BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Li Y, Xiao K, Zhu W, Deng W, Lam KS. Stimuli-responsive cross-linked micelles for on-demand drug delivery against cancers. Adv Drug Deliv Rev 2014;66:58-73. [PMID: 24060922 DOI: 10.1016/j.addr.2013.09.008] [Cited by in Crossref: 226] [Cited by in F6Publishing: 211] [Article Influence: 28.3] [Reference Citation Analysis]
Number Citing Articles
1 Wang L, Geng Z, Ho YYL, Zhou J, Judge N, Li Y, Wang W, Liu J, Wang Y. Block Co-PolyMOC Micelles and Structural Synergy as Composite Nanocarriers. ACS Appl Mater Interfaces 2022. [PMID: 35748507 DOI: 10.1021/acsami.2c06205] [Reference Citation Analysis]
2 Hari SK, Gauba A, Shrivastava N, Tripathi RM, Jain SK, Pandey AK. Polymeric micelles and cancer therapy: an ingenious multimodal tumor-targeted drug delivery system. Drug Deliv Transl Res 2022. [PMID: 35727533 DOI: 10.1007/s13346-022-01197-4] [Reference Citation Analysis]
3 Cho J, Choi JI, Jang SS. Structural Transformation of a Multicompartment Micelle Induced by Photo-Switchable Spiropyran–Merocyanine Transition: Dissipative Particle Dynamics Simulation Approach. J Phys Chem B. [DOI: 10.1021/acs.jpcb.2c02269] [Reference Citation Analysis]
4 Dick TA, Sone ED, Uludağ H. Mineralized vectors for gene therapy. Acta Biomater 2022:S1742-7061(22)00312-9. [PMID: 35643193 DOI: 10.1016/j.actbio.2022.05.036] [Reference Citation Analysis]
5 Xue X, Qu H, Li Y. Stimuli‐responsive crosslinked nanomedicine for cancer treatment. Exploration. [DOI: 10.1002/exp.20210134] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
6 Yun SM, Lee HM, Ahmed S, Kim GY, Kim JC, Cheong IW. Effect of diisocyanate structure on steric restructuring of hindered urea bonds for self-healable coating. Progress in Organic Coatings 2022;165:106730. [DOI: 10.1016/j.porgcoat.2022.106730] [Reference Citation Analysis]
7 Wang H, Fliedel C, Manoury E, Poli R. Core-crosslinked micelles with a poly-anionic poly(styrene sulfonate)-based outer shell made by RAFT polymerization. Polymer 2022. [DOI: 10.1016/j.polymer.2022.124640] [Reference Citation Analysis]
8 Lu H, Zhang S, Wang J, Chen Q. A Review on Polymer and Lipid-Based Nanocarriers and Its Application to Nano-Pharmaceutical and Food-Based Systems. Front Nutr 2021;8:783831. [PMID: 34926557 DOI: 10.3389/fnut.2021.783831] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
9 Dong L, Chen H, Liu T, Zhu J, Yu M, Yuan Q. Poly(l-cysteine) Peptide Amphiphile Derivatives Containing Disulfide Bonds: Synthesis, Self-Assembly-Induced β-Sheet Nanostructures, pH/Reduction Dual Response, and Drug Release. Biomacromolecules 2021;22:5374-81. [PMID: 34846860 DOI: 10.1021/acs.biomac.1c01324] [Reference Citation Analysis]
10 Busa P, Koutavarapu R, Lee D, Shim J, Kuthati Y. Hierarchical Two-Dimensional Layered Double Hydroxide Coated Polydopamine Nanocarriers for Combined Chemodynamic and Photothermal Tumor Therapy. Coatings 2021;11:1008. [DOI: 10.3390/coatings11081008] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
11 Ten Hagen TLM, Dreher MR, Zalba S, Seynhaeve ALB, Amin M, Li L, Haemmerich D. Drug transport kinetics of intravascular triggered drug delivery systems. Commun Biol 2021;4:920. [PMID: 34321602 DOI: 10.1038/s42003-021-02428-z] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
12 Suleman A, Kondiah PPD, Mabrouk M, Choonara YE. The Application of 3D-Printing and Nanotechnology for the Targeted Treatment of Osteosarcoma. Front Mater 2021;8:668834. [DOI: 10.3389/fmats.2021.668834] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
13 Han Y, Pan J, Liang N, Gong X, Sun S. A pH-Sensitive Polymeric Micellar System Based on Chitosan Derivative for Efficient Delivery of Paclitaxel. Int J Mol Sci 2021;22:6659. [PMID: 34206347 DOI: 10.3390/ijms22136659] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
14 Yang Z, Zhang N, Ma T, Liu L, Zhao L, Xie H. Engineered bovine serum albumin-based nanoparticles with pH-sensitivity for doxorubicin delivery and controlled release. Drug Deliv 2020;27:1156-64. [PMID: 32755291 DOI: 10.1080/10717544.2020.1797243] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
15 Wang X, Song Z, Wei S, Ji G, Zheng X, Fu Z, Cheng J. Polypeptide-based drug delivery systems for programmed release. Biomaterials 2021;275:120913. [PMID: 34217020 DOI: 10.1016/j.biomaterials.2021.120913] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 He H, Qiu G, Wang W, Gu H. Micelles of ferrocene/aldehyde-containing triblock polynorbornene: Preparation, biocompatibility, dual-cargo-loading and oxidation/pH-sensitive release behavior. Materials Letters 2021;290:129479. [DOI: 10.1016/j.matlet.2021.129479] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
17 Hou X, Zhong D, Li Y, Mao H, Yang J, Zhang H, Luo K, Gong Q, Gu Z. Facile fabrication of multi-pocket nanoparticles with stepwise size transition for promoting deep penetration and tumor targeting. J Nanobiotechnology 2021;19:111. [PMID: 33874945 DOI: 10.1186/s12951-021-00854-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
18 Li J, Liu M, Qiu Y, Gan Y, Jiang H, Liu B, Wei H, Ma N. Urchin-like Hydroxyapatite/Graphene Hollow Microspheres as pH-Responsive Bone Drug Carriers. Langmuir 2021;37:4137-46. [PMID: 33813823 DOI: 10.1021/acs.langmuir.0c03640] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Tsai M, Lo Y, Soorni Y, Su C, Sivasoorian SS, Yang J, Wang L. Near-Infrared Light-Triggered Drug Release from Ultraviolet- and Redox-Responsive Polymersome Encapsulated with Core–Shell Upconversion Nanoparticles for Cancer Therapy. ACS Appl Bio Mater 2021;4:3264-75. [DOI: 10.1021/acsabm.0c01621] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Fan B, Wan J, Zhai J, Chen X, Thang SH. Triggered Degradable Colloidal Particles with Ordered Inverse Bicontinuous Cubic and Hexagonal Mesophases. ACS Nano 2021;15:4688-98. [PMID: 33646766 DOI: 10.1021/acsnano.0c09166] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 17.0] [Reference Citation Analysis]
21 Liu J, Sun L, Li L, Zhang R, Xu ZP. Synergistic Cancer Photochemotherapy via Layered Double Hydroxide-Based Trimodal Nanomedicine at Very Low Therapeutic Doses. ACS Appl Mater Interfaces 2021;13:7115-26. [PMID: 33543935 DOI: 10.1021/acsami.0c23143] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
22 Ghanbari N, Salehi Z, Khodadadi AA, Shokrgozar MA, Saboury AA. Glucosamine-conjugated graphene quantum dots as versatile and pH-sensitive nanocarriers for enhanced delivery of curcumin targeting to breast cancer. Materials Science and Engineering: C 2021;121:111809. [DOI: 10.1016/j.msec.2020.111809] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
23 Lin M, Dai Y, Xia F, Zhang X. Advances in non-covalent crosslinked polymer micelles for biomedical applications. Materials Science and Engineering: C 2021;119:111626. [DOI: 10.1016/j.msec.2020.111626] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
24 Yang M, Li J, Gu P, Fan X. The application of nanoparticles in cancer immunotherapy: Targeting tumor microenvironment. Bioact Mater 2021;6:1973-87. [PMID: 33426371 DOI: 10.1016/j.bioactmat.2020.12.010] [Cited by in Crossref: 23] [Cited by in F6Publishing: 139] [Article Influence: 11.5] [Reference Citation Analysis]
25 Motamedi S, Massoumi B, Jaymand M, Derakhshankhah H, Alizadeh E. Bioreducible and pH-responsive shell crosslinked polymeric micelles from a star-shaped terpolymer as drug delivery system. International Journal of Polymeric Materials and Polymeric Biomaterials. [DOI: 10.1080/00914037.2020.1857382] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
26 Zheng M, Pan M, Zhang W, Lin H, Wu S, Lu C, Tang S, Liu D, Cai J. Poly(α-l-lysine)-based nanomaterials for versatile biomedical applications: Current advances and perspectives. Bioact Mater 2021;6:1878-909. [PMID: 33364529 DOI: 10.1016/j.bioactmat.2020.12.001] [Cited by in Crossref: 50] [Cited by in F6Publishing: 37] [Article Influence: 25.0] [Reference Citation Analysis]
27 Lei Z, Karim A. The challenges and applications of nanotechnology against bacterial resistance. J Vet Pharmacol Ther 2021;44:281-97. [PMID: 33277732 DOI: 10.1111/jvp.12936] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
28 Luo GF, Chen WH, Zeng X, Zhang XZ. Cell primitive-based biomimetic functional materials for enhanced cancer therapy. Chem Soc Rev 2021;50:945-85. [PMID: 33226037 DOI: 10.1039/d0cs00152j] [Cited by in Crossref: 11] [Cited by in F6Publishing: 34] [Article Influence: 5.5] [Reference Citation Analysis]
