BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang XQ, Xu X, Bertrand N, Pridgen E, Swami A, Farokhzad OC. Interactions of nanomaterials and biological systems: Implications to personalized nanomedicine. Adv Drug Deliv Rev 2012;64:1363-84. [PMID: 22917779 DOI: 10.1016/j.addr.2012.08.005] [Cited by in Crossref: 271] [Cited by in F6Publishing: 214] [Article Influence: 27.1] [Reference Citation Analysis]
Number Citing Articles
1 Wang D, Gu W, Chen W, Zhou J, Yu L, Kook Kim B, Zhang X, Seung Kim J. Advanced nanovaccines based on engineering nanomaterials for accurately enhanced cancer immunotherapy. Coordination Chemistry Reviews 2022;472:214788. [DOI: 10.1016/j.ccr.2022.214788] [Reference Citation Analysis]
2 Ali AA, Al-Othman A, Al-Sayah M. Multifunctional stimuli-responsive hybrid nanogels for cancer therapy: Current status and challenges. J Control Release 2022:S0168-3659(22)00628-9. [PMID: 36170926 DOI: 10.1016/j.jconrel.2022.09.033] [Reference Citation Analysis]
3 Gierlicka I, Rattan SIS, Wnuk M. Perspectives on using bacteriophages in biogerontology research and interventions. Chem Biol Interact 2022;366:110098. [PMID: 35995258 DOI: 10.1016/j.cbi.2022.110098] [Reference Citation Analysis]
4 Gurnani P, Sanchez‐cano C, Xandri‐monje H, Zhang J, Ellacott SH, Mansfield EDH, Hartlieb M, Dallmann R, Perrier S. Probing the Effect of Rigidity on the Cellular Uptake of Core‐Shell Nanoparticles: Stiffness Effects are Size Dependent. Small. [DOI: 10.1002/smll.202203070] [Reference Citation Analysis]
5 Panchal K, Katke S, Dash SK, Gaur A, Shinde A, Saha N, Mehra NK, Chaurasiya A. An expanding horizon of complex injectable products: development and regulatory considerations. Drug Deliv Transl Res 2022. [PMID: 35963928 DOI: 10.1007/s13346-022-01223-5] [Reference Citation Analysis]
6 Elfadil D, Elkhatib WF, El-Sayyad GS. Promising advances in nanobiotic-based formulations for drug specific targeting against multidrug-resistant microbes and biofilm-associated infections. Microb Pathog 2022;170:105721. [PMID: 35970290 DOI: 10.1016/j.micpath.2022.105721] [Reference Citation Analysis]
7 Maji M, Kivale P, Ghosh M. A novel therapy to combat non-small cell lung carcinoma (A549) using platinum (IV) and barium titanate conjugate. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2022.103617] [Reference Citation Analysis]
8 Lin X, Li N, Tang H. Recent Advances in Nanomaterials for Diagnosis, Treatments, and Neurorestoration in Ischemic Stroke. Front Cell Neurosci 2022;16:885190. [DOI: 10.3389/fncel.2022.885190] [Reference Citation Analysis]
9 Wang Y, Yang Y, Yang L, Lin Y, Tian Y, Ni Q, Wang S, Ju H, Guo J, Lu G. Gold Nanostar@Polyaniline Theranostic Agent with High Photothermal Conversion Efficiency for Photoacoustic Imaging-Guided Anticancer Phototherapy at a Low Dosage. ACS Appl Mater Interfaces 2022. [PMID: 35726862 DOI: 10.1021/acsami.2c05679] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
10 Popescu MT, Tsitsilianis C. Gold/Pentablock Terpolymer Hybrid Multifunctional Nanocarriers for Controlled Delivery of Tamoxifen: Effect of Nanostructure on Release Kinetics. Molecules 2022;27:3764. [PMID: 35744890 DOI: 10.3390/molecules27123764] [Reference Citation Analysis]
11 Akbari J, Saeedi M, Ahmadi F, Hashemi SMH, Babaei A, Yaddollahi S, Rostamkalaei SS, Asare-addo K, Nokhodchi A. Solid lipid nanoparticles and nanostructured lipid carriers: A review of the methods of manufacture and routes of administration. Pharmaceutical Development and Technology. [DOI: 10.1080/10837450.2022.2084554] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
12 Yang L, Jia P, Song S, Dong Y, Shen R, He F, Gai S. On-Demand Triggered Chemodynamic Therapy by NIR-II Light on Oxidation-Prevented Bismuth Nanodots. ACS Appl Mater Interfaces 2022;14:21787-99. [PMID: 35506665 DOI: 10.1021/acsami.1c22631] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Pena RV, Machado RC, Caixeta MB, Araújo PS, de Oliveira EC, da Silva SM, Rocha TL. Lauric acid bilayer-functionalized iron oxide nanoparticles disrupt early development of freshwater snail Biomphalaria glabrata (Say, 1818). Acta Trop 2022;229:106362. [PMID: 35150640 DOI: 10.1016/j.actatropica.2022.106362] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
