun Biomimetic Scaffold Mediated Endothelial Differentiation Facilitating Regeneration and Repair of Abdominal Wall Defects via HIF-1α/VEGF Pathway. Front Bioeng Biotechnol 2021;9:676409. [PMID: 34307320 DOI: 10.3389/fbioe.2021.676409] [Reference Citation Analysis]
94 Sabir F, Zeeshan M, Laraib U, Barani M, Rahdar A, Cucchiarini M, Pandey S. DNA Based and Stimuli-Responsive Smart Nanocarrier for Diagnosis and Treatment of Cancer: Applications and Challenges. Cancers (Basel) 2021;13:3396. [PMID: 34298610 DOI: 10.3390/cancers13143396] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 13.5] [Reference Citation Analysis]
95 Bender CR, Vicente FA, Kuhn BL, Frizzo CP, Villetti MA, Carvalho PJ. Effect of dicationic ionic liquids on cloud points of tergitol surfactant and the formation of aqueous micellar two-phase systems. J Mater Sci 2021;56:12171-12182. [DOI: 10.1007/s10853-021-06055-1] [Reference Citation Analysis]
96 Yadav R, Kahlon NK, Kumar S, Devunuri N, Venkatesu P. Biophysical study on the phase transition behaviour of biocompatible thermoresponsive polymer influenced by tryptophan-based amino acid ionic liquids. Polymer 2021;228:123871. [DOI: 10.1016/j.polymer.2021.123871] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
97 Carneiro MJM, Paula CBA, Ribeiro IS, de Lima LRM, Ribeiro FOS, Silva DA, Araújo GS, Marinho Filho JDB, Araújo AJ, Freire RS, Feitosa JPA, de Paula RCM. Dual responsive dextran-graft-poly (N-isopropylacrylamide)/doxorubicin prodrug via Schiff base reaction. Int J Biol Macromol 2021;185:390-402. [PMID: 34153357 DOI: 10.1016/j.ijbiomac.2021.06.095] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
98 Zhang Y, Guo L, Kong F, Duan L, Li H, Fang C, Zhang K. Nanobiotechnology-enabled energy utilization elevation for augmenting minimally-invasive and noninvasive oncology thermal ablation. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;:e1733. [PMID: 34137183 DOI: 10.1002/wnan.1733] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
99 Kumbhakar K, Dey A, Mondal A, De P, Biswas R. Interactions and Dynamics in Aqueous Solutions of pH-Responsive Polymers: A Combined Fluorescence and Dielectric Relaxation Study. J Phys Chem B 2021;125:6023-35. [PMID: 34057364 DOI: 10.1021/acs.jpcb.1c03435] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
100 Hu F, Li Y, Wang Q, Zhu B, Wu S, Wang Y, Zeng W, Yin J, Liu C, Bergmann SM, Shi C. Immersion immunization of koi (Cyprinus carpio) against cyprinid herpesvirus 3 (CyHV-3) with carbon nanotube-loaded DNA vaccine. Aquaculture 2021;539:736644. [DOI: 10.1016/j.aquaculture.2021.736644] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
101 Wei W, Dai H. Articular cartilage and osteochondral tissue engineering techniques: Recent advances and challenges. Bioact Mater 2021;6:4830-55. [PMID: 34136726 DOI: 10.1016/j.bioactmat.2021.05.011] [Cited by in Crossref: 44] [Cited by in F6Publishing: 52] [Article Influence: 22.0] [Reference Citation Analysis]
102 Yu N, Ding M, Li J. Near-Infrared Photoactivatable Immunomodulatory Nanoparticles for Combinational Immunotherapy of Cancer. Front Chem 2021;9:701427. [PMID: 34109160 DOI: 10.3389/fchem.2021.701427] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
103 Geraili A, Xing M, Mequanint K. Design and fabrication of drug‐delivery systems toward adjustable release profiles for personalized treatment. VIEW 2021;2:20200126. [DOI: 10.1002/viw.20200126] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
104 Romero JF, Díaz-barrios A, González G. Biocompatible thermo-responsive N-vinylcaprolactam based hydrogels for controlled drug delivery systems. RB 2021;6:1712-9. [DOI: 10.21931/rb/2021.06.02.8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
