BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Park J, Park J, Pei Y, Xu J, Yeo Y. Pharmacokinetics and biodistribution of recently-developed siRNA nanomedicines. Adv Drug Deliv Rev 2016;104:93-109. [PMID: 26686832 DOI: 10.1016/j.addr.2015.12.004] [Cited by in Crossref: 55] [Cited by in F6Publishing: 48] [Article Influence: 9.2] [Reference Citation Analysis]
Number Citing Articles
1 McCollum CR, Courtney CM, O'Connor NJ, Aunins TR, Ding Y, Jordan TX, Rogers KL, Brindley S, Brown JM, Nagpal P, Chatterjee A. Nanoligomers Targeting Human miRNA for the Treatment of Severe COVID-19 Are Safe and Nontoxic in Mice. ACS Biomater Sci Eng 2022. [PMID: 35729709 DOI: 10.1021/acsbiomaterials.2c00510] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
2 Puhl DL, Mohanraj D, Nelson DW, Gilbert RJ. Designing electrospun fiber platforms for efficient delivery of genetic material and genome editing tools. Adv Drug Deliv Rev 2022;183:114161. [PMID: 35183657 DOI: 10.1016/j.addr.2022.114161] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
3 Tian T, Ruan J, Zhang J, Zhao CX, Chen D, Shan J. Nanocarrier-Based Tumor-Targeting Drug Delivery Systems for Hepatocellular Carcinoma Treatments: Enhanced Therapeutic Efficacy and Reduced Drug Toxicity. J Biomed Nanotechnol 2022;18:660-76. [PMID: 35715919 DOI: 10.1166/jbn.2022.3297] [Reference Citation Analysis]
4 Vennemann A, Breitenstein D, Tallarek E, Mørch Ý, Schmid R, Wiemann M. Subcellular detection of PEBCA particles in macrophages: combining darkfield microscopy, confocal Raman microscopy, and ToF-SIMS analysis. Drug Deliv Transl Res 2022. [PMID: 35182369 DOI: 10.1007/s13346-022-01128-3] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Alazzo A, Gumus N, Gurnani P, Stolnik S, Rahman R, Spriggs K, Alexander C. Investigating histidinylated highly branched poly(lysine) for siRNA delivery. J Mater Chem B 2021. [PMID: 34852030 DOI: 10.1039/d1tb01793d] [Reference Citation Analysis]
6 Boloix A, Feiner-Gracia N, Köber M, Repetto J, Pascarella R, Soriano A, Masanas M, Segovia N, Vargas-Nadal G, Merlo-Mas J, Danino D, Abutbul-Ionita I, Foradada L, Roma J, Córdoba A, Sala S, de Toledo JS, Gallego S, Veciana J, Albertazzi L, Segura MF, Ventosa N. Engineering pH-Sensitive Stable Nanovesicles for Delivery of MicroRNA Therapeutics. Small 2021;:e2101959. [PMID: 34786859 DOI: 10.1002/smll.202101959] [Reference Citation Analysis]
7 Nalbadis A, Trutschel ML, Lucas H, Luetzkendorf J, Meister A, Mäder K. Selection and Incorporation of siRNA Carrying Non-Viral Vector for Sustained Delivery from Gellan Gum Hydrogels. Pharmaceutics 2021;13:1546. [PMID: 34683839 DOI: 10.3390/pharmaceutics13101546] [Reference Citation Analysis]
8 Bakhtiar A, Neah AS, Ng KY, Chowdhury EH. In vivo evaluation of biodistribution and toxicity of pH-responsive strontium nanoparticles for gene delivery. J Pharm Investig 2022;52:95-107. [DOI: 10.1007/s40005-021-00547-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Guo S, Li K, Hu B, Li C, Zhang M, Hussain A, Wang X, Cheng Q, Yang F, Ge K, Zhang J, Chang J, Liang X, Weng Y, Huang Y. Membrane‐destabilizing ionizable lipid empowered imaging‐guided siRNA delivery and cancer treatment. Exploration 2021;1:35-49. [DOI: 10.1002/exp.20210008] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 14.0] [Reference Citation Analysis]
10 Alshaer W, Zureigat H, Al Karaki A, Al-Kadash A, Gharaibeh L, Hatmal MM, Aljabali AAA, Awidi A. siRNA: Mechanism of action, challenges, and therapeutic approaches. Eur J Pharmacol 2021;905:174178. [PMID: 34044011 DOI: 10.1016/j.ejphar.2021.174178] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Guo Y, Lee H, Fang Z, Velalopoulou A, Kim J, Thomas MB, Liu J, Abramowitz RG, Kim Y, Coskun AF, Krummel DP, Sengupta S, MacDonald TJ, Arvanitis C. Single-cell analysis reveals effective siRNA delivery in brain tumors with microbubble-enhanced ultrasound and cationic nanoparticles. Sci Adv 2021;7:eabf7390. [PMID: 33931452 DOI: 10.1126/sciadv.abf7390] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Eyford