14 Dong S, Ma S, Chen H, Tang Z, Song W, Deng M. Nucleobase-crosslinked poly(2-oxazoline) nanoparticles as paclitaxel carriers with enhanced stability and ultra-high drug loading capacity for breast cancer therapy. Asian Journal of Pharmaceutical Sciences 2022. [DOI: 10.1016/j.ajps.2022.04.006] [Reference Citation Analysis]
15 Watchorn J, Clasky AJ, Prakash G, Johnston IAE, Chen PZ, Gu FX. Untangling Mucosal Drug Delivery: Engineering, Designing, and Testing Nanoparticles to Overcome the Mucus Barrier. ACS Biomater Sci Eng 2022;8:1396-426. [PMID: 35294187 DOI: 10.1021/acsbiomaterials.2c00047] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
16 Kara G, Calin GA, Ozpolat B. RNAi-based therapeutics and tumor targeted delivery in cancer. Adv Drug Deliv Rev 2022;182:114113. [PMID: 35063535 DOI: 10.1016/j.addr.2022.114113] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 13.0] [Reference Citation Analysis]
17 Khan S, Mansoor S, Rafi Z, Kumari B, Shoaib A, Saeed M, Alshehri S, Ghoneim MM, Rahamathulla M, Hani U, Shakeel F. A review on nanotechnology: Properties, applications, and mechanistic insights of cellular uptake mechanisms. Journal of Molecular Liquids 2022;348:118008. [DOI: 10.1016/j.molliq.2021.118008] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
18 Dubey P, Sertorio M, Takiar V. Therapeutic Advancements in Metal and Metal Oxide Nanoparticle-Based Radiosensitization for Head and Neck Cancer Therapy. Cancers (Basel) 2022;14:514. [PMID: 35158781 DOI: 10.3390/cancers14030514] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
19 Shang S, Liu Y, Liu M, Bai Y, Wang X, Wu B, Chen J, Dong J, Liu Y. Studying the adsorption mechanisms of nanoplastics on covalent organic frameworks via molecular dynamics simulations. J Hazard Mater 2022;421:126796. [PMID: 34388925 DOI: 10.1016/j.jhazmat.2021.126796] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
20 Habra K, Morris RH, Mcardle SEB, Cave GWV. Controlled release of carnosine from poly(lactic- co -glycolic acid) beads using nanomechanical magnetic trigger towards the treatment of glioblastoma. Nanoscale Adv . [DOI: 10.1039/d2na00032f] [Reference Citation Analysis]
21 Re DB, Yan B, Calderón-Garcidueñas L, Andrew AS, Tischbein M, Stommel EW. A perspective on persistent toxicants in veterans and amyotrophic lateral sclerosis: identifying exposures determining higher ALS risk. J Neurol 2022. [PMID: 34973105 DOI: 10.1007/s00415-021-10928-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
22 Saravanakumar K, Anbazhagan S, Pujani Usliyanage J, Vishven Naveen K, Wijesinghe U, Xiaowen H, Vishnu Priya V, Thiripuranathar G, Wang MH. A comprehensive review on immuno-nanomedicine for breast cancer therapy: Technical challenges and troubleshooting measures. Int Immunopharmacol 2021;103:108433. [PMID: 34922248 DOI: 10.1016/j.intimp.2021.108433] [Reference Citation Analysis]
23 Zhang J, Hu K, Di L, Wang P, Liu Z, Zhang J, Yue P, Song W, Zhang J, Chen T, Wang Z, Zhang Y, Wang X, Zhan C, Cheng YC, Li X, Li Q, Fan JY, Shen Y, Han JY, Qiao H. Traditional herbal medicine and nanomedicine: Converging disciplines to improve therapeutic efficacy and human health. Adv Drug Deliv Rev 2021;178:113964. [PMID: 34499982 DOI: 10.1016/j.addr.2021.113964] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
24 Nehra M, Uthappa UT, Kumar V, Kumar R, Dixit C, Dilbaghi N, Mishra YK, Kumar S, Kaushik A. Nanobiotechnology-assisted therapies to manage brain cancer in personalized manner. J Control Release 2021;338:224-43. [PMID: 34418523 DOI: 10.1016/j.jconrel.2021.08.027] [Cited by in Crossref: 2] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