105 Visaveliya NR, Köhler JM. Softness Meets with Brightness: Dye‐Doped Multifunctional Fluorescent Polymer Particles via Microfluidics for Labeling. Advanced Optical Materials 2021;9:2002219. [DOI: 10.1002/adom.202002219] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
106 Dai M, Georgilis E, Goudounet G, Garbay B, Pille J, van Hest JCM, Schultze X, Garanger E, Lecommandoux S. Refining the Design of Diblock Elastin-Like Polypeptides for Self-Assembly into Nanoparticles. Polymers (Basel) 2021;13:1470. [PMID: 34062852 DOI: 10.3390/polym13091470] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
107 Nazarzadeh Zare E, Mudhoo A, Ali Khan M, Otero M, Bundhoo ZMA, Patel M, Srivastava A, Navarathna C, Mlsna T, Mohan D, Pittman CU Jr, Makvandi P, Sillanpää M. Smart Adsorbents for Aquatic Environmental Remediation. Small 2021;17:e2007840. [PMID: 33899324 DOI: 10.1002/smll.202007840] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 8.5] [Reference Citation Analysis]
108 Bou S, Klymchenko AS, Collot M. Fluorescent labeling of biocompatible block copolymers: synthetic strategies and applications in bioimaging. Mater Adv 2021;2:3213-33. [PMID: 34124681 DOI: 10.1039/d1ma00110h] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
109 Li K, Zang X, Cheng M, Chen X. Stimuli-responsive nanoparticles based on poly acrylic derivatives for tumor therapy. Int J Pharm 2021;601:120506. [PMID: 33798689 DOI: 10.1016/j.ijpharm.2021.120506] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
110 Pelosi C, Guazzelli E, Calosi M, Bernazzani L, Tiné MR, Duce C, Martinelli E. Investigation of the LCST-Thermoresponsive Behavior of Novel Oligo(Ethylene Glycol)-Modified Pentafluorostyrene Homopolymers. Applied Sciences 2021;11:2711. [DOI: 10.3390/app11062711] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
111 Sun Y, Davis E. Nanoplatforms for Targeted Stimuli-Responsive Drug Delivery: A Review of Platform Materials and Stimuli-Responsive Release and Targeting Mechanisms. Nanomaterials (Basel) 2021;11:746. [PMID: 33809633 DOI: 10.3390/nano11030746] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
112 Mei X, Villamagna IJ, Nguyen T, Beier F, Appleton CT, Gillies ER. Polymer particles for the intra-articular delivery of drugs to treat osteoarthritis. Biomed Mater 2021. [PMID: 33711838 DOI: 10.1088/1748-605X/abee62] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
113 Morimoto N, Yamamoto M. Design of an LCST–UCST-Like Thermoresponsive Zwitterionic Copolymer. Langmuir 2021;37:3261-9. [DOI: 10.1021/acs.langmuir.0c03128] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
114 Korzhikov-Vlakh V, Tennikova T. Nanogels Capable of Triggered Release. Adv Biochem Eng Biotechnol 2021;178:99-146. [PMID: 33665715 DOI: 10.1007/10_2021_163] [Reference Citation Analysis]
115 Kumar K, Umapathi R, Ramesh K, Hwang SK, Lim KT, Huh YS, Venkatesu P. Biological Stimuli-Induced Phase Transition of a Synthesized Block Copolymer: Preferential Interactions between PNIPAM-b-PNVCL and Heme Proteins. Langmuir 2021;37:1682-96. [PMID: 33492958 DOI: 10.1021/acs.langmuir.0c02900] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
116 Castillo-Henríquez L, Castro-Alpízar J, Lopretti-Correa M, Vega-Baudrit J. Exploration of Bioengineered Scaffolds Composed of Thermo-Responsive Polymers for Drug Delivery in Wound Healing. Int J Mol Sci 2021;22:1408. [PMID: 33573351 DOI: 10.3390/ijms22031408] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
117 Miller AJ, Pearce AK, Foster JC, O'Reilly RK. Probing and Tuning the Permeability of Polymersomes. ACS Cent Sci 2021;7:30-8. [PMID: 33532567 DOI: 10.1021/acscentsci.0c01196] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 13.5] [Reference Citation Analysis]