BA, Singh CSB, Abraham T, Munro L, Choi KB, Hill T, Hildebrandt R, Welch I, Vitalis TZ, Gabathuler R, Gordon JA, Adomat H, Guns EST, Lu CJ, Pfeifer CG, Tian MM, Jefferies WA. A Nanomule Peptide Carrier Delivers siRNA Across the Intact Blood-Brain Barrier to Attenuate Ischemic Stroke. Front Mol Biosci 2021;8:611367. [PMID: 33869275 DOI: 10.3389/fmolb.2021.611367] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Kim H, Yuk SA, Dieterly AM, Kwon S, Park J, Meng F, Gadalla HH, Cadena MJ, Lyle LT, Yeo Y. Nanosac, a Noncationic and Soft Polyphenol Nanocapsule, Enables Systemic Delivery of siRNA to Solid Tumors. ACS Nano 2021;15:4576-93. [PMID: 33645963 DOI: 10.1021/acsnano.0c08694] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
14 Amar-lewis E, Buaron N, Chintakunta R, Benafsha C, Goldbart R, Traitel T, Prasad M, Elkabets M, Kost J. Quaternized Starch-Based Composite Nanoparticles for siRNA Delivery to Tumors. ACS Appl Nano Mater 2021;4:2218-29. [DOI: 10.1021/acsanm.1c00032] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Rammal H, Ghavaminejad A, Erdem A, Mbeleck R, Nematollahi M, Emir Diltemiz S, Alem H, Darabi MA, Ertas YN, Caterson EJ, Ashammakhi N. Advances in biomedical applications of self-healing hydrogels. Mater Chem Front 2021;5:4368-400. [DOI: 10.1039/d0qm01099e] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 10.0] [Reference Citation Analysis]
16 Roces CB, Lou G, Jain N, Abraham S, Thomas A, Halbert GW, Perrie Y. Manufacturing Considerations for the Development of Lipid Nanoparticles Using Microfluidics. Pharmaceutics 2020;12:E1095. [PMID: 33203082 DOI: 10.3390/pharmaceutics12111095] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
17 Dammes N, Peer D. Paving the Road for RNA Therapeutics. Trends Pharmacol Sci 2020;41:755-75. [PMID: 32893005 DOI: 10.1016/j.tips.2020.08.004] [Cited by in Crossref: 38] [Cited by in F6Publishing: 35] [Article Influence: 19.0] [Reference Citation Analysis]
18 Guo P, Huang J, Moses MA. Cancer Nanomedicines in an Evolving Oncology Landscape. Trends Pharmacol Sci 2020;41:730-42. [PMID: 32873407 DOI: 10.1016/j.tips.2020.08.001] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
19 Li D, Mastaglia FL, Fletcher S, Wilton SD. Progress in the molecular pathogenesis and nucleic acid therapeutics for Parkinson's disease in the precision medicine era. Med Res Rev 2020;40:2650-81. [PMID: 32767426 DOI: 10.1002/med.21718] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
20 Mroweh M, Decaens T, Marche PN, Macek Jilkova Z, Clément F. Modulating the Crosstalk between the Tumor and Its Microenvironment Using RNA Interference: A Treatment Strategy for Hepatocellular Carcinoma. Int J Mol Sci 2020;21:E5250. [PMID: 32722054 DOI: 10.3390/ijms21155250] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
21 Bholakant R, Qian H, Zhang J, Huang X, Huang D, Feijen J, Zhong Y, Chen W. Recent Advances of Polycationic siRNA Vectors for Cancer Therapy. Biomacromolecules 2020;21:2966-82. [DOI: 10.1021/acs.biomac.0c00438] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
22 Chen C, Li A, Sun P, Xu J, Du W, Zhang J, Liu Y, Zhang R, Zhang S, Yang Z, Tang C, Jiang X. Efficiently restoring the tumoricidal immunity against resistant malignancies via an immune nanomodulator. J Control Release 2020;324:574-85. [PMID: 32473178 DOI: 10.1016/j.jconrel.2020.05.039] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
23 Jansson-Löfmark R, Ahlström C, Gennemark P. ADME: Assessing Pharmacokinetic-Pharmacodynamic Parameters of Oligonucleotides. Methods Mol Biol 2019;2036:317-39. [PMID: 31410806 DOI: 10.1007/978-1-4939-9670-4_19] [Reference Citation Analysis]
24 Liang H, Chen X, Jin R, Ke B, Barz M, Ai H, Nie Y. Integration of Indocyanine Green Analogs as Near-Infrared Fluorescent Carrier for Precise Imaging-Guided Gene Delivery. Small 2020;16:e1906538. [PMID: 32022444 DOI: 10.1002/smll.201906538] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