25 Summers HD, Gomes CP, Varela-Moreira A, Spencer AP, Gomez-Lazaro M, Pêgo AP, Rees P. Data-Driven Modeling of the Cellular Pharmacokinetics of Degradable Chitosan-Based Nanoparticles. Nanomaterials (Basel) 2021;11:2606. [PMID: 34685047 DOI: 10.3390/nano11102606] [Reference Citation Analysis]
26 Fan R, Chen J, Gao X, Zhang Q. Neurodevelopmental toxicity of alumina nanoparticles to zebrafish larvae: Toxic effects of particle sizes and ions. Food Chem Toxicol 2021;157:112587. [PMID: 34592389 DOI: 10.1016/j.fct.2021.112587] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
27 Song Y, Song W, Lan X, Cai W, Jiang D. Spherical nucleic acids: Organized nucleotide aggregates as versatile nanomedicine. Aggregate. [DOI: 10.1002/agt2.120] [Reference Citation Analysis]
28 Liu G, Zhu M, Zhao X, Nie G. Nanotechnology-empowered vaccine delivery for enhancing CD8+ T cells-mediated cellular immunity. Adv Drug Deliv Rev 2021;176:113889. [PMID: 34364931 DOI: 10.1016/j.addr.2021.113889] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
29 Golovin YI, Golovin DY, Vlasova KY, Veselov MM, Usvaliev AD, Kabanov AV, Klyachko NL. Non-Heating Alternating Magnetic Field Nanomechanical Stimulation of Biomolecule Structures via Magnetic Nanoparticles as the Basis for Future Low-Toxic Biomedical Applications. Nanomaterials (Basel) 2021;11:2255. [PMID: 34578570 DOI: 10.3390/nano11092255] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
30 Umapathi A, Kumawat M, Daima HK. Engineered nanomaterials for biomedical applications and their toxicity: a review. Environ Chem Lett. [DOI: 10.1007/s10311-021-01307-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
31 Shao X, Ding Z, Zhou W, Li Y, Li Z, Cui H, Lin X, Cao G, Cheng B, Sun H, Li M, Liu K, Lu D, Geng S, Shi W, Zhang G, Song Q, Chen L, Wang G, Su W, Cai L, Fang L, Leong DT, Li Y, Yu XF, Li H. Intrinsic bioactivity of black phosphorus nanomaterials on mitotic centrosome destabilization through suppression of PLK1 kinase. Nat Nanotechnol 2021. [PMID: 34354264 DOI: 10.1038/s41565-021-00952-x] [Cited by in F6Publishing: 15] [Reference Citation Analysis]
32 Zhu Z, Zheng Z, Liu J. Comparison of COVID-19 and Lung Cancer via Reactive Oxygen Species Signaling. Front Oncol 2021;11:708263. [PMID: 34277453 DOI: 10.3389/fonc.2021.708263] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
33 Tiwari A, Bhatia P, Randhawa JK. Systematic spectroscopic investigation of structural changes and corona formation of bovine serum albumin over magneto-fluorescent nanoparticles. Dalton Trans 2020;49:12380-9. [PMID: 32845947 DOI: 10.1039/d0dt02414g] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
34 Younis NK, Ghoubaira JA, Bassil EP, Tantawi HN, Eid AH. Metal-based nanoparticles: Promising tools for the management of cardiovascular diseases. Nanomedicine 2021;36:102433. [PMID: 34171467 DOI: 10.1016/j.nano.2021.102433] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
35 Kundu P, Singh D, Singh A, Sahoo SK. Cancer Nanotheranostics: A Nanomedicinal Approach for Cancer Therapy and Diagnosis. Anticancer Agents Med Chem 2020;20:1288-99. [PMID: 31429694 DOI: 10.2174/1871520619666190820145930] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
36 Oh HJ, Kim J, Kim H, Choi N, Chung S. Microfluidic Reconstitution of Tumor Microenvironment for Nanomedical Applications. Adv Healthc Mater 2021;10:e2002122. [PMID: 33576178 DOI: 10.1002/adhm.202002122] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
37 Kusyak N, Kusyak A, Petranovska A, Gorbyk P, Abramov N. Features of adsorption human Ig on the surface of magnetically sensitive nanocomposites. Appl Nanosci 2022;12:679-89. [DOI: 10.1007/s13204-021-01692-z] [Reference Citation Analysis]
38 Annaji M, Poudel I, Boddu SHS, Arnold RD, Tiwari AK, Babu RJ. Resveratrol-loaded nanomedicines for cancer applications. Cancer Rep (Hoboken) 2021;4:e1353. [PMID: 33655717 DOI: 10.1002/cnr2.1353] [Cited by in Crossref: 2] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