118 Van Guyse JFR, Bera D, Hoogenboom R. Adamantane Functionalized Poly(2-oxazoline)s with Broadly Tunable LCST-Behavior by Molecular Recognition. Polymers (Basel) 2021;13:374. [PMID: 33530443 DOI: 10.3390/polym13030374] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
119 Luckanagul JA, Alcantara KP, Bulatao BPI, Wong TW, Rojsitthisak P, Rojsitthisak P. Thermo-Responsive Polymers and Their Application as Smart Biomaterials. Smart Nanomaterials in Biomedical Applications 2021. [DOI: 10.1007/978-3-030-84262-8_11] [Reference Citation Analysis]
120 Zheng M, Jia H, Wang H, Liu L, He Z, Zhang Z, Yang W, Gao L, Gao X, Gao F. Application of nanomaterials in the treatment of rheumatoid arthritis. RSC Adv 2021;11:7129-37. [DOI: 10.1039/d1ra00328c] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
121 Gupta C, Uthale A, Teni T, Ambre P, Coutinho E. Emerging Polymer-Based Nanomaterials for Cancer Therapeutics. Nanotechnology in the Life Sciences 2021. [DOI: 10.1007/978-3-030-74330-7_7] [Reference Citation Analysis]
122 Salahpour-anarjan F, Nezhad-mokhtari P, Akbarzadeh A. Smart Drug Delivery Systems. Modeling and Control of Drug Delivery Systems 2021. [DOI: 10.1016/b978-0-12-821185-4.00012-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
123 Zhang L, Liu Z. Stimuli Responsive Imprinted DDS. Molecularly Imprinted Polymers as Advanced Drug Delivery Systems 2021. [DOI: 10.1007/978-981-16-0227-6_5] [Reference Citation Analysis]
124 Attri S, Sharma S, Sharma U, Srivastava M, Sonkar SC, Singh M, Bhukya P. Use of Lipids, Polymers, and Peptides for Drug Delivery and Targeting to Cancer Cells or Specific Organs. Handbook of Research on Advancements in Cancer Therapeutics 2021. [DOI: 10.4018/978-1-7998-6530-8.ch008] [Reference Citation Analysis]
125 Peng W, Cai Y, Fanslau L, Vana P. Nanoengineering with RAFT polymers: from nanocomposite design to applications. Polym Chem 2021;12:6198-229. [DOI: 10.1039/d1py01172c] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
126 Jia Y, Chen K, Gao M, Liu S, Wang J, Chen X, Wang L, Chen Y, Song W, Zhang H, Ren L, Zhu X, Tang BZ. Visualizing phase transition of upper critical solution temperature (UCST) polymers with AIE. Sci China Chem 2021;64:403-7. [DOI: 10.1007/s11426-020-9893-6] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
127 Rodchenko S, Amirova A, Kurlykin M, Tenkovtsev A, Milenin S, Filippov A. Amphiphilic Molecular Brushes with Regular Polydimethylsiloxane Backbone and Poly-2-isopropyl-2-oxazoline Side Chains. 2. Self-Organization in Aqueous Solutions on Heating. Polymers (Basel) 2020;13:E31. [PMID: 33374766 DOI: 10.3390/polym13010031] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
128 Pesenti T, Nicolas J. 100th Anniversary of Macromolecular Science Viewpoint: Degradable Polymers from Radical Ring-Opening Polymerization: Latest Advances, New Directions, and Ongoing Challenges. ACS Macro Lett 2020;9:1812-35. [PMID: 35653672 DOI: 10.1021/acsmacrolett.0c00676] [Cited by in Crossref: 31] [Cited by in F6Publishing: 35] [Article Influence: 10.3] [Reference Citation Analysis]
129 Cummins C, Lundy R, Walsh JJ, Ponsinet V, Fleury G, Morris MA. Enabling future nanomanufacturing through block copolymer self-assembly: A review. Nano Today 2020;35:100936. [DOI: 10.1016/j.nantod.2020.100936] [Cited by in Crossref: 68] [Cited by in F6Publishing: 44] [Article Influence: 22.7] [Reference Citation Analysis]
130 Hogan KJ, Mikos AG. Biodegradable thermoresponsive polymers: Applications in drug delivery and tissue engineering. Polymer 2020;211:123063. [DOI: 10.1016/j.polymer.2020.123063] [Cited by in Crossref: 47] [Cited by in F6Publishing: 52] [Article Influence: 15.7] [Reference Citation Analysis]