29 Majumder J, Minko T. Multifunctional and stimuli-responsive nanocarriers for targeted therapeutic delivery. Expert Opin Drug Deliv 2021;18:205-27. [PMID: 32969740 DOI: 10.1080/17425247.2021.1828339] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
30 Gao X, Lu Y, Wu B, Miao J, Chen P, Yang B, Qian J, Si J, Cao M, Xia R. Interface cisplatin-crosslinked doxorubicin-loaded triblock copolymer micelles for synergistic cancer therapy. Colloids Surf B Biointerfaces 2020;196:111334. [PMID: 32919246 DOI: 10.1016/j.colsurfb.2020.111334] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
31 Cao XT, Nguyen VC, Nguyen TD, Doan V, Tu TKT, Lim KT. Ketal core cross-linked micelles for pH-triggered release of doxorubicin. Molecular Crystals and Liquid Crystals 2020;707:29-37. [DOI: 10.1080/15421406.2020.1743452] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
32 Zhang Y, Uthaman S, Song W, Eom KH, Jeon SH, Huh KM, Babu A, Park I, Kim I. Multistimuli-Responsive Polymeric Vesicles for Accelerated Drug Release in Chemo-photothermal Therapy. ACS Biomater Sci Eng 2020;6:5012-23. [DOI: 10.1021/acsbiomaterials.0c00585] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
33 Wang D, Wang S, Xia Y, Liu S, Jia R, Xu G, Zhan J, Lu Y. Preparation of ROS-responsive core crosslinked polycarbonate micelles with thioketal linkage. Colloids Surf B Biointerfaces 2020;195:111276. [PMID: 32763765 DOI: 10.1016/j.colsurfb.2020.111276] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
34 Domiński A, Krawczyk M, Konieczny T, Kasprów M, Foryś A, Pastuch-Gawołek G, Kurcok P. Biodegradable pH-responsive micelles loaded with 8-hydroxyquinoline glycoconjugates for Warburg effect based tumor targeting. Eur J Pharm Biopharm 2020;154:317-29. [PMID: 32717390 DOI: 10.1016/j.ejpb.2020.07.019] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
35 Gao J, Wang WQ, Pei Q, Lord MS, Yu HJ. Engineering nanomedicines through boosting immunogenic cell death for improved cancer immunotherapy. Acta Pharmacol Sin 2020;41:986-94. [PMID: 32317755 DOI: 10.1038/s41401-020-0400-z] [Cited by in Crossref: 46] [Cited by in F6Publishing: 49] [Article Influence: 23.0] [Reference Citation Analysis]
36 Vlasov SS, Postnikov PS, Belousov MV, Krivoshchekov SV, Yusubov MS, Guryev AM, Di Martino A. Multiresponsive Hybrid Microparticles for Stimuli-Responsive Delivery of Bioactive Compounds. Applied Sciences 2020;10:4324. [DOI: 10.3390/app10124324] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Qin T, Xu X, Zhang Z, Li J, You X, Guo H, Sun H, Liu M, Dai Z, Zhu H. Paclitaxel/sunitinib-loaded micelles promote an antitumor response in vitro through synergistic immunogenic cell death for triple-negative breast cancer. Nanotechnology 2020;31:365101. [DOI: 10.1088/1361-6528/ab94dc] [Cited by in Crossref: 5] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
38 Luo GF, Chen WH, Zhang XZ. 100th Anniversary of Macromolecular Science Viewpoint: Poly(N-isopropylacrylamide)-Based Thermally Responsive Micelles. ACS Macro Lett 2020;9:872-81. [PMID: 35648534 DOI: 10.1021/acsmacrolett.0c00342] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 12.0] [Reference Citation Analysis]
39 Li F, Qin Y, Lee J, Liao H, Wang N, Davis TP, Qiao R, Ling D. Stimuli-responsive nano-assemblies for remotely controlled drug delivery. Journal of Controlled Release 2020;322:566-92. [DOI: 10.1016/j.jconrel.2020.03.051] [Cited by in Crossref: 34] [Cited by in F6Publishing: 52] [Article Influence: 17.0] [Reference Citation Analysis]
40 Matsuno J, Kanamaru T, Arai K, Tanaka R, Lee JH, Takahashi R, Sakurai K, Fujii S. Synthesis and characterization of nanoemulsion-mediated core crosslinked nanoparticles, and in vivo pharmacokinetics depending on the structural characteristics. J Control Release 2020;324:405-12. [PMID: 32470358 DOI: 10.1016/j.jconrel.2020.05.035] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
41 Wang Z, Xue X, Lu H, He Y, Lu Z, Chen Z, Yuan Y, Tang N, Dreyer CA, Quigley L, Curro N, Lam KS, Walton JH, Lin TY, Louie AY, Gilbert DA, Liu K, Ferrara KW, Li Y. Two-way magnetic resonance tuning and enhanced subtraction imaging for non-invasive and quantitative biological imaging. Nat Nanotechnol 2020;15:482-90. [PMID: 32451501 DOI: 10.1038/s41565-020-0678-5] [Cited by in Crossref: 18] [Cited by in F6Publishing: 32] [Article Influence: 9.0] [Reference Citation Analysis]
42 Du J, Wu Q, Li Y, Liu P, Han X, Wang L, Yuan J, Meng X, Xiao Y. Preparation and characterization of Keratin-PEG conjugate-based micelles as a tumor microenvironment-responsive drug delivery system. Journal of Biomaterials Science, Polymer Edition 2020;31:1163-78. [DOI: 10.1080/09205063.2020.1747044] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
43 Yang R, Zheng Y, Shuai X, Fan F, He X, Ding M, Li J, Tan H, Fu Q. Crosslinking Induced Reassembly of Multiblock Polymers: Addressing the Dilemma of Stability and Responsivity. Adv Sci (Weinh) 2020;7:1902701. [PMID: 32328415 DOI: 10.1002/advs.201902701] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
44 Nie K, Dong B, Shi H, Chao L, Long M, Xu H, Liu Z, Liang B. Facile construction of AIE-based FRET nanoprobe for ratiometric imaging of hypochlorite in live cells. Journal of Luminescence 2020;220:117018. [DOI: 10.1016/j.jlumin.2019.117018] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
45 Huang Y, Li Y, Tang Z, Su Q, Liao T, Gu Y, Lin X, Zu X, Lin W, Yi G. Dual-Responsive Cross-Linked Micelles from Amphiphilic Four-Arm Star Copolymers with Different Block Ratios for Triggering DOX Release. Macromol Res 2020;28:762-71. [DOI: 10.1007/s13233-020-9094-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
46 Seynhaeve ALB, Amin M, Haemmerich D, van Rhoon GC, Ten Hagen TLM. Hyperthermia and smart drug delivery systems for solid tumor therapy. Adv Drug Deliv Rev 2020;163-164:125-44. [PMID: 32092379 DOI: 10.1016/j.addr.2020.02.004] [Cited by in Crossref: 61] [Cited by in F6Publishing: 52] [Article Influence: 30.5] [Reference Citation Analysis]
47 Raveendran R, Chen F, Kent B, Stenzel MH. Estrone-Decorated Polyion Complex Micelles for Targeted Melittin Delivery to Hormone-Responsive Breast Cancer Cells. Biomacromolecules 2020;21:1222-33. [DOI: 10.1021/acs.biomac.9b01681] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
48 Li Y, Wu Q, Kang M, Song N, Wang D, Tang BZ. Boosting the photodynamic therapy efficiency by using stimuli-responsive and AIE-featured nanoparticles. Biomaterials 2020;232:119749. [DOI: 10.1016/j.biomaterials.2019.119749] [Cited by in Crossref: 33] [Cited by in F6Publishing: 26] [Article Influence: 16.5] [Reference Citation Analysis]
49 Huang Y, Yan J, Peng S, Tang Z, Tan C, Ling J, Lin W, Lin X, Zu X, Yi G. pH/Reduction Dual-Stimuli-Responsive Cross-Linked Micelles Based on Multi-Functional Amphiphilic Star Copolymer: Synthesis and Controlled Anti-Cancer Drug Release. Polymers (Basel) 2020;12:E82. [PMID: 31947729 DOI: 10.3390/polym12010082] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
50 Li H, Luo Q, Zhu H, Li Z, Wang X, Roberts N, Zhang H, Gong Q, Gu Z, Luo K. An advanced micelle-based biodegradable HPMA polymer-gadolinium contrast agent for MR imaging of murine vasculatures and tumors. Polym Chem 2020;11:6374-86. [DOI: 10.1039/d0py01133a] [Reference Citation Analysis]
51 Qiu Y, Zhu Z, Miao Y, Zhang P, Jia X, Liu Z, Zhao X. Polymerization of dopamine accompanying its coupling to induce self-assembly of block copolymer and application in drug delivery. Polym Chem 2020;11:2811-21. [DOI: 10.1039/d0py00085j] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 7.0] [Reference Citation Analysis]
52 Zhong D, Wu H, Wu Y, Li Y, Xu X, Yang J, Gu Z. Rational design and facile fabrication of biocompatible triple responsive dendrimeric nanocages for targeted drug delivery. Nanoscale 2019;11:15091-103. [PMID: 31385582 DOI: 10.1039/c9nr04631c] [Cited by in Crossref: 9] [Cited by in F6Publishing: 19] [Article Influence: 4.5] [Reference Citation Analysis]
53 Kuang G, Zhang Q, He S, Wu Y, Huang Y. Reduction-responsive disulfide linkage core-cross-linked polymeric micelles for site-specific drug delivery. Polym Chem 2020;11:7078-86. [DOI: 10.1039/d0py00987c] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
54 Lefley J, Waldron C, Becer CR. Macromolecular design and preparation of polymersomes. Polym Chem 2020;11:7124-36. [DOI: 10.1039/d0py01247e] [Cited by in Crossref: 4] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
