BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: van Grunsven LA. 3D in vitro models of liver fibrosis. Adv Drug Deliv Rev 2017;121:133-46. [PMID: 28697953 DOI: 10.1016/j.addr.2017.07.004] [Cited by in Crossref: 67] [Cited by in F6Publishing: 55] [Article Influence: 13.4] [Reference Citation Analysis]
Number Citing Articles
1 Hsiao SK, Liang CW, Chang TL, Sung YC, Chen YT, Chen Y, Wang J. An in vitro fibrotic liver lobule model through sequential cell-seeding of HSCs and HepG2 on 3D-printed poly(glycerol sebacate) acrylate scaffolds. J Mater Chem B 2022. [PMID: 36106522 DOI: 10.1039/d1tb02686k] [Reference Citation Analysis]
2 Anne van Os E, Cools L, Eysackers N, Szafranska K, Smout A, Verhulst S, Reynaert H, Mccourt P, Mannaerts I, van Grunsven LA. Modelling fatty liver disease with mouse liver-derived multicellular spheroids. Biomaterials 2022. [DOI: 10.1016/j.biomaterials.2022.121817] [Reference Citation Analysis]
3 Kanabekova P, Kadyrova A, Kulsharova G. Microfluidic Organ-on-a-Chip Devices for Liver Disease Modeling In Vitro. Micromachines 2022;13:428. [DOI: 10.3390/mi13030428] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
4 Ramos MJ, Bandiera L, Menolascina F, Fallowfield JA. In vitro models for non-alcoholic fatty liver disease: Emerging platforms and their applications. iScience 2022;25:103549. [PMID: 34977507 DOI: 10.1016/j.isci.2021.103549] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
5 Bertassoni LE. Bioprinting of Complex Multicellular Organs with Advanced Functionality-Recent Progress and Challenges Ahead. Adv Mater 2022;34:e2101321. [PMID: 35060652 DOI: 10.1002/adma.202101321] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
6 Wang AJ, Allen A, Sofman M, Sphabmixay P, Yildiz E, Griffith LG. Engineering Modular 3D Liver Culture Microenvironments In Vitro to Parse the Interplay between Biophysical and Biochemical Microenvironment Cues on Hepatic Phenotypes. Advanced NanoBiomed Research 2022;2:2100049. [DOI: 10.1002/anbr.202100049] [Reference Citation Analysis]
7 Romualdo GR, Leroy K, Costa CJS, Prata GB, Vanderborght B, da Silva TC, Barbisan LF, Andraus W, Devisscher L, Câmara NOS, Vinken M, Cogliati B. In Vivo and In Vitro Models of Hepatocellular Carcinoma: Current Strategies for Translational Modeling. Cancers (Basel) 2021;13:5583. [PMID: 34771745 DOI: 10.3390/cancers13215583] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Keshavarz Azizi Raftar S, Ashrafian F, Yadegar A, Lari A, Moradi HR, Shahriary A, Azimirad M, Alavifard H, Mohsenifar Z, Davari M, Vaziri F, Moshiri A, Siadat SD, Zali MR. The Protective Effects of Live and Pasteurized Akkermansia muciniphila and Its Extracellular Vesicles against HFD/CCl4-Induced Liver Injury. Microbiol Spectr 2021;9:e0048421. [PMID: 34549998 DOI: 10.1128/Spectrum.00484-21] [Cited by in F6Publishing: 10] [Reference Citation Analysis]
9 Luo N, Li J, Wei Y, Lu J, Dong R. Hepatic Stellate Cell: A Double-Edged Sword in the Liver. Physiol Res 2021;70. [PMID: 34717063 DOI: 10.33549/physiolres.934755] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
10 Guan Y, Enejder A, Wang M, Fang Z, Cui L, Chen SY, Wang J, Tan Y, Wu M, Chen X, Johansson PK, Osman I, Kunimoto K, Russo P, Heilshorn SC, Peltz G. A human multi-lineage hepatic organoid model for liver fibrosis. Nat Commun 2021;12:6138. [PMID: 34686668 DOI: 10.1038/s41467-021-26410-9] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
11 Dellaquila A, Le Bao C, Letourneur D, Simon-Yarza T. In Vitro Strategies to Vascularize 3D Physiologically Relevant Models. Adv Sci (Weinh) 2021;8:e2100798. [PMID: 34351702 DOI: 10.1002/advs.202100798] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