39 Yu X, Liu X, Yang K, Chen X, Li W. Pnictogen Semimetal (Sb, Bi)-Based Nanomaterials for Cancer Imaging and Therapy: A Materials Perspective. ACS Nano 2021;15:2038-67. [PMID: 33486944 DOI: 10.1021/acsnano.0c07899] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 12.0] [Reference Citation Analysis]
40 das Neves J, Sverdlov Arzi R, Sosnik A. Molecular and cellular cues governing nanomaterial-mucosae interactions: from nanomedicine to nanotoxicology. Chem Soc Rev 2020;49:5058-100. [PMID: 32538405 DOI: 10.1039/c8cs00948a] [Cited by in Crossref: 10] [Cited by in F6Publishing: 23] [Article Influence: 10.0] [Reference Citation Analysis]
41 Thambiraj S, Vijayalakshmi R, Ravi Shankaran D. An effective strategy for development of docetaxel encapsulated gold nanoformulations for treatment of prostate cancer. Sci Rep 2021;11:2808. [PMID: 33531521 DOI: 10.1038/s41598-020-80529-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
42 Maspes A, Pizzetti F, Rossetti A, Makvandi P, Sitia G, Rossi F. Advances in Bio-Based Polymers for Colorectal CancerTreatment: Hydrogels and Nanoplatforms. Gels 2021;7:6. [PMID: 33440908 DOI: 10.3390/gels7010006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
43 Kumar S, Parekh SH. Molecular Control of Interfacial Fibronectin Structure on Graphene Oxide Steers Cell Fate. ACS Appl Mater Interfaces 2021;13:2346-59. [PMID: 33412842 DOI: 10.1021/acsami.0c21042] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
44 Haque S, Patra CR. Silver Prussian blue analogue nanomedicine for future cancer therapy. Future Oncol 2021;17:119-22. [PMID: 33244991 DOI: 10.2217/fon-2020-0736] [Reference Citation Analysis]
45 Jhawat V, Gulia M, Gupta S, Maddiboyina B, Dutt R. Integration of pharmacogenomics and theranostics with nanotechnology as quality by design (QbD) approach for formulation development of novel dosage forms for effective drug therapy. J Control Release 2020;327:500-11. [PMID: 32858073 DOI: 10.1016/j.jconrel.2020.08.039] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
46 Su Y, Chen L, Yang F, Cheung PCK. Beta-d-glucan-based drug delivery system and its potential application in targeting tumor associated macrophages. Carbohydr Polym 2021;253:117258. [PMID: 33278940 DOI: 10.1016/j.carbpol.2020.117258] [Cited by in Crossref: 5] [Cited by in F6Publishing: 18] [Article Influence: 2.5] [Reference Citation Analysis]
47 Francis A. Biological evaluation of preceramic organosilicon polymers for various healthcare and biomedical engineering applications: A review. J Biomed Mater Res B Appl Biomater 2021;109:744-64. [PMID: 33075186 DOI: 10.1002/jbm.b.34740] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
48 Pereira-silva M, Jarak I, Santos AC, Veiga F, Figueiras A. Micelleplex-based nucleic acid therapeutics: From targeted stimuli-responsiveness to nanotoxicity and regulation. European Journal of Pharmaceutical Sciences 2020;153:105461. [DOI: 10.1016/j.ejps.2020.105461] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
49 Hattab D, Bakhtiar A. Bioengineered siRNA-Based Nanoplatforms Targeting Molecular Signaling Pathways for the Treatment of Triple Negative Breast Cancer: Preclinical and Clinical Advancements. Pharmaceutics 2020;12:E929. [PMID: 33003468 DOI: 10.3390/pharmaceutics12100929] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
50 Dhilip Kumar SS, Houreld NN, Abrahamse H. Selective Laser Efficiency of Green-Synthesized Silver Nanoparticles by Aloe arborescens and Its Wound Healing Activities in Normal Wounded and Diabetic Wounded Fibroblast Cells: In vitro Studies. Int J Nanomedicine 2020;15:6855-70. [PMID: 32982237 DOI: 10.2147/IJN.S257204] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
51 Czerwińska M, Fracasso G, Pruszyński M, Bilewicz A, Kruszewski M, Majkowska-Pilip A, Lankoff A. Design and Evaluation of 223Ra-Labeled and Anti-PSMA Targeted NaA Nanozeolites for Prostate Cancer Therapy-Part I. Materials (Basel) 2020;13:E3875. [PMID: 32887308 DOI: 10.3390/ma13173875] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