25 Craparo EF, Drago SE, Mauro N, Giammona G, Cavallaro G. Design of New Polyaspartamide Copolymers for siRNA Delivery in Antiasthmatic Therapy. Pharmaceutics 2020;12:E89. [PMID: 31979001 DOI: 10.3390/pharmaceutics12020089] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
26 Leung D, Wurst JM, Liu T, Martinez RM, Datta-Mannan A, Feng Y. Antibody Conjugates-Recent Advances and Future Innovations. Antibodies (Basel) 2020;9:E2. [PMID: 31936270 DOI: 10.3390/antib9010002] [Cited by in Crossref: 47] [Cited by in F6Publishing: 33] [Article Influence: 23.5] [Reference Citation Analysis]
27 Parashar D, Rajendran V, Shukla R, Sistla R. Lipid-based nanocarriers for delivery of small interfering RNA for therapeutic use. European Journal of Pharmaceutical Sciences 2020;142:105159. [DOI: 10.1016/j.ejps.2019.105159] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 7.5] [Reference Citation Analysis]
28 Liu J, Guo B. RNA-based therapeutics for colorectal cancer: Updates and future directions. Pharmacol Res 2020;152:104550. [PMID: 31866285 DOI: 10.1016/j.phrs.2019.104550] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
29 Wayne EC, Long C, Haney MJ, Batrakova EV, Leisner TM, Parise LV, Kabanov AV. Targeted Delivery of siRNA Lipoplexes to Cancer Cells Using Macrophage Transient Horizontal Gene Transfer. Adv Sci (Weinh) 2019;6:1900582. [PMID: 31728272 DOI: 10.1002/advs.201900582] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 10.7] [Reference Citation Analysis]
30 Antopolsky M. Synthetic Oligonucleotides in SPECT/CT In Vivo Imaging: Chemical Modifications, In111 Complex Formation, Incorporation into Drug Delivery Systems. Methods Mol Biol 2019;1943:73-82. [PMID: 30838610 DOI: 10.1007/978-1-4939-9092-4_5] [Reference Citation Analysis]
31 Liu F, Wang C, Gao Y, Li X, Tian F, Zhang Y, Fu M, Li P, Wang Y, Wang F. Current Transport Systems and Clinical Applications for Small Interfering RNA (siRNA) Drugs. Mol Diagn Ther 2018;22:551-69. [PMID: 29926308 DOI: 10.1007/s40291-018-0338-8] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
32 O'Driscoll CM, Bernkop-Schnürch A, Friedl JD, Préat V, Jannin V. Oral delivery of non-viral nucleic acid-based therapeutics - do we have the guts for this? Eur J Pharm Sci 2019;133:190-204. [PMID: 30946964 DOI: 10.1016/j.ejps.2019.03.027] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 7.0] [Reference Citation Analysis]
33 Vauthier C. A journey through the emergence of nanomedicines with poly(alkylcyanoacrylate) based nanoparticles. J Drug Target 2019;27:502-24. [PMID: 30889991 DOI: 10.1080/1061186X.2019.1588280] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
34 Raja MAG, Katas H, Amjad MW. Design, mechanism, delivery and therapeutics of canonical and Dicer-substrate siRNA. Asian J Pharm Sci 2019;14:497-510. [PMID: 32104477 DOI: 10.1016/j.ajps.2018.12.005] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
35 Jansson-Löfmark R, Gennemark P. Inferring Half-Lives at the Effect Site of Oligonucleotide Drugs. Nucleic Acid Ther 2018;28:319-25. [PMID: 30328765 DOI: 10.1089/nat.2018.0739] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
36 Khalil IA, Yamada Y, Harashima H. Optimization of siRNA delivery to target sites: issues and future directions. Expert Opinion on Drug Delivery 2018;15:1053-65. [DOI: 10.1080/17425247.2018.1520836] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 6.3] [Reference Citation Analysis]
37 Zhou Z, Zhang M, Liu Y, Li C, Zhang Q, Oupicky D, Sun M. Reversible Covalent Cross-Linked Polycations with Enhanced Stability and ATP-Responsive Behavior for Improved siRNA Delivery. Biomacromolecules 2018;19:3776-87. [PMID: 30081638 DOI: 10.1021/acs.biomac.8b00922] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 6.0] [Reference Citation Analysis]
38 Chen G, Wang K, Wang Y, Wu P, Sun M, Oupický D. Fluorination Enhances Serum Stability of Bioreducible Poly(amido amine) Polyplexes and Enables Efficient Intravenous siRNA Delivery. Adv Healthc Mater 2018;7. [PMID: 29280311 DOI: 10.1002/adhm.201700978] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 6.3] [Reference Citation Analysis]