12 Thanapirom K, Caon E, Papatheodoridi M, Frenguelli L, Al-Akkad W, Zhenzhen Z, Vilia MG, Pinzani M, Mazza G, Rombouts K. Optimization and Validation of a Novel Three-Dimensional Co-Culture System in Decellularized Human Liver Scaffold for the Study of Liver Fibrosis and Cancer. Cancers (Basel) 2021;13:4936. [PMID: 34638417 DOI: 10.3390/cancers13194936] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
13 Ramadan Q, Fardous RS, Hazaymeh R, Alshmmari S, Zourob M. Pharmacokinetics-On-a-Chip: In Vitro Microphysiological Models for Emulating of Drugs ADME. Adv Biol (Weinh) 2021;:e2100775. [PMID: 34323392 DOI: 10.1002/adbi.202100775] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
14 Kumar M, Toprakhisar B, Van Haele M, Antoranz A, Boon R, Chesnais F, De Smedt J, Tricot T, Idoype TI, Canella M, Tilliole P, De Boeck J, Bajaj M, Ranga A, Bosisio FM, Roskams T, van Grunsven LA, Verfaillie CM. A fully defined matrix to support a pluripotent stem cell derived multi-cell-liver steatohepatitis and fibrosis model. Biomaterials 2021;276:121006. [PMID: 34304139 DOI: 10.1016/j.biomaterials.2021.121006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
15 Llewellyn SV, Conway GE, Zanoni I, Jørgensen AK, Shah UK, Seleci DA, Keller JG, Kim JW, Wohlleben W, Jensen KA, Costa A, Jenkins GJS, Clift MJD, Doak SH. Understanding the impact of more realistic low-dose, prolonged engineered nanomaterial exposure on genotoxicity using 3D models of the human liver. J Nanobiotechnology 2021;19:193. [PMID: 34183029 DOI: 10.1186/s12951-021-00938-w] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
16 Wu F, Yang J, Liu J, Wang Y, Mu J, Zeng Q, Deng S, Zhou H. Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer. Signal Transduct Target Ther 2021;6:218. [PMID: 34108441 DOI: 10.1038/s41392-021-00641-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 41] [Article Influence: 1.0] [Reference Citation Analysis]
17 Vallverdú J, Martínez García de la Torre RA, Mannaerts I, Verhulst S, Smout A, Coll M, Ariño S, Rubio-Tomás T, Aguilar-Bravo B, Martínez-Sánchez C, Blaya D, Verfaillie CM, van Grunsven LA, Sancho-Bru P. Directed differentiation of human induced pluripotent stem cells to hepatic stellate cells. Nat Protoc 2021;16:2542-63. [PMID: 33864055 DOI: 10.1038/s41596-021-00509-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
18 Zisser A, Ipsen DH, Tveden-Nyborg P. Hepatic Stellate Cell Activation and Inactivation in NASH-Fibrosis-Roles as Putative Treatment Targets? Biomedicines 2021;9:365. [PMID: 33807461 DOI: 10.3390/biomedicines9040365] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 16.0] [Reference Citation Analysis]
19 Llewellyn SV, Niemeijer M, Nymark P, Moné MJ, van de Water B, Conway GE, Jenkins GJS, Doak SH. In Vitro Three-Dimensional Liver Models for Nanomaterial DNA Damage Assessment. Small 2021;17:e2006055. [PMID: 33448117 DOI: 10.1002/smll.202006055] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
20 Yan L, Messner CJ, Zhang X, Suter-Dick L. Assessment of fibrotic pathways induced by environmental chemicals using 3D-human liver microtissue model. Environ Res 2021;194:110679. [PMID: 33387535 DOI: 10.1016/j.envres.2020.110679] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
21 Soret PA, Magusto J, Housset C, Gautheron J. In Vitro and In Vivo Models of Non-Alcoholic Fatty Liver Disease: A Critical Appraisal. J Clin Med 2020;10:E36. [PMID: 33374435 DOI: 10.3390/jcm10010036] [Cited by in Crossref: 2] [Cited by in F6Publishing: 17] [Article Influence: 1.0] [Reference Citation Analysis]