52 Lyons JG, Plantz MA, Hsu WK, Hsu EL, Minardi S. Nanostructured Biomaterials for Bone Regeneration. Front Bioeng Biotechnol 2020;8:922. [PMID: 32974298 DOI: 10.3389/fbioe.2020.00922] [Cited by in Crossref: 11] [Cited by in F6Publishing: 31] [Article Influence: 5.5] [Reference Citation Analysis]
53 Muhammad W, Zhai Z, Gao C. Antiviral Activity of Nanomaterials against Coronaviruses. Macromol Biosci 2020;20:e2000196. [PMID: 32783352 DOI: 10.1002/mabi.202000196] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
54 Wang L, Li SY, Jiang W, Liu H, Dou JX, Li XQ, Wang YC. Polyphosphoestered Nanomedicines with Tunable Surface Hydrophilicity for Cancer Drug Delivery. ACS Appl Mater Interfaces 2020;12:32312-20. [PMID: 32578972 DOI: 10.1021/acsami.0c07016] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
55 Sun Q, Bai X, Sofias AM, van der Meel R, Ruiz-Hernandez E, Storm G, Hennink WE, De Geest B, Kiessling F, Yu HJ, Lammers T, Shi Y. Cancer nanomedicine meets immunotherapy: opportunities and challenges. Acta Pharmacol Sin 2020;41:954-8. [PMID: 32555445 DOI: 10.1038/s41401-020-0448-9] [Cited by in Crossref: 17] [Cited by in F6Publishing: 21] [Article Influence: 8.5] [Reference Citation Analysis]
56 He X, Yang X, Li D, Cao Z. Red and NIR Light-Responsive Polymeric Nanocarriers for On-Demand Drug Delivery. CMC 2020;27:3877-87. [DOI: 10.2174/0929867326666190215113522] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
57 Pereira-silva M, Jarak I, Alvarez-lorenzo C, Concheiro A, Santos AC, Veiga F, Figueiras A. Micelleplexes as nucleic acid delivery systems for cancer-targeted therapies. Journal of Controlled Release 2020;323:442-62. [DOI: 10.1016/j.jconrel.2020.04.041] [Cited by in Crossref: 15] [Cited by in F6Publishing: 21] [Article Influence: 7.5] [Reference Citation Analysis]
58 Raj EN, Lin Y, Chen C, Liu K, Chao J. Selective Autophagy Pathway of Nanoparticles and Nanodrugs: Drug Delivery and Pathophysiological Effects. Adv Therap 2020;3:2000085. [DOI: 10.1002/adtp.202000085] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
59 Aydemir D, Hashemkhani M, Acar HY, Ulusu NN. Evaluation of the biocompatibility of the GSH-coated Ag2S quantum dots in vitro: a perfect example for the non-toxic optical probes. Mol Biol Rep 2020;47:4117-29. [PMID: 32436042 DOI: 10.1007/s11033-020-05522-3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
60 Shahabadi N, Razlansari M. In vitro spectroscopic investigation of groove binding interaction of Fe3O4@CaAl-LDH@L-Dopa with calf thymus DNA. Nucleosides Nucleotides Nucleic Acids 2020;39:1020-35. [PMID: 32345148 DOI: 10.1080/15257770.2020.1740929] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
61 Uzhytchak M, Smolková B, Lunova M, Jirsa M, Frtús A, Kubinová Š, Dejneka A, Lunov O. Iron Oxide Nanoparticle-Induced Autophagic Flux Is Regulated by Interplay between p53-mTOR Axis and Bcl-2 Signaling in Hepatic Cells. Cells 2020;9:E1015. [PMID: 32325714 DOI: 10.3390/cells9041015] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
62 Xu Y, Zi Y, Lei J, Mo X, Shao Z, Wu Y, Tian Y, Li D, Mu C. pH-Responsive nanoparticles based on cholesterol/imidazole modified oxidized-starch for targeted anticancer drug delivery. Carbohydrate Polymers 2020;233:115858. [DOI: 10.1016/j.carbpol.2020.115858] [Cited by in Crossref: 12] [Cited by in F6Publishing: 22] [Article Influence: 6.0] [Reference Citation Analysis]
63 Brandelli A. The interaction of nanostructured antimicrobials with biological systems: Cellular uptake, trafficking and potential toxicity. Food Science and Human Wellness 2020;9:8-20. [DOI: 10.1016/j.fshw.2019.12.003] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 11.5] [Reference Citation Analysis]