55 Tanaka R, Arai K, Matsuno J, Soejima M, Lee JH, Takahashi R, Sakurai K, Fujii S. Furry nanoparticles: synthesis and characterization of nanoemulsion-mediated core crosslinked nanoparticles and their robust stability in vivo. Polym Chem 2020;11:4408-16. [DOI: 10.1039/d0py00610f] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
56 Smith TKT, Kahiel Z, LeBlond ND, Ghorbani P, Farah E, Al-Awosi R, Cote M, Gadde S, Fullerton MD. Characterization of Redox-Responsive LXR-Activating Nanoparticle Formulations in Primary Mouse Macrophages. Molecules 2019;24:E3751. [PMID: 31635211 DOI: 10.3390/molecules24203751] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
57 Perche. Stimuli-Sensitive Cell Penetrating Peptide-Modified Nanocarriers. Processes 2019;7:727. [DOI: 10.3390/pr7100727] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
58 Wang Z, Ling L, Xia Q, Li X. Disulfide-crosslinked reduction-responsive Prodrug Micelles for On-demand Paclitaxel Release. Journal of Drug Delivery Science and Technology 2019;53:101168. [DOI: 10.1016/j.jddst.2019.101168] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
59 Lin W, Xue Z, Wen L, Li Y, Liang Z, Xu J, Yang C, Gu Y, Zhang J, Zu X, Luo H, Yi G, Zhang L. Mesoscopic simulations of drug-loaded diselenide crosslinked micelles: Stability, drug loading and release properties. Colloids and Surfaces B: Biointerfaces 2019;182:110313. [DOI: 10.1016/j.colsurfb.2019.06.043] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
60 Lei Z, Ju Y, Lin Y, Bai X, Hu W, Wang Y, Luo H, Tong Z. Reactive Oxygen Species Synergistic pH/H 2 O 2 -Responsive Poly( l -lactic acid)- block -poly(sodium 4-styrenesulfonate)/Citrate-Fe(III)@ZIF-8 Hybrid Nanocomposites for Controlled Drug Release. ACS Appl Bio Mater 2019;2:3648-58. [DOI: 10.1021/acsabm.9b00497] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 2.3] [Reference Citation Analysis]
61 Liu A, Xiong C, Ma X, Ma W, Sun R. A Multiresponsive Hydrophobic Associating Hydrogel Based on Azobenzene and Spiropyran. Chin J Chem 2019;37:793-8. [DOI: 10.1002/cjoc.201900106] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
62 Shang X, Liu Q, Qin T, Xu X, Sun H, Liu M, Zhu H. Fabrication of cRGD-modified reduction-sensitive nanocapsule via Pickering emulsion route to facilitate tumor-targeted delivery. Int J Nanomedicine 2019;14:3361-73. [PMID: 31190797 DOI: 10.2147/IJN.S202063] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
63 Zhang YM, Xu X, Yu Q, Yu HJ, Liu Y. Drug Displacement Strategy for Treatment of Acute Liver Injury with Cyclodextrin-Liposome Nanoassembly. iScience 2019;15:223-33. [PMID: 31079026 DOI: 10.1016/j.isci.2019.04.029] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
64 Li M, Luo Z, Peng Z, Cai K. Cascade-amplification of therapeutic efficacy: An emerging opportunity in cancer treatment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2019;11:e1555. [PMID: 31016872 DOI: 10.1002/wnan.1555] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
65 Yang W, Zhu G, Wang S, Yu G, Yang Z, Lin L, Zhou Z, Liu Y, Dai Y, Zhang F, Shen Z, Liu Y, He Z, Lau J, Niu G, Kiesewetter DO, Hu S, Chen X. In Situ Dendritic Cell Vaccine for Effective Cancer Immunotherapy. ACS Nano 2019;13:3083-94. [PMID: 30835435 DOI: 10.1021/acsnano.8b08346] [Cited by in Crossref: 101] [Cited by in F6Publishing: 96] [Article Influence: 33.7] [Reference Citation Analysis]
66 Khames A. Hexyl alginate derivative, an amphiphilic innovative buccal film-forming material of promising mechanical and release characteristics for the improvement of repaglinide bioavailability. Drug Des Devel Ther 2019;13:925-40. [PMID: 30962675 DOI: 10.2147/DDDT.S196425] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
67 Xie X, Zhang Y, Li F, Lv T, Li Z, Chen H, Jia L, Gao Y. Challenges and Opportunities from Basic Cancer Biology for Nanomedicine for Targeted Drug Delivery. CCDT 2019;19:257-76. [DOI: 10.2174/1568009618666180628160211] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
68 Devi P, Saini S, Kim KH. The advanced role of carbon quantum dots in nanomedical applications. Biosens Bioelectron 2019;141:111158. [PMID: 31323605 DOI: 10.1016/j.bios.2019.02.059] [Cited by in Crossref: 65] [Cited by in F6Publishing: 44] [Article Influence: 21.7] [Reference Citation Analysis]
69 Jin Q, Deng Y, Chen X, Ji J. Rational Design of Cancer Nanomedicine for Simultaneous Stealth Surface and Enhanced Cellular Uptake. ACS Nano 2019;13:954-77. [PMID: 30681834 DOI: 10.1021/acsnano.8b07746] [Cited by in Crossref: 45] [Cited by in F6Publishing: 53] [Article Influence: 15.0] [Reference Citation Analysis]
70 Zhang C, Long L, Xiong Y, Wang C, Peng C, Yuan Y, Liu Z, Lin Y, Jia Y, Zhou X, Li X. Facile Engineering of Indomethacin-Induced Paclitaxel Nanocrystal Aggregates as Carrier-Free Nanomedicine with Improved Synergetic Antitumor Activity. ACS Appl Mater Interfaces 2019;11:9872-83. [DOI: 10.1021/acsami.8b22336] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
71 Chen F, Li Y, Fu Y, Hou Y, Chen Y, Luo X. The synthesis and co-micellization of PCL-P(HEMA/HEMA-LA) and PCL-P(HEMA/HEMA-FA) as shell cross-linked drug carriers with target/redox properties. J Biomater Sci Polym Ed 2019;30:276-94. [PMID: 30556773 DOI: 10.1080/09205063.2018.1558486] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
72 Gao J, Wang P, Wang Z, Li C, Sun S, Hu S. Self-assembly of DCPD-loaded cross-linked micelle from triblock copolymers and its pH-responsive behavior: A dissipative particle dynamics study. Chemical Engineering Science 2019;195:325-34. [DOI: 10.1016/j.ces.2018.09.028] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
73 Miyake R, Fujii S, Lee JH, Takahashi R, Sakurai K. Dual and multiple stimuli-responsive platonic micelles bearing disaccharides. Journal of Colloid and Interface Science 2019;535:8-15. [DOI: 10.1016/j.jcis.2018.09.044] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
74 Xiao K, Liu Q, Al Awwad N, Zhang H, Lai L, Luo Y, Lee JS, Li Y, Lam KS. Reversibly disulfide cross-linked micelles improve the pharmacokinetics and facilitate the targeted, on-demand delivery of doxorubicin in the treatment of B-cell lymphoma. Nanoscale 2018;10:8207-16. [PMID: 29682647 DOI: 10.1039/c8nr00680f] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
75 Li Y, Wan J, Wang F, Guo J, Wang C. Effect of increasing liver blood flow on nanodrug clearance by the liver for enhanced antitumor therapy. Biomater Sci 2019;7:1507-15. [DOI: 10.1039/c8bm01371c] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
76 Zhang X, Hua Q, Meng P, Wang M, Wang Y, Sun L, Ma L, Wang B, Yu C, Wei H. Fabrication of biocleavable crosslinked polyprodrug vesicles via reversible donor–acceptor interactions for enhanced anticancer drug delivery. Polym Chem 2019;10:2666-73. [DOI: 10.1039/c9py00404a] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
77 Hunold J, Wolf T, Wurm FR, Hinderberger D. Nanoscopic hydrophilic/hydrophilic phase-separation well below the LCST of polyphosphoesters. Chem Commun 2019;55:3414-7. [DOI: 10.1039/c8cc09788g] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
78 Pei P, Sun C, Tao W, Li J, Yang X, Wang J. ROS-sensitive thioketal-linked polyphosphoester-doxorubicin conjugate for precise phototriggered locoregional chemotherapy. Biomaterials 2019;188:74-82. [DOI: 10.1016/j.biomaterials.2018.10.010] [Cited by in Crossref: 75] [Cited by in F6Publishing: 70] [Article Influence: 25.0] [Reference Citation Analysis]
79 Zhao Y, Fan W, Zhao H. Self-assembly of positively charged polymer patchy micelles in organic solutions and the reversible ultrasound responsivity of the assemblies. Mater Chem Front 2019;3:606-14. [DOI: 10.1039/c8qm00627j] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
80 Deng J, Liu F, Wang L, An Y, Gao M, Wang Z, Zhao Y. Hypoxia- and singlet oxygen-responsive chemo-photodynamic Micelles featured with glutathione depletion and aldehyde production. Biomater Sci 2019;7:429-41. [DOI: 10.1039/c8bm01042k] [Cited by in Crossref: 28] [Cited by in F6Publishing: 39] [Article Influence: 9.3] [Reference Citation Analysis]
81 Zhang Y, Lu Y, Cao M, Chen P, Yang B, Miao J, Xia R, Qian J. Y-shaped copolymers of poly(ethylene glycol)-poly(ε-caprolactone) with ketal bond as the branchpoint for drug delivery. Materials Science and Engineering: C 2018;93:554-64. [DOI: 10.1016/j.msec.2018.08.021] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