22 Cuvellier M, Ezan F, Oliveira H, Rose S, Fricain JC, Langouët S, Legagneux V, Baffet G. 3D culture of HepaRG cells in GelMa and its application to bioprinting of a multicellular hepatic model. Biomaterials 2021;269:120611. [PMID: 33385685 DOI: 10.1016/j.biomaterials.2020.120611] [Cited by in Crossref: 4] [Cited by in F6Publishing: 20] [Article Influence: 2.0] [Reference Citation Analysis]
23 Dominijanni A, Devarasetty M, Soker S. Manipulating the Tumor Microenvironment in Tumor Organoids Induces Phenotypic Changes and Chemoresistance. iScience 2020;23:101851. [PMID: 33319176 DOI: 10.1016/j.isci.2020.101851] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
24 Molenaar MR, Penning LC, Helms JB. Playing Jekyll and Hyde-The Dual Role of Lipids in Fatty Liver Disease. Cells 2020;9:E2244. [PMID: 33036257 DOI: 10.3390/cells9102244] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
25 DeBari MK, Abbott RD. Adipose Tissue Fibrosis: Mechanisms, Models, and Importance. Int J Mol Sci 2020;21:E6030. [PMID: 32825788 DOI: 10.3390/ijms21176030] [Cited by in Crossref: 5] [Cited by in F6Publishing: 20] [Article Influence: 2.5] [Reference Citation Analysis]
26 Clara-Trujillo S, Gallego Ferrer G, Gómez Ribelles JL. In Vitro Modeling of Non-Solid Tumors: How Far Can Tissue Engineering Go? Int J Mol Sci 2020;21:E5747. [PMID: 32796596 DOI: 10.3390/ijms21165747] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
27 Brovold M, Keller D, Soker S. Differential fibrotic phenotypes of hepatic stellate cells within 3D liver organoids. Biotechnol Bioeng 2020;117:2516-26. [PMID: 32391915 DOI: 10.1002/bit.27379] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
28 Labour MN, Le Guilcher C, Aid-Launais R, El Samad N, Lanouar S, Simon-Yarza T, Letourneur D. Development of 3D Hepatic Constructs Within Polysaccharide-Based Scaffolds with Tunable Properties. Int J Mol Sci 2020;21:E3644. [PMID: 32455711 DOI: 10.3390/ijms21103644] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
29 Zhang X, Jiang T, Chen D, Wang Q, Zhang LW. Three-dimensional liver models: state of the art and their application for hepatotoxicity evaluation. Critical Reviews in Toxicology 2020;50:279-309. [DOI: 10.1080/10408444.2020.1756219] [Cited by in Crossref: 8] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
30 Hurrell T, Kastrinou-Lampou V, Fardellas A, Hendriks DFG, Nordling Å, Johansson I, Baze A, Parmentier C, Richert L, Ingelman-Sundberg M. Human Liver Spheroids as a Model to Study Aetiology and Treatment of Hepatic Fibrosis. Cells 2020;9:E964. [PMID: 32295224 DOI: 10.3390/cells9040964] [Cited by in Crossref: 17] [Cited by in F6Publishing: 25] [Article Influence: 8.5] [Reference Citation Analysis]
31 Roehlen N, Crouchet E, Baumert TF. Liver Fibrosis: Mechanistic Concepts and Therapeutic Perspectives. Cells 2020;9:E875. [PMID: 32260126 DOI: 10.3390/cells9040875] [Cited by in Crossref: 49] [Cited by in F6Publishing: 151] [Article Influence: 24.5] [Reference Citation Analysis]
32 Agarwal T, Biswas P, Pal S, Maiti TK, Chakraborty S, Ghosh SK, Dhar R. Inexpensive and Versatile Paper-Based Platform for 3D Culture of Liver Cells and Related Bioassays. ACS Appl Bio Mater 2020;3:2522-33. [DOI: 10.1021/acsabm.0c00237] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
33 da Silva Morais A, Vieira S, Zhao X, Mao Z, Gao C, Oliveira JM, Reis RL. Advanced Biomaterials and Processing Methods for Liver Regeneration: State-of-the-Art and Future Trends. Adv Healthc Mater 2020;9:e1901435. [PMID: 31977159 DOI: 10.1002/adhm.201901435] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 10.5] [Reference Citation Analysis]