64 Gonçalves JM, Rocha T, Mestre NC, Fonseca TG, Bebianno MJ. Assessing cadmium-based quantum dots effect on the gonads of the marine mussel Mytilus galloprovincialis. Mar Environ Res 2020;156:104904. [PMID: 32174334 DOI: 10.1016/j.marenvres.2020.104904] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
65 Kumar S, Parekh SH. Linking graphene-based material physicochemical properties with molecular adsorption, structure and cell fate. Commun Chem 2020;3. [DOI: 10.1038/s42004-019-0254-9] [Cited by in Crossref: 39] [Cited by in F6Publishing: 35] [Article Influence: 19.5] [Reference Citation Analysis]
66 Evangelopoulos M, Yazdi IK, Acciardo S, Palomba R, Giordano F, Pasto A, Sushnitha M, Martinez JO, Basu N, Torres A, Hmaidan S, Parodi A, Tasciotti E. Biomimetic cellular vectors for enhancing drug delivery to the lungs. Sci Rep 2020;10:172. [PMID: 31932600 DOI: 10.1038/s41598-019-55909-x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
67 Korani M, Korani S, Zendehdel E, Nikpoor AR, Jaafari MR, Orafai HM, Johnston TP, Sahebkar A. Enhancing the Therapeutic Efficacy of Bortezomib in Cancer Therapy Using Polymeric Nanostructures. CPD 2020;25:4883-92. [DOI: 10.2174/1381612825666191106150018] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
68 Ma W, Zhu D, Li J, Chen X, Xie W, Jiang X, Wu L, Wang G, Xiao Y, Liu Z, Wang F, Li A, Shao D, Dong W, Liu W, Yuan Y. Coating biomimetic nanoparticles with chimeric antigen receptor T cell-membrane provides high specificity for hepatocellular carcinoma photothermal therapy treatment. Theranostics 2020;10:1281-95. [PMID: 31938065 DOI: 10.7150/thno.40291] [Cited by in Crossref: 67] [Cited by in F6Publishing: 74] [Article Influence: 33.5] [Reference Citation Analysis]
69 Foulkes R, Man E, Thind J, Yeung S, Joy A, Hoskins C. The regulation of nanomaterials and nanomedicines for clinical application: current and future perspectives. Biomater Sci 2020;8:4653-64. [DOI: 10.1039/d0bm00558d] [Cited by in Crossref: 19] [Cited by in F6Publishing: 50] [Article Influence: 9.5] [Reference Citation Analysis]
70 Chakraborty S, Misra SK. A comparative analysis of dialysis based separation methods for assessing copper oxide nanoparticle solubility. Environmental Nanotechnology, Monitoring & Management 2019;12:100258. [DOI: 10.1016/j.enmm.2019.100258] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
71 Pearce K, Goldsmith WT, Greenwald R, Yang C, Mainelis G, Wright C. Characterization of an aerosol generation system to assess inhalation risks of aerosolized nano-enabled consumer products. Inhal Toxicol 2019;31:357-67. [PMID: 31779509 DOI: 10.1080/08958378.2019.1685613] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
72 Kim CG, Kye YC, Yun CH. The Role of Nanovaccine in Cross-Presentation of Antigen-Presenting Cells for the Activation of CD8+ T Cell Responses. Pharmaceutics 2019;11:E612. [PMID: 31731667 DOI: 10.3390/pharmaceutics11110612] [Cited by in Crossref: 23] [Cited by in F6Publishing: 31] [Article Influence: 7.7] [Reference Citation Analysis]
73 Chen Z, Krishnamachary B, Pachecho-Torres J, Penet MF, Bhujwalla ZM. Theranostic small interfering RNA nanoparticles in cancer precision nanomedicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2020;12:e1595. [PMID: 31642207 DOI: 10.1002/wnan.1595] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
74 Jin JO, Kim H, Huh YH, Herrmann A, Kwak M. Soft matter DNA nanoparticles hybridized with CpG motifs and peptide nucleic acids enable immunological treatment of cancer. J Control Release 2019;315:76-84. [PMID: 31639342 DOI: 10.1016/j.jconrel.2019.09.013] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
75 Bian Y, Leng X, Wei Z, Wang Z, Tu Z, Wang Y, Li Y. End-Chain Fluorescent Highly Branched Poly(l-lactide)s: Synthesis, Architecture-Dependence, and Fluorescent Visible Paclitaxel-Loaded Microspheres. Biomacromolecules 2019;20:3952-68. [PMID: 31490668 DOI: 10.1021/acs.biomac.9b01020] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