131 Franco MKKD, Sepulveda AF, Vigato AA, Oshiro A, Machado IP, Kent B, Clemens D, Yokaichiya F, Araujo DR. Supramolecular Structure of Temperature‐Dependent Polymeric Hydrogels Modulated by Drug Incorporation. ChemistrySelect 2020;5:12853-61. [DOI: 10.1002/slct.202001116] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
132 Ma Y, Canup BSB, Tong X, Dai F, Xiao B. Multi-Responsive Silk Fibroin-Based Nanoparticles for Drug Delivery. Front Chem 2020;8:585077. [PMID: 33240846 DOI: 10.3389/fchem.2020.585077] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 4.7] [Reference Citation Analysis]
133 Cui G, Bi Z, Wang S, Liu J, Xing X, Li Z, Wang B. A comprehensive review on smart anti-corrosive coatings. Progress in Organic Coatings 2020;148:105821. [DOI: 10.1016/j.porgcoat.2020.105821] [Cited by in Crossref: 22] [Cited by in F6Publishing: 12] [Article Influence: 7.3] [Reference Citation Analysis]
134 He W, Ma Y, Gao X, Wang X, Dai X, Song J. Application of Poly(N-isopropylacrylamide) As Thermosensitive Smart Materials. J Phys : Conf Ser 2020;1676:012063. [DOI: 10.1088/1742-6596/1676/1/012063] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
135 Soliman N, Gasser G, Thomas CM. Incorporation of Ru(II) Polypyridyl Complexes into Nanomaterials for Cancer Therapy and Diagnosis. Adv Mater 2020;32:e2003294. [PMID: 33073433 DOI: 10.1002/adma.202003294] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
136 Bossion A, Nicolas J. Synthesis of poly(Asparagine-co-phenylalanine) copolymers, analogy with thermosensitive poly(acrylamide-co-styrene) copolymers and formation of PEGylated nanoparticles. European Polymer Journal 2020;140:110033. [DOI: 10.1016/j.eurpolymj.2020.110033] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
137 Amin M, Huang W, Seynhaeve ALB, Ten Hagen TLM. Hyperthermia and Temperature-Sensitive Nanomaterials for Spatiotemporal Drug Delivery to Solid Tumors. Pharmaceutics 2020;12:E1007. [PMID: 33105816 DOI: 10.3390/pharmaceutics12111007] [Cited by in Crossref: 23] [Cited by in F6Publishing: 27] [Article Influence: 7.7] [Reference Citation Analysis]
138 Su S, M Kang P. Recent Advances in Nanocarrier-Assisted Therapeutics Delivery Systems. Pharmaceutics 2020;12:E837. [PMID: 32882875 DOI: 10.3390/pharmaceutics12090837] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 13.3] [Reference Citation Analysis]
139 Rabiee Kenaree A, Sirianni QEA, Classen K, Gillies ER. Thermoresponsive Self-Immolative Polyglyoxylamides. Biomacromolecules 2020;21:3817-25. [DOI: 10.1021/acs.biomac.0c00899] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
140 Trigo-lópez M, Reglero Ruiz JA, Vallejos S, Ramos C, Beltrán S, García FC, García JM. Foaming behavior of 1-vinyl-2-pyrrolidone–methyl methacrylate copolymers under ScCO 2. Cellular Polymers 2020;39:203-19. [DOI: 10.1177/0262489320929226] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
141 Wang K, Liu Q, Liu G, Zeng Y. Novel thermoresponsive homopolymers of poly[oligo(ethylene glycol) (acyloxy) methacrylate]s: LCST-type transition in water and UCST-type transition in alcohols. Polymer 2020;203:122746. [DOI: 10.1016/j.polymer.2020.122746] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
142 Xu T, Zhao S, Lin C, Zheng X, Lan M. Recent advances in nanomaterials for sonodynamic therapy. Nano Res 2020;13:2898-908. [DOI: 10.1007/s12274-020-2992-5] [Cited by in Crossref: 46] [Cited by in F6Publishing: 40] [Article Influence: 15.3] [Reference Citation Analysis]
143 Yiu A, Simchuk D, Hao J. Facile Synthesis of Novel Thermo‐Responsive Polyvalerolactones with Tunable LCSTs. Macromol Chem Phys 2020;221:2000136. [DOI: 10.1002/macp.202000136] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