82 El-Sawy HS, Al-Abd AM, Ahmed TA, El-Say KM, Torchilin VP. Stimuli-Responsive Nano-Architecture Drug-Delivery Systems to Solid Tumor Micromilieu: Past, Present, and Future Perspectives. ACS Nano 2018;12:10636-64. [PMID: 30335963 DOI: 10.1021/acsnano.8b06104] [Cited by in Crossref: 212] [Cited by in F6Publishing: 187] [Article Influence: 53.0] [Reference Citation Analysis]
83 Xiao K, Lin TY, Lam KS, Li Y. A facile strategy for fine-tuning the stability and drug release of stimuli-responsive cross-linked micellar nanoparticles towards precision drug delivery. Nanoscale 2017;9:7765-70. [PMID: 28585953 DOI: 10.1039/c7nr02530k] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
84 Dai Y, Chen X, Zhang X. Recent Developments in the Area of Click‐Crosslinked Nanocarriers for Drug Delivery. Macromol Rapid Commun 2019;40:1800541. [DOI: 10.1002/marc.201800541] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
85 Zhang S, Hou Y, Chen H, Liao Z, Chen J, Xu BB, Kong J. Reduction-responsive amphiphilic star copolymers with long-chain hyperbranched poly(ε-caprolactone) core and disulfide bonds for trigger release of anticancer drugs. European Polymer Journal 2018;108:364-72. [DOI: 10.1016/j.eurpolymj.2018.09.014] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 2.8] [Reference Citation Analysis]
86 Omolo CA, Kalhapure RS, Agrawal N, Jadhav M, Rambharose S, Mocktar C, Govender T. A hybrid of mPEG-b-PCL and G1-PEA dendrimer for enhancing delivery of antibiotics. Journal of Controlled Release 2018;290:112-28. [DOI: 10.1016/j.jconrel.2018.10.005] [Cited by in Crossref: 19] [Cited by in F6Publishing: 23] [Article Influence: 4.8] [Reference Citation Analysis]
87 Ling L, Ismail M, Du Y, Xia Q, He W, Yao C, Li X. High Drug Loading, Reversible Disulfide Core-Cross-Linked Multifunctional Micelles for Triggered Release of Camptothecin. Mol Pharmaceutics 2018;15:5479-92. [DOI: 10.1021/acs.molpharmaceut.8b00585] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
88 Kesharwani SS, Kaur S, Tummala H, Sangamwar AT. Overcoming multiple drug resistance in cancer using polymeric micelles. Expert Opinion on Drug Delivery 2018;15:1127-42. [DOI: 10.1080/17425247.2018.1537261] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 3.3] [Reference Citation Analysis]
89 Kesharwani SS, Kaur S, Tummala H, Sangamwar AT. Multifunctional approaches utilizing polymeric micelles to circumvent multidrug resistant tumors. Colloids Surf B Biointerfaces 2019;173:581-90. [PMID: 30352379 DOI: 10.1016/j.colsurfb.2018.10.022] [Cited by in Crossref: 27] [Cited by in F6Publishing: 36] [Article Influence: 6.8] [Reference Citation Analysis]
90 Gu X, Qiu M, Sun H, Zhang J, Cheng L, Deng C, Zhong Z. Polytyrosine nanoparticles enable ultra-high loading of doxorubicin and rapid enzyme-responsive drug release. Biomater Sci 2018;6:1526-34. [PMID: 29666858 DOI: 10.1039/c8bm00243f] [Cited by in Crossref: 26] [Cited by in F6Publishing: 32] [Article Influence: 6.5] [Reference Citation Analysis]
91 Hua L, Wang Z, Zhao L, Mao H, Wang G, Zhang K, Liu X, Wu D, Zheng Y, Lu J, Yu R, Liu H. Hypoxia-responsive lipid-poly-(hypoxic radiosensitized polyprodrug) nanoparticles for glioma chemo- and radiotherapy. Theranostics 2018;8:5088-105. [PMID: 30429888 DOI: 10.7150/thno.26225] [Cited by in Crossref: 58] [Cited by in F6Publishing: 68] [Article Influence: 14.5] [Reference Citation Analysis]
92 Syamala PS, Ramesan RM. Thiol redox-sensitive cationic polymers for dual delivery of drug and gene. Ther Deliv 2018;9:751-73. [PMID: 30277132 DOI: 10.4155/tde-2018-0041] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
93 Zhang Y, Zhang J, Xu W, Xiao G, Ding J, Chen X. Tumor microenvironment-labile polymer-doxorubicin conjugate thermogel combined with docetaxel for in situ synergistic chemotherapy of hepatoma. Acta Biomater 2018;77:63-73. [PMID: 30006312 DOI: 10.1016/j.actbio.2018.07.021] [Cited by in Crossref: 54] [Cited by in F6Publishing: 52] [Article Influence: 13.5] [Reference Citation Analysis]
94 Xue S, Gu X, Zhang J, Sun H, Deng C, Zhong Z. Construction of Small-Sized, Robust, and Reduction-Responsive Polypeptide Micelles for High Loading and Targeted Delivery of Chemotherapeutics. Biomacromolecules 2018;19:3586-93. [PMID: 30025206 DOI: 10.1021/acs.biomac.8b00835] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 6.5] [Reference Citation Analysis]
95 Nishimura T, Toh WL, Akiyoshi K. Synthesis and Characterization of Shell-Cross-Linked Glycopolymer Bilayer Vesicles. Macromol Rapid Commun 2018;39:e1800384. [PMID: 30062786 DOI: 10.1002/marc.201800384] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
96 Liu L, Li T, Ruan Z, Yuan P, Yan L. Reduction-sensitive polypeptide nanogel conjugated BODIPY-Br for NIR imaging-guided chem/photodynamic therapy at low light and drug dose. Mater Sci Eng C Mater Biol Appl 2018;92:745-56. [PMID: 30184803 DOI: 10.1016/j.msec.2018.07.034] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
97 Sun H, Zhang Y, Zhong Z. Reduction-sensitive polymeric nanomedicines: An emerging multifunctional platform for targeted cancer therapy. Adv Drug Deliv Rev 2018;132:16-32. [PMID: 29775625 DOI: 10.1016/j.addr.2018.05.007] [Cited by in Crossref: 70] [Cited by in F6Publishing: 69] [Article Influence: 17.5] [Reference Citation Analysis]
98 Chen S, Li R, Li X, Xie J. Electrospinning: An enabling nanotechnology platform for drug delivery and regenerative medicine. Adv Drug Deliv Rev 2018;132:188-213. [PMID: 29729295 DOI: 10.1016/j.addr.2018.05.001] [Cited by in Crossref: 188] [Cited by in F6Publishing: 147] [Article Influence: 47.0] [Reference Citation Analysis]
99 Wang XS, Zhang L, Li X, Kong DJ, Hu XC, Ding XZ, Yang JQ, Zhao MQ, He Y, Lam KS, Gao SG, Lin TY, Li Y. Nanoformulated paclitaxel and AZD9291 synergistically eradicate non-small-cell lung cancers in vivo. Nanomedicine (Lond) 2018;13:1107-20. [PMID: 29874151 DOI: 10.2217/nnm-2017-0355] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
100 Yang T, Zelikin AN, Chandrawati R. Progress and Promise of Nitric Oxide-Releasing Platforms. Adv Sci (Weinh) 2018;5:1701043. [PMID: 29938181 DOI: 10.1002/advs.201701043] [Cited by in Crossref: 97] [Cited by in F6Publishing: 102] [Article Influence: 24.3] [Reference Citation Analysis]
101 Zhang X, Dai Y. Amphiphilic graft polymer with reduction breakable main chain prepared via click polymerization and grafting onto. J Nanopart Res 2018;20. [DOI: 10.1007/s11051-018-4256-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
102 Zhou Q, Zhang L, Yang T, Wu H. Stimuli-responsive polymeric micelles for drug delivery and cancer therapy. Int J Nanomedicine 2018;13:2921-42. [PMID: 29849457 DOI: 10.2147/IJN.S158696] [Cited by in Crossref: 110] [Cited by in F6Publishing: 149] [Article Influence: 27.5] [Reference Citation Analysis]
103 Yu L, Dong A, Guo R, Yang M, Deng L, Zhang J. DOX/ICG Coencapsulated Liposome-Coated Thermosensitive Nanogels for NIR-Triggered Simultaneous Drug Release and Photothermal Effect. ACS Biomater Sci Eng 2018;4:2424-34. [DOI: 10.1021/acsbiomaterials.8b00379] [Cited by in Crossref: 50] [Cited by in F6Publishing: 32] [Article Influence: 12.5] [Reference Citation Analysis]
104 Wen Y, Li J. Ultrastable micelles boost chemotherapy. Nat Biomed Eng 2018;2:273-4. [DOI: 10.1038/s41551-018-0238-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
105 Acar H, Ting JM, Srivastava S, LaBelle JL, Tirrell MV. Molecular engineering solutions for therapeutic peptide delivery. Chem Soc Rev 2017;46:6553-69. [PMID: 28902203 DOI: 10.1039/c7cs00536a] [Cited by in Crossref: 69] [Cited by in F6Publishing: 70] [Article Influence: 17.3] [Reference Citation Analysis]
106 Liu M, Du H, Khan AR, Ji J, Yu A, Zhai G. Redox/enzyme sensitive chondroitin sulfate-based self-assembled nanoparticles loading docetaxel for the inhibition of metastasis and growth of melanoma. Carbohydrate Polymers 2018;184:82-93. [DOI: 10.1016/j.carbpol.2017.12.047] [Cited by in Crossref: 30] [Cited by in F6Publishing: 37] [Article Influence: 7.5] [Reference Citation Analysis]
107 Cao Y, He J, Liu J, Zhang M, Ni P. Folate-Conjugated Polyphosphoester with Reversible Cross-Linkage and Reduction Sensitivity for Drug Delivery. ACS Appl Mater Interfaces 2018;10:7811-20. [PMID: 29431989 DOI: 10.1021/acsami.7b18887] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 6.8] [Reference Citation Analysis]
108 Chen T, Qiu M, Zhang J, Sun H, Deng C, Zhong Z. Integrated Multifunctional Micelles Co-Self-Assembled from Polypeptides Conjugated with Natural Ferulic Acid and Lipoic Acid for Doxorubicin Delivery. Chemphyschem 2018;19:2070-7. [PMID: 29316094 DOI: 10.1002/cphc.201701367] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