34 Cai X, Wang J, Wang J, Zhou Q, Yang B, He Q, Weng Q. Intercellular crosstalk of hepatic stellate cells in liver fibrosis: New insights into therapy. Pharmacol Res 2020;155:104720. [PMID: 32092405 DOI: 10.1016/j.phrs.2020.104720] [Cited by in Crossref: 18] [Cited by in F6Publishing: 38] [Article Influence: 9.0] [Reference Citation Analysis]
35 Gusev EY, Zotova NV. Cellular Stress and General Pathological Processes. Curr Pharm Des 2019;25:251-97. [PMID: 31198111 DOI: 10.2174/1381612825666190319114641] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
36 Hoyle HW, Smith LA, Williams RJ, Przyborski SA. Applications of novel bioreactor technology to enhance the viability and function of cultured cells and tissues. Interface Focus 2020;10:20190090. [PMID: 32194933 DOI: 10.1098/rsfs.2019.0090] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
37 Zadorozhna M, Di Gioia S, Conese M, Mangieri D. Neovascularization is a key feature of liver fibrosis progression: anti-angiogenesis as an innovative way of liver fibrosis treatment. Mol Biol Rep 2020;47:2279-88. [PMID: 32040707 DOI: 10.1007/s11033-020-05290-0] [Cited by in Crossref: 11] [Cited by in F6Publishing: 20] [Article Influence: 5.5] [Reference Citation Analysis]
38 Hassan S, Sebastian S, Maharjan S, Lesha A, Carpenter AM, Liu X, Xie X, Livermore C, Zhang YS, Zarrinpar A. Liver-on-a-Chip Models of Fatty Liver Disease. Hepatology 2020;71:733-40. [PMID: 31909504 DOI: 10.1002/hep.31106] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 13.5] [Reference Citation Analysis]
39 Prestigiacomo V, Weston A, Suter-Dick L. Rat multicellular 3D liver microtissues to explore TGF-β1 induced effects. J Pharmacol Toxicol Methods 2020;101:106650. [PMID: 31730938 DOI: 10.1016/j.vascn.2019.106650] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
40 Oakley F, Gee LM, Sheerin NS, Borthwick LA. Implementation of pre-clinical methodologies to study fibrosis and test anti-fibrotic therapy. Curr Opin Pharmacol 2019;49:95-101. [PMID: 31731225 DOI: 10.1016/j.coph.2019.10.004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
41 Wakashima T, Tanaka T, Fukui K, Komoda Y, Shinozaki Y, Kobayashi H, Matsuo A, Nangaku M. JTZ-951, an HIF prolyl hydroxylase inhibitor, suppresses renal interstitial fibroblast transformation and expression of fibrosis-related factors. Am J Physiol Renal Physiol 2020;318:F14-24. [PMID: 31630548 DOI: 10.1152/ajprenal.00323.2019] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 2.7] [Reference Citation Analysis]
42 Deng J, Wei W, Chen Z, Lin B, Zhao W, Luo Y, Zhang X. Engineered Liver-on-a-Chip Platform to Mimic Liver Functions and Its Biomedical Applications: A Review. Micromachines (Basel) 2019;10:E676. [PMID: 31591365 DOI: 10.3390/mi10100676] [Cited by in Crossref: 44] [Cited by in F6Publishing: 62] [Article Influence: 14.7] [Reference Citation Analysis]
43 Agarwal T, Subramanian B, Maiti TK. Liver Tissue Engineering: Challenges and Opportunities. ACS Biomater Sci Eng 2019;5:4167-82. [PMID: 33417776 DOI: 10.1021/acsbiomaterials.9b00745] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 6.7] [Reference Citation Analysis]
44 Fernández-Colino A, Iop L, Ventura Ferreira MS, Mela P. Fibrosis in tissue engineering and regenerative medicine: treat or trigger? Adv Drug Deliv Rev 2019;146:17-36. [PMID: 31295523 DOI: 10.1016/j.addr.2019.07.007] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
45 Matera DL, Wang WY, Smith MR, Shikanov A, Baker BM. Fiber Density Modulates Cell Spreading in 3D Interstitial Matrix Mimetics. ACS Biomater Sci Eng 2019;5:2965-75. [PMID: 33405599 DOI: 10.1021/acsbiomaterials.9b00141] [Cited by in Crossref: 34] [Cited by in F6Publishing: 31] [Article Influence: 11.3] [Reference Citation Analysis]