39 Chen Y, Li J, Oupický D. Conjugate Polyplexes with Anti-Invasive Properties and Improved siRNA Delivery In Vivo. Bioconjug Chem 2018;29:296-305. [PMID: 29338191 DOI: 10.1021/acs.bioconjchem.7b00622] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
40 Tang J, Howard CB, Mahler SM, Thurecht KJ, Huang L, Xu ZP. Enhanced delivery of siRNA to triple negative breast cancer cells in vitro and in vivo through functionalizing lipid-coated calcium phosphate nanoparticles with dual target ligands. Nanoscale 2018;10:4258-66. [DOI: 10.1039/c7nr08644j] [Cited by in Crossref: 42] [Cited by in F6Publishing: 14] [Article Influence: 10.5] [Reference Citation Analysis]
41 Kauffman KJ, Oberli MA, Dorkin JR, Hurtado JE, Kaczmarek JC, Bhadani S, Wyckoff J, Langer R, Jaklenec A, Anderson DG. Rapid, Single-Cell Analysis and Discovery of Vectored mRNA Transfection In Vivo with a loxP-Flanked tdTomato Reporter Mouse. Mol Ther Nucleic Acids 2018;10:55-63. [PMID: 29499956 DOI: 10.1016/j.omtn.2017.11.005] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 4.6] [Reference Citation Analysis]
42 Godinho BMDC, Gilbert JW, Haraszti RA, Coles AH, Biscans A, Roux L, Nikan M, Echeverria D, Hassler M, Khvorova A. Pharmacokinetic Profiling of Conjugated Therapeutic Oligonucleotides: A High-Throughput Method Based Upon Serial Blood Microsampling Coupled to Peptide Nucleic Acid Hybridization Assay. Nucleic Acid Ther 2017;27:323-34. [PMID: 29022758 DOI: 10.1089/nat.2017.0690] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 3.2] [Reference Citation Analysis]
43 Sarett SM, Werfel TA, Lee L, Jackson MA, Kilchrist KV, Brantley-Sieders D, Duvall CL. Lipophilic siRNA targets albumin in situ and promotes bioavailability, tumor penetration, and carrier-free gene silencing. Proc Natl Acad Sci U S A 2017;114:E6490-7. [PMID: 28739942 DOI: 10.1073/pnas.1621240114] [Cited by in Crossref: 54] [Cited by in F6Publishing: 45] [Article Influence: 10.8] [Reference Citation Analysis]
44 Cavallaro G, Sardo C, Craparo EF, Porsio B, Giammona G. Polymeric nanoparticles for siRNA delivery: Production and applications. International Journal of Pharmaceutics 2017;525:313-33. [DOI: 10.1016/j.ijpharm.2017.04.008] [Cited by in Crossref: 48] [Cited by in F6Publishing: 39] [Article Influence: 9.6] [Reference Citation Analysis]
45 Jain A, Barve A, Zhao Z, Jin W, Cheng K. Comparison of Avidin, Neutravidin, and Streptavidin as Nanocarriers for Efficient siRNA Delivery. Mol Pharm 2017;14:1517-27. [PMID: 28026957 DOI: 10.1021/acs.molpharmaceut.6b00933] [Cited by in Crossref: 34] [Cited by in F6Publishing: 41] [Article Influence: 6.8] [Reference Citation Analysis]
46 Chernikov IV, Gladkikh DV, Meschaninova MI, Ven'yaminova AG, Zenkova MA, Vlassov VV, Chernolovskaya EL. Cholesterol-Containing Nuclease-Resistant siRNA Accumulates in Tumors in a Carrier-free Mode and Silences MDR1 Gene. Mol Ther Nucleic Acids 2017;6:209-20. [PMID: 28325287 DOI: 10.1016/j.omtn.2016.12.011] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 6.6] [Reference Citation Analysis]
47 Amjad MW, Kesharwani P, Mohd Amin MCI, Iyer AK. Recent advances in the design, development, and targeting mechanisms of polymeric micelles for delivery of siRNA in cancer therapy. Progress in Polymer Science 2017;64:154-81. [DOI: 10.1016/j.progpolymsci.2016.09.008] [Cited by in Crossref: 92] [Cited by in F6Publishing: 58] [Article Influence: 18.4] [Reference Citation Analysis]
48 Sun W, Hu Q, Ji W, Wright G, Gu Z. Leveraging Physiology for Precision Drug Delivery. Physiological Reviews 2017;97:189-225. [DOI: 10.1152/physrev.00015.2016] [Cited by in Crossref: 92] [Cited by in F6Publishing: 52] [Article Influence: 18.4] [Reference Citation Analysis]
49 Tushir-Singh J. Antibody-siRNA conjugates: drugging the undruggable for anti-leukemic therapy. Expert Opin Biol Ther 2017;17:325-38. [PMID: 27977315 DOI: 10.1080/14712598.2017.1273344] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 3.2] [Reference Citation Analysis]