109 Li Y, Yu A, Li L, Zhai G. The development of stimuli-responsive polymeric micelles for effective delivery of chemotherapeutic agents. J Drug Target 2018;26:753-65. [PMID: 29256633 DOI: 10.1080/1061186X.2017.1419477] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
110 Li Y, Si J, Fan H, Yang J, Ye X. Reduction-responsive diblock copolymer-modified gold nanorods for enhanced cellular uptake. RSC Adv 2018;8:27546-55. [DOI: 10.1039/c8ra03545h] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
111 Li Y, Thambi T, Lee DS. Co-Delivery of Drugs and Genes Using Polymeric Nanoparticles for Synergistic Cancer Therapeutic Effects. Adv Healthc Mater 2018;7. [PMID: 28941203 DOI: 10.1002/adhm.201700886] [Cited by in Crossref: 59] [Cited by in F6Publishing: 56] [Article Influence: 14.8] [Reference Citation Analysis]
112 Klepac D, Kostková H, Petrova S, Chytil P, Etrych T, Kereïche S, Raška I, Weitz DA, Filippov SK. Interaction of spin-labeled HPMA-based nanoparticles with human blood plasma proteins – the introduction of protein-corona-free polymer nanomedicine. Nanoscale 2018;10:6194-204. [DOI: 10.1039/c7nr09355a] [Cited by in Crossref: 22] [Cited by in F6Publishing: 27] [Article Influence: 5.5] [Reference Citation Analysis]
113 Li Y, Lv S, Song Z, Dang J, Li X, He H, Xu X, Zhou Z, Yin L. Photodynamic therapy-mediated remote control of chemotherapy toward synergistic anticancer treatment. Nanoscale 2018;10:14554-62. [DOI: 10.1039/c8nr03611j] [Cited by in Crossref: 16] [Cited by in F6Publishing: 20] [Article Influence: 4.0] [Reference Citation Analysis]
114 Kim H, Kim E, Ha T, Lee SG, Lee SJ, Jeong SW. Highly stable and reduction responsive micelles from a novel polymeric surfactant with a repeating disulfide-based gemini structure for efficient drug delivery. Polymer 2017;133:102-9. [DOI: 10.1016/j.polymer.2017.11.032] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
115 Yu L, Tan S, Li Z, Zheng Z, Zhou L, Su Y, Wang X. Mixed polycarbonate prodrug nanoparticles with reduction/pH dual-responsive and charge conversional properties. Reactive and Functional Polymers 2017;120:74-82. [DOI: 10.1016/j.reactfunctpolym.2017.09.009] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.6] [Reference Citation Analysis]
116 Wang L, Huo M, Chen Y, Shi J. Coordination-Accelerated "Iron Extraction" Enables Fast Biodegradation of Mesoporous Silica-Based Hollow Nanoparticles. Adv Healthc Mater 2017;6. [PMID: 28941142 DOI: 10.1002/adhm.201700720] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 3.6] [Reference Citation Analysis]
117 Biswas G, Jena BC, Maiti S, Samanta P, Mandal M, Dhara D. Photoresponsive Block Copolymer Prodrug Nanoparticles as Delivery Vehicle for Single and Dual Anticancer Drugs. ACS Omega 2017;2:6677-90. [PMID: 30023528 DOI: 10.1021/acsomega.7b00911] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
118 Tian J, Xu L, Xue Y, Jiang X, Zhang W. Enhancing Photochemical Internalization of DOX through a Porphyrin-based Amphiphilic Block Copolymer. Biomacromolecules. 2017;18:3992-4001. [PMID: 29035561 DOI: 10.1021/acs.biomac.7b01037] [Cited by in Crossref: 30] [Cited by in F6Publishing: 21] [Article Influence: 6.0] [Reference Citation Analysis]
119 Xiong D, Zhang R, Luo W, Gu H, Peng S, Zhang L. Hydrazone cross-linked micelles based on redox degradable block copolymer for enhanced stability and controlled drug release. Reactive and Functional Polymers 2017;119:64-74. [DOI: 10.1016/j.reactfunctpolym.2017.08.003] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 2.4] [Reference Citation Analysis]
120 Ma X, Shi X, Bai S, Gao Y, Hou M, Han M, Xu Z. Acid-activatable doxorubicin prodrug micelles with folate-targeted and ultra-high drug loading features for efficient antitumor drug delivery. J Mater Sci 2018;53:892-907. [DOI: 10.1007/s10853-017-1546-z] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
121 Qiu J, Cheng R, Zhang J, Sun H, Deng C, Meng F, Zhong Z. Glutathione-Sensitive Hyaluronic Acid-Mercaptopurine Prodrug Linked via Carbonyl Vinyl Sulfide: A Robust and CD44-Targeted Nanomedicine for Leukemia. Biomacromolecules 2017;18:3207-14. [DOI: 10.1021/acs.biomac.7b00846] [Cited by in Crossref: 32] [Cited by in F6Publishing: 27] [Article Influence: 6.4] [Reference Citation Analysis]
122 Xiao W, Suby N, Xiao K, Lin TY, Al Awwad N, Lam KS, Li Y. Extremely long tumor retention, multi-responsive boronate crosslinked micelles with superior therapeutic efficacy for ovarian cancer. J Control Release 2017;264:169-79. [PMID: 28847739 DOI: 10.1016/j.jconrel.2017.08.028] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 2.8] [Reference Citation Analysis]
123 Zhong D, Tu Z, Zhang X, Li Y, Xu X, Gu Z. Bioreducible Peptide-Dendrimeric Nanogels with Abundant Expanded Voids for Efficient Drug Entrapment and Delivery. Biomacromolecules 2017;18:3498-505. [DOI: 10.1021/acs.biomac.7b00649] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 3.2] [Reference Citation Analysis]
124 Wang Y, Cui Y, Zhao Y, He B, Shi X, Di D, Zhang Q, Wang S. Fluorescent carbon dot-gated multifunctional mesoporous silica nanocarriers for redox/enzyme dual-responsive targeted and controlled drug delivery and real-time bioimaging. European Journal of Pharmaceutics and Biopharmaceutics 2017;117:105-15. [DOI: 10.1016/j.ejpb.2017.03.019] [Cited by in Crossref: 25] [Cited by in F6Publishing: 18] [Article Influence: 5.0] [Reference Citation Analysis]
125 Wang Y, Gong T, Zhang Z, Fu Y. Matrix Stiffness Differentially Regulates Cellular Uptake Behavior of Nanoparticles in Two Breast Cancer Cell Lines. ACS Appl Mater Interfaces 2017;9:25915-28. [DOI: 10.1021/acsami.7b08751] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
126 Zhang M, Ma Y, Wang Z, Han Z, Gao W, Gu Y. Optimizing molecular weight of octyl chitosan as drug carrier for improving tumor therapeutic efficacy. Oncotarget 2017;8:64237-49. [PMID: 28969066 DOI: 10.18632/oncotarget.19452] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
127 Li F, Yang H, Bie N, Xu Q, Yong T, Wang Q, Gan L, Yang X. Zwitterionic Temperature/Redox-Sensitive Nanogels for Near-Infrared Light-Triggered Synergistic Thermo-Chemotherapy. ACS Appl Mater Interfaces 2017;9:23564-73. [DOI: 10.1021/acsami.7b08047] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 5.8] [Reference Citation Analysis]
128 Sun Y, Mei L, Han N, Ding X, Yu C, Yang W, Ruan G. Examining the Roles of Emulsion Droplet Size and Surfactant in the Interfacial Instability-Based Fabrication Process of Micellar Nanocrystals. Nanoscale Res Lett 2017;12:434. [PMID: 28709375 DOI: 10.1186/s11671-017-2202-x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
129 Feng L, Dong Z, Tao D, Zhang Y, Liu Z. The acidic tumor microenvironment: a target for smart cancer nano-theranostics. National Science Review 2018;5:269-86. [DOI: 10.1093/nsr/nwx062] [Cited by in Crossref: 97] [Cited by in F6Publishing: 113] [Article Influence: 19.4] [Reference Citation Analysis]
130 Elezaby RS, Gad HA, Metwally AA, Geneidi AS, Awad GA. Self-assembled amphiphilic core-shell nanocarriers in line with the modern strategies for brain delivery. J Control Release 2017;261:43-61. [PMID: 28648865 DOI: 10.1016/j.jconrel.2017.06.019] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 5.2] [Reference Citation Analysis]
131 Chen WL, Li F, Tang Y, Yang SD, Li JZ, Yuan ZQ, Liu Y, Zhou XF, Liu C, Zhang XN. Stepwise pH-responsive nanoparticles for enhanced cellular uptake and on-demand intracellular release of doxorubicin. Int J Nanomedicine 2017;12:4241-56. [PMID: 28652730 DOI: 10.2147/IJN.S129748] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 4.6] [Reference Citation Analysis]
132 Lian H, Du Y, Chen X, Duan L, Gao G, Xiao C, Zhuang X. Core cross-linked poly(ethylene glycol)-graft-Dextran nanoparticles for reduction and pH dual responsive intracellular drug delivery. Journal of Colloid and Interface Science 2017;496:201-10. [DOI: 10.1016/j.jcis.2017.02.032] [Cited by in Crossref: 32] [Cited by in F6Publishing: 27] [Article Influence: 6.4] [Reference Citation Analysis]
133 Hou Y, Liu Y, Sun S, Liang J. Dual pH-Sensitive DOX-Conjugated Cyclodextrin-Core Star Nano-Copolymer Prodrugs. Macromol Chem Phys 2017;218:1700068. [DOI: 10.1002/macp.201700068] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
134 Scialabba C, Puleio R, Peddis D, Varvaro G, Calandra P, Cassata G, Cicero L, Licciardi M, Giammona G. Folate targeted coated SPIONs as efficient tool for MRI. Nano Res 2017;10:3212-27. [DOI: 10.1007/s12274-017-1540-4] [Cited by in Crossref: 34] [Cited by in F6Publishing: 15] [Article Influence: 6.8] [Reference Citation Analysis]