46 Rasheeda K, Muvva C, Fathima NN. Governing the Inhibition of Reconstituted Collagen Type I Assemblies Mediated Through Noncovalent Forces of (±)-α Lipoic Acid. Langmuir 2019;35:980-9. [PMID: 30621400 DOI: 10.1021/acs.langmuir.8b03539] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
47 Sung JH, Wang YI, Narasimhan Sriram N, Jackson M, Long C, Hickman JJ, Shuler ML. Recent Advances in Body-on-a-Chip Systems. Anal Chem 2019;91:330-51. [PMID: 30472828 DOI: 10.1021/acs.analchem.8b05293] [Cited by in Crossref: 83] [Cited by in F6Publishing: 89] [Article Influence: 20.8] [Reference Citation Analysis]
48 Orbach SM, Ford AJ, Saverot SE, Rajagopalan P. Multi-cellular transitional organotypic models to investigate liver fibrosis. Acta Biomater 2018;82:79-92. [PMID: 30316024 DOI: 10.1016/j.actbio.2018.10.010] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
49 Pravin S, Sudhir A. Integration of 3D printing with dosage forms: A new perspective for modern healthcare. Biomedicine & Pharmacotherapy 2018;107:146-54. [DOI: 10.1016/j.biopha.2018.07.167] [Cited by in Crossref: 32] [Cited by in F6Publishing: 35] [Article Influence: 8.0] [Reference Citation Analysis]
50 Ingelman-sundberg M, Lauschke VM. Human liver spheroids in chemically defined conditions for studies of gene–drug, drug–drug and disease–drug interactions. Pharmacogenomics 2018;19:1133-8. [DOI: 10.2217/pgs-2018-0096] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
51 Vinken M, Hengstler JG. Characterization of hepatocyte-based in vitro systems for reliable toxicity testing. Arch Toxicol 2018;92:2981-6. [DOI: 10.1007/s00204-018-2297-6] [Cited by in Crossref: 21] [Cited by in F6Publishing: 25] [Article Influence: 5.3] [Reference Citation Analysis]
52 Sivakumar P, Kitson C, Jarai G. Modeling and measuring extracellular matrix alterations in fibrosis: challenges and perspectives for antifibrotic drug discovery. Connect Tissue Res 2019;60:62-70. [PMID: 30071759 DOI: 10.1080/03008207.2018.1500557] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
53 Kelm JM, Lal-Nag M, Sittampalam GS, Ferrer M. Translational in vitro research: integrating 3D drug discovery and development processes into the drug development pipeline. Drug Discov Today 2019;24:26-30. [PMID: 30071313 DOI: 10.1016/j.drudis.2018.07.007] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 4.5] [Reference Citation Analysis]
54 Vijayavenkataraman S, Yan WC, Lu WF, Wang CH, Fuh JYH. 3D bioprinting of tissues and organs for regenerative medicine. Adv Drug Deliv Rev 2018;132:296-332. [PMID: 29990578 DOI: 10.1016/j.addr.2018.07.004] [Cited by in Crossref: 224] [Cited by in F6Publishing: 202] [Article Influence: 56.0] [Reference Citation Analysis]
55 Fröhlich E. Comparison of conventional and advanced in vitro models in the toxicity testing of nanoparticles. Artif Cells Nanomed Biotechnol 2018;46:1091-107. [PMID: 29956556 DOI: 10.1080/21691401.2018.1479709] [Cited by in Crossref: 43] [Cited by in F6Publishing: 62] [Article Influence: 10.8] [Reference Citation Analysis]
56 Higashi T, Friedman SL, Hoshida Y. Hepatic stellate cells as key target in liver fibrosis. Adv Drug Deliv Rev 2017;121:27-42. [PMID: 28506744 DOI: 10.1016/j.addr.2017.05.007] [Cited by in Crossref: 488] [Cited by in F6Publishing: 477] [Article Influence: 97.6] [Reference Citation Analysis]
57 Prakash J, Pinzani M. Fibroblasts and extracellular matrix: Targeting and therapeutic tools in fibrosis and cancer. Adv Drug Deliv Rev 2017;121:1-2. [PMID: 29191284 DOI: 10.1016/j.addr.2017.11.008] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 3.4] [Reference Citation Analysis]
58 [DOI: 10.1101/2020.09.03.280883] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Reference Citation Analysis]