144 Ghaeini-Hesaroeiye S, Razmi Bagtash H, Boddohi S, Vasheghani-Farahani E, Jabbari E. Thermoresponsive Nanogels Based on Different Polymeric Moieties for Biomedical Applications. Gels 2020;6:E20. [PMID: 32635573 DOI: 10.3390/gels6030020] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 8.0] [Reference Citation Analysis]
145 Park JM, Kim YJ, Jang W. Multimodal Stimuli-Responsive Fluorophore-Functionalized Heterotelechelic Poly(2-isopropyl-2-oxazoline). ACS Appl Polym Mater 2020;2:3535-42. [DOI: 10.1021/acsapm.0c00543] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
146 Wen L, Zhang S, Xiao Y, He J, Zhu S, Zhang J, Wu Z, Lang M. Organocatalytic Ring-Opening Polymerization Toward Poly(γ-amide-ε-caprolactone)s with Tunable Lower Critical Solution Temperatures. Macromolecules 2020;53:5096-104. [DOI: 10.1021/acs.macromol.0c00253] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
147 Agata Pucek, Beata Tokarek, Ewelina Waglewska, Urszula Bazylińska. Recent Advances in the Structural Design of Photosensitive Agent Formulations Using “Soft” Colloidal Nanocarriers. Pharmaceutics 2020;12:587. [PMID: 32599791 DOI: 10.3390/pharmaceutics12060587] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 11.0] [Reference Citation Analysis]
148 Cheng CC, Sun YT, Lee AW, Huang SY, Fan WL, Chiao YH, Tsai HC, Lai JY. Self-Assembled Supramolecular Micelles with pH-Responsive Properties for More Effective Cancer Chemotherapy. ACS Biomater Sci Eng 2020;6:4096-105. [PMID: 33463316 DOI: 10.1021/acsbiomaterials.0c00644] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
149 Niamlaem M, Phuakkong O, Garrigue P, Goudeau B, Ravaine V, Kuhn A, Warakulwit C, Zigah D. Asymmetric Modification of Carbon Nanotube Arrays with Thermoresponsive Hydrogel for Controlled Delivery. ACS Appl Mater Interfaces 2020;12:23378-87. [PMID: 32343544 DOI: 10.1021/acsami.0c01017] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
150 Kavand A, Anton N, Vandamme T, Serra CA, Chan-seng D. Synthesis and functionalization of hyperbranched polymers for targeted drug delivery. Journal of Controlled Release 2020;321:285-311. [DOI: 10.1016/j.jconrel.2020.02.019] [Cited by in Crossref: 45] [Cited by in F6Publishing: 35] [Article Influence: 15.0] [Reference Citation Analysis]
151 Rodchenko S, Amirova A, Milenin S, Kurlykin M, Tenkovtsev A, Filippov A. Self-organization of thermosensitive star-shaped poly(2-isopropyl-2-oxazolines) influenced by arm number and generation of carbosilane dendrimer core in aqueous solutions. Colloid Polym Sci 2020;298:355-63. [DOI: 10.1007/s00396-020-04619-2] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
152 Buten C, Kortekaas L, Ravoo BJ. Design of Active Interfaces Using Responsive Molecular Components. Adv Mater 2020;32:e1904957. [PMID: 31573115 DOI: 10.1002/adma.201904957] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
153 Grzhegorzhevskii KV, Shevtsev NS, Abushaeva AR, Chezganov DS, Ostroushko AA. Prerequisites and prospects for the development of novel systems based on the Keplerate type polyoxomolybdates for the controlled release of drugs and fluorescent molecules. Russ Chem Bull 2020;69:804-14. [DOI: 10.1007/s11172-020-2836-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
154 Kim SH, Thambi T, Giang Phan V, Lee DS. Modularly engineered alginate bioconjugate hydrogel as biocompatible injectable scaffold for in situ biomineralization. Carbohydrate Polymers 2020;233:115832. [DOI: 10.1016/j.carbpol.2020.115832] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 9.7] [Reference Citation Analysis]
155 Sun J, Zhou F, Hu H, Li N, Xia M, Wang L, Wang X, Wang G. Photocontrolled Thermosensitive Electrochemiluminescence Hydrogel for Isocarbophos Detection. Anal Chem 2020;92:6136-43. [DOI: 10.1021/acs.analchem.0c00719] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