135 Yuan C, Hong B, Chang Y, Mao J, Li Y, Xu Y, Zeng B, Luo W, Gérard JF, Dai L. Cross-Linking Induced Self-Organization of Polymers into Degradable Assemblies. ACS Appl Mater Interfaces 2017;9:14700-8. [PMID: 28388087 DOI: 10.1021/acsami.7b02252] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
136 Dai Y, Zhang X. Stable and biocompatible genipin-inducing interlayer-crosslinked micelles for sustained drug release. J Nanopart Res 2017;19. [DOI: 10.1007/s11051-017-3866-y] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
137 Xu J, Yi X, Zhao D, Yuan G, Zhuo R, Li F. A three-drug co-delivery system based on reduction-sensitive polymeric prodrug to effectively reverse multi-drug resistance. Chem Res Chin Univ 2017;33:484-91. [DOI: 10.1007/s40242-017-6450-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
138 Li R, Xie Y. Nanodrug delivery systems for targeting the endogenous tumor microenvironment and simultaneously overcoming multidrug resistance properties. Journal of Controlled Release 2017;251:49-67. [DOI: 10.1016/j.jconrel.2017.02.020] [Cited by in Crossref: 64] [Cited by in F6Publishing: 57] [Article Influence: 12.8] [Reference Citation Analysis]
139 Xiong D, Yao N, Gu H, Wang J, Zhang L. Stimuli-responsive shell cross-linked micelles from amphiphilic four-arm star copolymers as potential nanocarriers for “pH/redox-triggered” anticancer drug release. Polymer 2017;114:161-72. [DOI: 10.1016/j.polymer.2017.03.002] [Cited by in Crossref: 41] [Cited by in F6Publishing: 28] [Article Influence: 8.2] [Reference Citation Analysis]
140 Wei W, Zhang X, Chen X, Zhou M, Xu R, Zhang X. Smart surface coating of drug nanoparticles with cross-linkable polyethylene glycol for bio-responsive and highly efficient drug delivery. Nanoscale 2016;8:8118-25. [PMID: 27025546 DOI: 10.1039/c5nr09167e] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 4.6] [Reference Citation Analysis]
141 Gevorgyan S, Rossi E, Cappelluti MA, Tocchio A, Martello F, Gerges I, Lenardi C, Milani P, Argentiere S. Photocrosslinked poly(amidoamine) nanoparticles for central nervous system targeting. Colloids Surf B Biointerfaces 2017;151:197-205. [PMID: 28013163 DOI: 10.1016/j.colsurfb.2016.12.008] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
142 Zhang Y, Ren T, Gou J, Zhang L, Tao X, Tian B, Tian P, Yu D, Song J, Liu X, Chao Y, Xiao W, Tang X. Strategies for improving the payload of small molecular drugs in polymeric micelles. J Control Release 2017;261:352-66. [PMID: 28163211 DOI: 10.1016/j.jconrel.2017.01.047] [Cited by in Crossref: 53] [Cited by in F6Publishing: 46] [Article Influence: 10.6] [Reference Citation Analysis]
143 Liu M, Du H, Zhang W, Zhai G. Internal stimuli-responsive nanocarriers for drug delivery: Design strategies and applications. Materials Science and Engineering: C 2017;71:1267-80. [DOI: 10.1016/j.msec.2016.11.030] [Cited by in Crossref: 96] [Cited by in F6Publishing: 101] [Article Influence: 19.2] [Reference Citation Analysis]
144 Yi X, Zhao D, Zhang Q, Xu J, Yuan G, Zhuo R, Li F. Preparation of multilocation reduction-sensitive core crosslinked folate-PEG-coated micelles for rapid release of doxorubicin and tariquidar to overcome drug resistance. Nanotechnology 2017;28:085603. [DOI: 10.1088/1361-6528/aa5715] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
145 Rolph MS, Inam M, O'reilly RK. The application of blocked isocyanate chemistry in the development of tunable thermoresponsive crosslinkers. Polym Chem 2017;8:7229-39. [DOI: 10.1039/c7py01706e] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
146 Blanco-fernandez B, Concheiro A, Makwana H, Fernandez-trillo F, Alexander C, Alvarez-lorenzo C. Dually sensitive dextran-based micelles for methotrexate delivery. RSC Adv 2017;7:14448-60. [DOI: 10.1039/c7ra00696a] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 3.6] [Reference Citation Analysis]
147 Zhang Z, Wang Y, Xu S, Yu Y, Hussain A, Shen Y, Guo S. Photothermal gold nanocages filled with temperature sensitive tetradecanol and encapsulated with glutathione responsive polycurcumin for controlled DOX delivery to maximize anti-MDR tumor effects. J Mater Chem B 2017;5:5464-72. [DOI: 10.1039/c7tb01253e] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 3.6] [Reference Citation Analysis]
148 Park CW, Yang H, Woo M, Lee KS, Kim J. Completely disintegrable redox-responsive poly(amino acid) nanogels for intracellular drug delivery. Journal of Industrial and Engineering Chemistry 2017;45:182-8. [DOI: 10.1016/j.jiec.2016.09.021] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 3.4] [Reference Citation Analysis]
149 Sun Y, Du X, He J, Hu J, Zhang M, Ni P. Dual-responsive core-crosslinked polyphosphoester-based nanoparticles for pH/redox-triggered anticancer drug delivery. J Mater Chem B 2017;5:3771-82. [DOI: 10.1039/c7tb00440k] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 4.8] [Reference Citation Analysis]
150 Wang Y, Liu Y, Liang J, Zou M. A cyclodextrin-core star copolymer with Y-shaped ABC miktoarms and its unimolecular micelles. RSC Adv 2017;7:11691-700. [DOI: 10.1039/c6ra28456f] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
151 Gao Y, Dong C. Reduction- and thermo-sensitive core-cross-linked polypeptide hybrid micelles for triggered and intracellular drug release. Polym Chem 2017;8:1223-32. [DOI: 10.1039/c6py01929c] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 4.6] [Reference Citation Analysis]
152 Saravanakumar G, Kim J, Kim WJ. Reactive-Oxygen-Species-Responsive Drug Delivery Systems: Promises and Challenges. Adv Sci (Weinh) 2017;4:1600124. [PMID: 28105390 DOI: 10.1002/advs.201600124] [Cited by in Crossref: 316] [Cited by in F6Publishing: 304] [Article Influence: 63.2] [Reference Citation Analysis]
153 Hegazy M, Zhou P, Wu G, Wang L, Rahoui N, Taloub N, Huang X, Huang Y. Construction of polymer coated core–shell magnetic mesoporous silica nanoparticles with triple responsive drug delivery. Polym Chem 2017;8:5852-64. [DOI: 10.1039/c7py01179b] [Cited by in Crossref: 42] [Cited by in F6Publishing: 39] [Article Influence: 8.4] [Reference Citation Analysis]
154 Jiang K, Chi T, Li T, Zheng G, Fan L, Liu Y, Chen X, Chen S, Jia L, Shao J. A smart pH-responsive nano-carrier as a drug delivery system for the targeted delivery of ursolic acid: suppresses cancer growth and metastasis by modulating P53/MMP-9/PTEN/CD44 mediated multiple signaling pathways. Nanoscale 2017;9:9428-39. [DOI: 10.1039/c7nr01677h] [Cited by in Crossref: 55] [Cited by in F6Publishing: 57] [Article Influence: 11.0] [Reference Citation Analysis]
155 Liu C, Guan Y, Su Y, Zhao L, Meng F, Yao Y, Luo J. Surface charge switchable and core cross-linked polyurethane micelles as a reduction-triggered drug delivery system for cancer therapy. RSC Adv 2017;7:11021-9. [DOI: 10.1039/c7ra00346c] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
156 Dai Y, Sun H, Pal S, Zhang Y, Park S, Kabb CP, Wei WD, Sumerlin BS. Near-IR-induced dissociation of thermally-sensitive star polymers. Chem Sci 2017;8:1815-21. [PMID: 28451303 DOI: 10.1039/c6sc04650a] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 4.2] [Reference Citation Analysis]
157 Chen C, Huang S. Preparation of Reductant–Responsive N -Maleoyl-Functional Chitosan/Poly(vinyl alcohol) Nanofibers for Drug Delivery. Mol Pharmaceutics 2016;13:4152-67. [DOI: 10.1021/acs.molpharmaceut.6b00758] [Cited by in Crossref: 32] [Cited by in F6Publishing: 24] [Article Influence: 5.3] [Reference Citation Analysis]
158 Li Y, Zhang H, Zhai GX. Intelligent polymeric micelles: development and application as drug delivery for docetaxel. J Drug Target 2017;25:285-95. [PMID: 27701892 DOI: 10.1080/1061186X.2016.1245309] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
159 Ai X, Mu J, Xing B. Recent Advances of Light-Mediated Theranostics. Theranostics 2016;6:2439-57. [PMID: 27877246 DOI: 10.7150/thno.16088] [Cited by in Crossref: 123] [Cited by in F6Publishing: 121] [Article Influence: 20.5] [Reference Citation Analysis]
160 Liu Q, Zhan C, Kohane DS. Phototriggered Drug Delivery Using Inorganic Nanomaterials. Bioconjug Chem 2017;28:98-104. [PMID: 27661196 DOI: 10.1021/acs.bioconjchem.6b00448] [Cited by in Crossref: 42] [Cited by in F6Publishing: 37] [Article Influence: 7.0] [Reference Citation Analysis]