76 Marchant MJ, Guzmán L, Corvalán AH, Kogan MJ. Gold@Silica Nanoparticles Functionalized with Oligonucleotides: A Prominent Tool for the Detection of the Methylated Reprimo Gene in Gastric Cancer by Dynamic Light Scattering. Nanomaterials (Basel) 2019;9:E1333. [PMID: 31540371 DOI: 10.3390/nano9091333] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
77 Liu Y, Ji X, He Z. Organic-inorganic nanoflowers: from design strategy to biomedical applications. Nanoscale 2019;11:17179-94. [PMID: 31532431 DOI: 10.1039/c9nr05446d] [Cited by in Crossref: 20] [Cited by in F6Publishing: 29] [Article Influence: 6.7] [Reference Citation Analysis]
78 Hussein HA, Mohamad H, Ghazaly MM, Laith AA, Abdullah MA. Cytotoxic effects of Tetraselmis suecica chloroform extracts with silver nanoparticle co-application on MCF-7, 4 T1, and Vero cell lines. J Appl Phycol 2020;32:127-43. [DOI: 10.1007/s10811-019-01905-7] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
79 Rawal M, Singh A, Amiji MM. Quality-by-Design Concepts to Improve Nanotechnology-Based Drug Development. Pharm Res 2019;36:153. [PMID: 31482243 DOI: 10.1007/s11095-019-2692-6] [Cited by in Crossref: 13] [Cited by in F6Publishing: 21] [Article Influence: 4.3] [Reference Citation Analysis]
80 Dickinson AM, Godden JM, Lanovyk K, Ahmed SS. Assessing the Safety of Nanomedicines: A Mini Review. Applied In Vitro Toxicology 2019;5:114-22. [DOI: 10.1089/aivt.2019.0009] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 3.7] [Reference Citation Analysis]
81 Klochkov SG, Neganova ME, Nikolenko VN, Chen K, Somasundaram SG, Kirkland CE, Aliev G. Implications of nanotechnology for the treatment of cancer: Recent advances. Semin Cancer Biol 2021;69:190-9. [PMID: 31446004 DOI: 10.1016/j.semcancer.2019.08.028] [Cited by in Crossref: 10] [Cited by in F6Publishing: 20] [Article Influence: 3.3] [Reference Citation Analysis]
82 Parenti CC, Ghilardi A, Della Torre C, Magni S, Del Giacco L, Binelli A. Evaluation of the infiltration of polystyrene nanobeads in zebrafish embryo tissues after short-term exposure and the related biochemical and behavioural effects. Environ Pollut 2019;254:112947. [PMID: 31400664 DOI: 10.1016/j.envpol.2019.07.115] [Cited by in Crossref: 25] [Cited by in F6Publishing: 46] [Article Influence: 8.3] [Reference Citation Analysis]
83 Yang Y, Liu S, Geng J. Microfluidic-Based Platform for the Evaluation of Nanomaterial-Mediated Drug Delivery: From High-Throughput Screening to Dynamic Monitoring. Curr Pharm Des 2019;25:2953-68. [PMID: 31362686 DOI: 10.2174/1381612825666190730100051] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
84 Shamsi M, Mohammadi A, Manshadi MK, Sanati-nezhad A. Mathematical and computational modeling of nano-engineered drug delivery systems. Journal of Controlled Release 2019;307:150-65. [DOI: 10.1016/j.jconrel.2019.06.014] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 7.3] [Reference Citation Analysis]
85 Daems N, Penninckx S, Nelissen I, Van Hoecke K, Cardinaels T, Baatout S, Michiels C, Lucas S, Aerts A. Gold nanoparticles affect the antioxidant status in selected normal human cells. Int J Nanomedicine 2019;14:4991-5015. [PMID: 31371943 DOI: 10.2147/IJN.S203546] [Cited by in Crossref: 10] [Cited by in F6Publishing: 18] [Article Influence: 3.3] [Reference Citation Analysis]
86 Bucki R, Niemirowicz-Laskowska K, Deptuła P, Wilczewska AZ, Misiak P, Durnaś B, Fiedoruk K, Piktel E, Mystkowska J, Janmey PA. Susceptibility of microbial cells to the modified PIP2-binding sequence of gelsolin anchored on the surface of magnetic nanoparticles. J Nanobiotechnology 2019;17:81. [PMID: 31286976 DOI: 10.1186/s12951-019-0511-1] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
87 Moradi M, Abdolhosseini M, Zarrabi A, johari B. A review on application of Nano-structures and Nano-objects with high potential for managing different aspects of bone malignancies. Nano-Structures & Nano-Objects 2019;19:100348. [DOI: 10.1016/j.nanoso.2019.100348] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