156 Snyder BL, Mohammed HS, Samways DSK, Shipp DA. Drug Delivery and Drug Efficacy from Amorphous Poly(thioether anhydrides). Macromol Biosci 2020;20:e1900377. [PMID: 32207234 DOI: 10.1002/mabi.201900377] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
157 Kotsuchibashi Y. Recent advances in multi-temperature-responsive polymeric materials. Polym J 2020;52:681-9. [DOI: 10.1038/s41428-020-0330-0] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 12.3] [Reference Citation Analysis]
158 Lertturongchai P, Ibrahim MIA, Durand A, Sunintaboon P, Ferji K. Synthesis of Thermoresponsive Copolymers with Tunable UCST‐Type Phase Transition Using Aqueous Photo‐RAFT Polymerization. Macromol Rapid Commun 2020;41:2000058. [DOI: 10.1002/marc.202000058] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
159 Seynhaeve ALB, Amin M, Haemmerich D, van Rhoon GC, Ten Hagen TLM. Hyperthermia and smart drug delivery systems for solid tumor therapy. Adv Drug Deliv Rev 2020;163-164:125-44. [PMID: 32092379 DOI: 10.1016/j.addr.2020.02.004] [Cited by in Crossref: 70] [Cited by in F6Publishing: 78] [Article Influence: 23.3] [Reference Citation Analysis]
160 Ortiz de Solorzano I, Bejagam KK, An Y, Singh SK, Deshmukh SA. Solvation dynamics of N-substituted acrylamide polymers and the importance for phase transition behavior. Soft Matter 2020;16:1582-93. [PMID: 31951239 DOI: 10.1039/c9sm01798d] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
161 Konefał R, Spěváček J, Mužíková G, Laga R. Thermoresponsive behavior of poly(DEGMA)-based copolymers. NMR and dynamic light scattering study of aqueous solutions. European Polymer Journal 2020;124:109488. [DOI: 10.1016/j.eurpolymj.2020.109488] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
162 Wei Y, Huo H, Huang C, Zhang Q, Hoogenboom R, Liu F. Supramolecular control over self-assembly and double thermoresponsive behavior of an amphiphilic block copolymer. European Polymer Journal 2020;125:109537. [DOI: 10.1016/j.eurpolymj.2020.109537] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
163 Zhong Q, Chen C, Mi L, Wang J, Yang J, Wu G, Xu Z, Cubitt R, Müller-buschbaum P. Thermoresponsive Diblock Copolymer Films with a Linear Shrinkage Behavior and Its Potential Application in Temperature Sensors. Langmuir 2020;36:742-53. [DOI: 10.1021/acs.langmuir.9b03462] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
164 Yu H, Rowley JV, Green DC, Thornton PD. Fucose-modified thermoresponsive poly(2-hydroxypropyl methacrylate) nanoparticles for controlled doxorubicin release from an injectable depot. Mater Adv 2020;1:1293-300. [DOI: 10.1039/d0ma00280a] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
165 Chen X, Li J. Bioinspired by cell membranes: functional polymeric materials for biomedical applications. Mater Chem Front 2020;4:750-74. [DOI: 10.1039/c9qm00717b] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 8.3] [Reference Citation Analysis]
166 Audureau N, Coumes F, Guigner J, Nguyen TPT, Ménager C, Stoffelbach F, Rieger J. Thermoresponsive properties of poly(acrylamide- co -acrylonitrile)-based diblock copolymers synthesized (by PISA) in water. Polym Chem 2020;11:5998-6008. [DOI: 10.1039/d0py00895h] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
167 Fang H, Li X, Leng Y, Huang X, Xiong Y. Amphiphilic ligand modified gold nanocarriers to amplify lanthanide loading for ultrasensitive DELFIA detection ofCronobacter. Analyst 2020;145:249-256. [DOI: 10.1039/c9an01945f] [Reference Citation Analysis]
168 Shariatinia Z. Biopolymeric Nanocomposites in Drug Delivery. Advanced Biopolymeric Systems for Drug Delivery 2020. [DOI: 10.1007/978-3-030-46923-8_10] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