161 Deepagan V, Kwon S, You DG, Nguyen VQ, Um W, Ko H, Lee H, Jo D, Kang YM, Park JH. In situ diselenide-crosslinked polymeric micelles for ROS-mediated anticancer drug delivery. Biomaterials 2016;103:56-66. [DOI: 10.1016/j.biomaterials.2016.06.044] [Cited by in Crossref: 92] [Cited by in F6Publishing: 80] [Article Influence: 15.3] [Reference Citation Analysis]
162 Chen CK, Lin WJ, Hsia Y, Lo LW. Synthesis of Polylactide-Based Core-Shell Interface Cross-Linked Micelles for Anticancer Drug Delivery. Macromol Biosci 2017;17. [PMID: 27678386 DOI: 10.1002/mabi.201600191] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 1.5] [Reference Citation Analysis]
163 Yu L, Xie M, Li Z, Lin C, Zheng Z, Zhou L, Su Y, Wang X. Facile construction of near-monodisperse and dual responsive polycarbonate mixed micelles with the ability of pH-induced charge reversal for intracellular delivery of antitumor drugs. J Mater Chem B 2016;4:6081-93. [PMID: 32263496 DOI: 10.1039/c6tb01865c] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 2.5] [Reference Citation Analysis]
164 Wang X, Zhou X, Wang J, Cao Z, Zhang L, Tang R. Acid-Labile Copolymer Micelles Cross-Linked by a Twin Ortho Ester Cross-Linking Agent: Synthesis, Characterization, and Evaluation. Macromol Chem Phys 2016;217:2182-90. [DOI: 10.1002/macp.201600234] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
165 Wang X, Yang Y, Zhuang Y, Gao P, Yang F, Shen H, Guo H, Wu D. Fabrication of pH-Responsive Nanoparticles with an AIE Feature for Imaging Intracellular Drug Delivery. Biomacromolecules 2016;17:2920-9. [DOI: 10.1021/acs.biomac.6b00744] [Cited by in Crossref: 85] [Cited by in F6Publishing: 74] [Article Influence: 14.2] [Reference Citation Analysis]
166 Wu Y, Zhou D, Zhang Q, Xie Z, Chen X, Jing X, Huang Y. Dual-Sensitive Charge-Conversional Polymeric Prodrug for Efficient Codelivery of Demethylcantharidin and Doxorubicin. Biomacromolecules 2016;17:2650-61. [DOI: 10.1021/acs.biomac.6b00705] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 3.3] [Reference Citation Analysis]
167 Tian K, Jia X, Zhao X, Liu P. pH/Reductant Dual-Responsive Core-Cross-Linked Micelles via Facile in Situ ATRP for Tumor-Targeted Delivery of Anticancer Drug with Enhanced Anticancer Efficiency. Mol Pharmaceutics 2016;13:2683-90. [DOI: 10.1021/acs.molpharmaceut.6b00241] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
168 Pandit A, Zeugolis DI. Structured substrates and delivery vehicles: trending now in biomedicine. Nanomedicine (Lond) 2016;11:1489-93. [PMID: 27353654 DOI: 10.2217/nnm.16.47] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
169 Draffehn S, Eichhorst J, Wiesner B, Kumke MU. Insight into the Modification of Polymeric Micellar and Liposomal Nanocarriers by Fluorescein-Labeled Lipids and Uptake-Mediating Lipopeptides. Langmuir 2016;32:6928-39. [DOI: 10.1021/acs.langmuir.6b01487] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
170 Yu L, Lin C, Zheng Z, Li Z, Wang X. Self-assembly of pH-responsive biodegradable mixed micelles based on anionic and cationic polycarbonates for doxorubicin delivery. Colloids Surf B Biointerfaces 2016;145:392-400. [PMID: 27232302 DOI: 10.1016/j.colsurfb.2016.05.029] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 3.7] [Reference Citation Analysis]
171 Cao Z, Wang G. Multi-Stimuli-Responsive Polymer Materials: Particles, Films, and Bulk Gels. The Chemical Record 2016;16:1398-435. [DOI: 10.1002/tcr.201500281] [Cited by in Crossref: 98] [Cited by in F6Publishing: 108] [Article Influence: 16.3] [Reference Citation Analysis]
172 Zhou F, Zheng B, Zhang Y, Wu Y, Wang H, Chang J. Construction of near-infrared light-triggered reactive oxygen species-sensitive (UCN/SiO2-RB + DOX)@PPADT nanoparticles for simultaneous chemotherapy and photodynamic therapy. Nanotechnology 2016;27:235601. [PMID: 27139178 DOI: 10.1088/0957-4484/27/23/235601] [Cited by in Crossref: 8] [Cited by in F6Publishing: 12] [Article Influence: 1.3] [Reference Citation Analysis]
173 Chen L, Wu L, Liu F, Qi X, Ge Y, Shen S. Azo-functionalized Fe3O4 nanoparticles: a near-infrared light triggered drug delivery system for combined therapy of cancer with low toxicity. J Mater Chem B 2016;4:3660-9. [PMID: 32263305 DOI: 10.1039/c5tb02704g] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 4.3] [Reference Citation Analysis]
174 Cao XT, Kim YH, Park JM, Lim KT. One-pot syntheses of dual-responsive core cross-linked polymeric micelles and covalently entrapped drug by click chemistry. European Polymer Journal 2016;78:264-73. [DOI: 10.1016/j.eurpolymj.2016.03.039] [Cited by in Crossref: 24] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
175 Jeong K, Kang CS, Kim Y, Lee Y, Kwon IC, Kim S. Development of highly efficient nanocarrier-mediated delivery approaches for cancer therapy. Cancer Letters 2016;374:31-43. [DOI: 10.1016/j.canlet.2016.01.050] [Cited by in Crossref: 36] [Cited by in F6Publishing: 32] [Article Influence: 6.0] [Reference Citation Analysis]
176 Zhang Y, Zhou J, Yang C, Wang W, Chu L, Huang F, Liu Q, Deng L, Kong D, Liu J, Liu J. Folic acid-targeted disulfide-based cross-linking micelle for enhanced drug encapsulation stability and site-specific drug delivery against tumors. Int J Nanomedicine 2016;11:1119-30. [PMID: 27051287 DOI: 10.2147/IJN.S101649] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 0.8] [Reference Citation Analysis]
177 Doppalapudi S, Jain A, Domb AJ, Khan W. Biodegradable polymers for targeted delivery of anti-cancer drugs. Expert Opinion on Drug Delivery 2016;13:891-909. [DOI: 10.1517/17425247.2016.1156671] [Cited by in Crossref: 50] [Cited by in F6Publishing: 50] [Article Influence: 8.3] [Reference Citation Analysis]
178 Sigg SJ, Postupalenko V, Duskey JT, Palivan CG, Meier W. Stimuli-Responsive Codelivery of Oligonucleotides and Drugs by Self-Assembled Peptide Nanoparticles. Biomacromolecules 2016;17:935-45. [PMID: 26871486 DOI: 10.1021/acs.biomac.5b01614] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 4.7] [Reference Citation Analysis]
179 Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chem Rev 2016;116:2602-63. [PMID: 26854975 DOI: 10.1021/acs.chemrev.5b00346] [Cited by in Crossref: 1136] [Cited by in F6Publishing: 919] [Article Influence: 189.3] [Reference Citation Analysis]
180 Qu Q, Wang Y, Zhang L, Zhang X, Zhou S. A Nanoplatform with Precise Control over Release of Cargo for Enhanced Cancer Therapy. Small 2016;12:1378-90. [PMID: 26763197 DOI: 10.1002/smll.201503292] [Cited by in Crossref: 52] [Cited by in F6Publishing: 57] [Article Influence: 8.7] [Reference Citation Analysis]
181 Yadav S, Deka SR, Verma G, Sharma AK, Kumar P. Photoresponsive amphiphilic azobenzene–PEG self-assembles to form supramolecular nanostructures for drug delivery applications. RSC Adv 2016;6:8103-17. [DOI: 10.1039/c5ra26658k] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 2.8] [Reference Citation Analysis]
182 Yin S, Chang L, Li T, Wang G, Gu X, Li J. Construction of novel pH-sensitive hybrid micelles for enhanced extracellular stability and rapid intracellular drug release. RSC Adv 2016;6:105957-68. [DOI: 10.1039/c6ra23050d] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
183 Li D, Bu Y, Zhang L, Wang X, Yang Y, Zhuang Y, Yang F, Shen H, Wu D. Facile Construction of pH- and Redox-Responsive Micelles from a Biodegradable Poly(β-hydroxyl amine) for Drug Delivery. Biomacromolecules 2016;17:291-300. [PMID: 26682612 DOI: 10.1021/acs.biomac.5b01394] [Cited by in Crossref: 68] [Cited by in F6Publishing: 60] [Article Influence: 9.7] [Reference Citation Analysis]
184 Hu P, Chen Y, Li JJ, Liu Y. Construction, Enzyme Response, and Substrate Capacity of a Hyaluronan-Cyclodextrin Supramolecular Assembly. Chem Asian J 2016;11:505-11. [PMID: 26556213 DOI: 10.1002/asia.201501029] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 1.9] [Reference Citation Analysis]
185 Soni KS, Desale SS, Bronich TK. Nanogels: An overview of properties, biomedical applications and obstacles to clinical translation. J Control Release 2016;240:109-26. [PMID: 26571000 DOI: 10.1016/j.jconrel.2015.11.009] [Cited by in Crossref: 236] [Cited by in F6Publishing: 182] [Article Influence: 33.7] [Reference Citation Analysis]
186 Luo X, Chen M, Zhang Y, Chen Z, Li X. Pharmacokinetics and antitumor efficacy of micelles assembled from multiarmed amphiphilic copolymers with drug conjugates in comparison with drug-encapsulated micelles. Eur J Pharm Biopharm 2016;98:9-19. [PMID: 26523356 DOI: 10.1016/j.ejpb.2015.10.014] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.7] [Reference Citation Analysis]
187 Chen F, Zhang J, Wang L, Wang Y, Chen M. Tumor pH(e)-triggered charge-reversal and redox-responsive nanoparticles for docetaxel delivery in hepatocellular carcinoma treatment. Nanoscale 2015;7:15763-79. [PMID: 26355843 DOI: 10.1039/c5nr04612b] [Cited by in Crossref: 48] [Cited by in F6Publishing: 56] [Article Influence: 6.9] [Reference Citation Analysis]
188 Wang CE, Stayton PS, Pun SH, Convertine AJ. Polymer nanostructures synthesized by controlled living polymerization for tumor-targeted drug delivery. J Control Release 2015;219:345-54. [PMID: 26342661 DOI: 10.1016/j.jconrel.2015.08.054] [Cited by in Crossref: 36] [Cited by in F6Publishing: 33] [Article Influence: 5.1] [Reference Citation Analysis]
189 Papademetriou IT, Porter T. Promising approaches to circumvent the blood-brain barrier: progress, pitfalls and clinical prospects in brain cancer. Ther Deliv 2015;6:989-1016. [PMID: 26488496 DOI: 10.4155/tde.15.48] [Cited by in Crossref: 31] [Cited by in F6Publishing: 24] [Article Influence: 4.4] [Reference Citation Analysis]
190 Zhang Y, Ang CY, Li M, Tan SY, Qu Q, Luo Z, Zhao Y. Polymer-Coated Hollow Mesoporous Silica Nanoparticles for Triple-Responsive Drug Delivery. ACS Appl Mater Interfaces 2015;7:18179-87. [DOI: 10.1021/acsami.5b05893] [Cited by in Crossref: 157] [Cited by in F6Publishing: 126] [Article Influence: 22.4] [Reference Citation Analysis]
191 Xiao K, Li YP, Wang C, Ahmad S, Vu M, Kuma K, Cheng YQ, Lam KS. Disulfide cross-linked micelles of novel HDAC inhibitor thailandepsin A for the treatment of breast cancer. Biomaterials 2015;67:183-93. [PMID: 26218744 DOI: 10.1016/j.biomaterials.2015.07.033] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 3.4] [Reference Citation Analysis]
192 Topete A, Barbosa S, Taboada P. Intelligent micellar polymeric nanocarriers for therapeutics and diagnosis. J Appl Polym Sci 2015;132:n/a-n/a. [DOI: 10.1002/app.42650] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
193 Nguyen CT, Tran TH, Amiji M, Lu X, Kasi RM. Redox-sensitive nanoparticles from amphiphilic cholesterol-based block copolymers for enhanced tumor intracellular release of doxorubicin. Nanomedicine 2015;11:2071-82. [PMID: 26169153 DOI: 10.1016/j.nano.2015.06.011] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 3.0] [Reference Citation Analysis]
194 Liu L, Liu P. Synthesis strategies for disulfide bond-containing polymer-based drug delivery system for reduction-responsive controlled release. Front Mater Sci 2015;9:211-26. [DOI: 10.1007/s11706-015-0283-y] [Cited by in Crossref: 38] [Cited by in F6Publishing: 36] [Article Influence: 5.4] [Reference Citation Analysis]
195 Colombo C, Galletti L, Lepri M, Caron I, Magagnin L, Veglianese P, Rossi F, Moscatelli D. Multidrug encapsulation within self-assembled 3D structures formed by biodegradable nanoparticles. European Polymer Journal 2015;68:216-25. [DOI: 10.1016/j.eurpolymj.2015.04.037] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
196 Chen W, Meng F, Cheng R, Deng C, Feijen J, Zhong Z. Facile construction of dual-bioresponsive biodegradable micelles with superior extracellular stability and activated intracellular drug release. J Control Release 2015;210:125-33. [PMID: 25987525 DOI: 10.1016/j.jconrel.2015.05.273] [Cited by in Crossref: 71] [Cited by in F6Publishing: 74] [Article Influence: 10.1] [Reference Citation Analysis]
197 Shi Y, van Nostrum CF, Hennink WE. Interfacially Hydrazone Cross-linked Thermosensitive Polymeric Micelles for Acid-Triggered Release of Paclitaxel. ACS Biomater Sci Eng 2015;1:393-404. [DOI: 10.1021/acsbiomaterials.5b00006] [Cited by in Crossref: 33] [Cited by in F6Publishing: 23] [Article Influence: 4.7] [Reference Citation Analysis]
198 Hu YW, Du YZ, Liu N, Liu X, Meng TT, Cheng BL, He JB, You J, Yuan H, Hu FQ. Selective redox-responsive drug release in tumor cells mediated by chitosan based glycolipid-like nanocarrier. J Control Release 2015;206:91-100. [PMID: 25796347 DOI: 10.1016/j.jconrel.2015.03.018] [Cited by in Crossref: 144] [Cited by in F6Publishing: 154] [Article Influence: 20.6] [Reference Citation Analysis]
199 Li Q, Liu W, Dai J, Zhang C. Synthesis of polysaccharide-block-polypeptide copolymer for potential co-delivery of drug and plasmid DNA. Macromol Biosci 2015;15:756-64. [PMID: 25761094 DOI: 10.1002/mabi.201400454] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.7] [Reference Citation Analysis]
200 Guo Y, Zhang Y, Li J, Zhang Y, Lu Y, Jiang X, He X, Ma H, An S, Jiang C. Cell microenvironment-controlled antitumor drug releasing-nanomicelles for GLUT1-targeting hepatocellular carcinoma therapy. ACS Appl Mater Interfaces 2015;7:5444-53. [PMID: 25686400 DOI: 10.1021/am5091462] [Cited by in Crossref: 41] [Cited by in F6Publishing: 43] [Article Influence: 5.9] [Reference Citation Analysis]
201 Cao Y, Gao M, Chen C, Fan A, Zhang J, Kong D, Wang Z, Peer D, Zhao Y. Triggered-release polymeric conjugate micelles for on-demand intracellular drug delivery. Nanotechnology 2015;26:115101. [DOI: 10.1088/0957-4484/26/11/115101] [Cited by in Crossref: 41] [Cited by in F6Publishing: 42] [Article Influence: 5.9] [Reference Citation Analysis]
202 Li Y, Shen Y, Wang S, Zhu D, Du B, Jiang J. Disulfide cross-linked cholic-acid modified PEG–poly(amino acid) block copolymer micelles for controlled drug delivery of doxorubicin. RSC Adv 2015;5:30380-8. [DOI: 10.1039/c5ra02553b] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 2.7] [Reference Citation Analysis]
203 Li Y, Wang S, Zhu D, Shen Y, Du B, Liu X, Zheng Y. Reversibly cross-linked poly(ethylene glycol)–poly(amino acid)s copolymer micelles: a promising approach to overcome the extracellular stability versus intracellular drug release challenge. RSC Adv 2015;5:20025-34. [DOI: 10.1039/c4ra12255k] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
204 Liu J, Deng H, Liu Q, Chu L, Zhang Y, Yang C, Zhao X, Huang P, Deng L, Dong A, Liu J. Integrin-targeted pH-responsive micelles for enhanced efficiency of anticancer treatment in vitro and in vivo. Nanoscale 2015;7:4451-60. [DOI: 10.1039/c4nr07435a] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 3.7] [Reference Citation Analysis]
205 Li J, Guo S, Wang M, Ye L, Yao F. Poly(lactic acid)/poly(ethylene glycol) block copolymer based shell or core cross-linked micelles for controlled release of hydrophobic drug. RSC Adv 2015;5:19484-92. [DOI: 10.1039/c4ra14376k] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
206 Battogtokh G, Ko YT. Active-targeted pH-responsive albumin–photosensitizer conjugate nanoparticles as theranostic agents. J Mater Chem B 2015;3:9349-59. [DOI: 10.1039/c5tb01719j] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 4.6] [Reference Citation Analysis]
207 Gao P, Wang Z, Yang L, Ma T, Yang L, Guo Q, Huang S. A glucose-responsive pH-switchable bioelectrocatalytic sensor based on phenylboronic acid-diol specificity. Electrochimica Acta 2015;151:370-7. [DOI: 10.1016/j.electacta.2014.11.054] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
208 Cai M, Ye M, Shang X, Sun H, Liu M, Sun H, Ma Z, Zhu H. cRGD-functionalized redox-sensitive micelles as potential doxorubicin delivery carriers for α v β 3 integrin over expressing tumors. RSC Adv 2015;5:92292-302. [DOI: 10.1039/c5ra16137a] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
209 Zhang Y, Chen M, Luo X, Zhang H, Liu C, Li H, Li X. Tuning multiple arms for camptothecin and folate conjugations on star-shaped copolymers to enhance glutathione-mediated intracellular drug delivery. Polym Chem 2015;6:2192-203. [DOI: 10.1039/c4py01607f] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 2.7] [Reference Citation Analysis]
210 Le Cerf D. [Stimuli-sensitive polymer systems]. Ann Pharm Fr 2014;72:389-99. [PMID: 25438649 DOI: 10.1016/j.pharma.2014.04.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
211 Lv Y, Yang B, Li Y, Wu Y, He F, Zhuo R. Crosslinked triblock copolymeric micelle for redox-responsive drug delivery. Colloids and Surfaces B: Biointerfaces 2014;122:223-30. [DOI: 10.1016/j.colsurfb.2014.06.068] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 2.8] [Reference Citation Analysis]
212 Li Q, Lv S, Tang Z, Liu M, Zhang D, Yang Y, Chen X. A co-delivery system based on paclitaxel grafted mPEG-b-PLG loaded with doxorubicin: Preparation, in vitro and in vivo evaluation. International Journal of Pharmaceutics 2014;471:412-20. [DOI: 10.1016/j.ijpharm.2014.05.065] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 3.9] [Reference Citation Analysis]