169 Barrera G, Allia P, Tiberto P. Fine tuning and optimization of magnetic hyperthermia treatments using versatile trapezoidal driving-field waveforms. Nanoscale Adv 2020;2:4652-4664. [DOI: 10.1039/d0na00358a] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
170 Lin SY. Thermoresponsive gating membranes embedded with liquid crystal(s) for pulsatile transdermal drug delivery: An overview and perspectives. J Control Release 2020;319:450-74. [PMID: 31901369 DOI: 10.1016/j.jconrel.2019.12.046] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
171 Kumbhakar K, Saha B, De P, Biswas R. Cloud Point Driven Dynamics in Aqueous Solutions of Thermoresponsive Copolymers: Are They Akin to Criticality Driven Solution Dynamics? J Phys Chem B 2019;123:11042-54. [PMID: 31794221 DOI: 10.1021/acs.jpcb.9b07840] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
172 Cheng CC, Fan WL, Wu CY, Chang YH. Supramolecular Polymer Network-Mediated Structural Phase Transitions within Polymeric Micelles in Aliphatic Alcohols. ACS Macro Lett 2019;8:1541-5. [PMID: 35619401 DOI: 10.1021/acsmacrolett.9b00781] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
173 Ramírez-Jiménez A, Montoya-Villegas KA, Licea-Claverie A, Gónzalez-Ayón MA. Tunable Thermo-Responsive Copolymers from DEGMA and OEGMA Synthesized by RAFT Polymerization and the Effect of the Concentration and Saline Phosphate Buffer on its Phase Transition. Polymers (Basel) 2019;11:E1657. [PMID: 31614638 DOI: 10.3390/polym11101657] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
174 Fliervoet LAL, Lisitsyna ES, Durandin NA, Kotsis I, Maas-Bakker RFM, Yliperttula M, Hennink WE, Vuorimaa-Laukkanen E, Vermonden T. Structure and Dynamics of Thermosensitive pDNA Polyplexes Studied by Time-Resolved Fluorescence Spectroscopy. Biomacromolecules 2020;21:73-88. [PMID: 31500418 DOI: 10.1021/acs.biomac.9b00896] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
175 Kumar K, Reddicherla U, Rani GM, Pannuru V. How do biological stimuli modulate conformational changes of biomedical thermoresponsive polymer? Colloids Surf B Biointerfaces 2019;178:479-87. [PMID: 30925371 DOI: 10.1016/j.colsurfb.2019.03.014] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
176 Fliervoet LAL, van Nostrum CF, Hennink WE, Vermonden T. Balancing hydrophobic and electrostatic interactions in thermosensitive polyplexes for nucleic acid delivery. Multifunct Mater 2019;2:024002. [DOI: 10.1088/2399-7532/ab12ee] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
177 Jiang C, Chen J, Li Z, Wang Z, Zhang W, Liu J. Recent advances in the development of polyethylenimine-based gene vectors for safe and efficient gene delivery. Expert Opinion on Drug Delivery 2019;16:363-76. [DOI: 10.1080/17425247.2019.1604681] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 5.5] [Reference Citation Analysis]
178 Yorulmaz Avsar S, Kyropoulou M, Di Leone S, Schoenenberger CA, Meier WP, Palivan CG. Biomolecules Turn Self-Assembling Amphiphilic Block Co-polymer Platforms Into Biomimetic Interfaces. Front Chem 2018;6:645. [PMID: 30671429 DOI: 10.3389/fchem.2018.00645] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 8.0] [Reference Citation Analysis]
179 Hu L, Zhang Q, Li X, Serpe MJ. Stimuli-responsive polymers for sensing and actuation. Mater Horiz 2019;6:1774-93. [DOI: 10.1039/c9mh00490d] [Cited by in Crossref: 135] [Cited by in F6Publishing: 136] [Article Influence: 33.8] [Reference Citation Analysis]
180 Dzhardimalieva GI, Uflyand IE. Preparation of metal-polymer nanocomposites by chemical reduction of metal ions: functions of polymer matrices. J Polym Res 2018;25. [DOI: 10.1007/s10965-018-1646-8] [Cited by in Crossref: 24] [Cited by in F6Publishing: 16] [Article Influence: 4.8] [Reference Citation Analysis]