88 Mohammadi MR, Corbo C, Molinaro R, Lakey JRT. Biohybrid Nanoparticles to Negotiate with Biological Barriers. Small 2019;15:1902333. [DOI: 10.1002/smll.201902333] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 3.7] [Reference Citation Analysis]
89 Park JH, Dehaini D, Zhou J, Holay M, Fang RH, Zhang L. Biomimetic nanoparticle technology for cardiovascular disease detection and treatment. Nanoscale Horiz 2020;5:25-42. [PMID: 32133150 DOI: 10.1039/c9nh00291j] [Cited by in Crossref: 24] [Cited by in F6Publishing: 43] [Article Influence: 8.0] [Reference Citation Analysis]
90 Yaqub A, Faheem I, Anjum KM, Ditta SA, Yousaf MZ, Tanvir F, Raza C. Neurotoxicity of ZnO nanoparticles and associated motor function deficits in mice. Appl Nanosci 2020;10:177-85. [DOI: 10.1007/s13204-019-01093-3] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
91 Rezaei R, Safaei M, Mozaffari HR, Moradpoor H, Karami S, Golshah A, Salimi B, Karami H. The Role of Nanomaterials in the Treatment of Diseases and Their Effects on the Immune System. Open Access Maced J Med Sci 2019;7:1884-90. [PMID: 31316678 DOI: 10.3889/oamjms.2019.486] [Cited by in Crossref: 9] [Cited by in F6Publishing: 17] [Article Influence: 3.0] [Reference Citation Analysis]
92 Ferreira AM, Tonda-Turo C, Mancuso E, Gentile P. Multilayer nanoscale functionalization to treat disorders and enhance regeneration of bone tissue. Nanomedicine 2019;19:22-38. [PMID: 31002932 DOI: 10.1016/j.nano.2019.03.009] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
93 Mishra RK, Kumar VB, Monteran L, Sredni B, Gedanken A. AS101-Loaded PLGA–PEG Nanoparticles for Autoimmune Regulation and Chemosensitization. ACS Appl Bio Mater 2019;2:2246-51. [DOI: 10.1021/acsabm.9b00200] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
94 Jaskólska DE, Brougham DF, Warring SL, Mcquillan AJ, Rooney JS, Gordon KC, Meledandri CJ. Competition-Driven Ligand Exchange for Functionalizing Nanoparticles and Nanoparticle Clusters without Colloidal Destabilization. ACS Appl Nano Mater 2019;2:2230-40. [DOI: 10.1021/acsanm.9b00183] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
95 Ma Z, Fan Y, Wu Y, Kebebe D, Zhang B, Lu P, Pi J, Liu Z. Traditional Chinese medicine-combination therapies utilizing nanotechnology-based targeted delivery systems: a new strategy for antitumor treatment. Int J Nanomedicine 2019;14:2029-53. [PMID: 30962686 DOI: 10.2147/IJN.S197889] [Cited by in Crossref: 19] [Cited by in F6Publishing: 30] [Article Influence: 6.3] [Reference Citation Analysis]
96 Cicuéndez M, Silva VS, Santos J, Coimbra A, Oliveira H, Ayán-Varela M, Paredes JI, Villar-Rodil S, Vila M. MoS2 flakes stabilized with DNA/RNA nucleotides: In vitro cell response. Mater Sci Eng C Mater Biol Appl 2019;100:11-22. [PMID: 30948045 DOI: 10.1016/j.msec.2019.02.002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
97 Ke Y, Zhang X, Liu C, Xiao M, Li H, Fan J, Fu P, Wang S, Zan F, Wu G. Polypseudorotaxane functionalized magnetic nanoparticles as a dual responsive carrier for roxithromycin delivery. Mater Sci Eng C Mater Biol Appl 2019;99:159-70. [PMID: 30889688 DOI: 10.1016/j.msec.2019.01.078] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
98 Lehner R, Weder C, Petri-fink A, Rothen-rutishauser B. Emergence of Nanoplastic in the Environment and Possible Impact on Human Health. Environ Sci Technol 2019;53:1748-65. [DOI: 10.1021/acs.est.8b05512] [Cited by in Crossref: 227] [Cited by in F6Publishing: 342] [Article Influence: 75.7] [Reference Citation Analysis]
99 Wang X, Wang H, Jiang K, Zhang Y, Zhan C, Ying M, Zhang M, Lu L, Wang R, Wang S, Burgess DJ, Wang H, Lu W. Liposomes with cyclic RGD peptide motif triggers acute immune response in mice. Journal of Controlled Release 2019;293:201-14. [DOI: 10.1016/j.jconrel.2018.12.003] [Cited by in Crossref: 15] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
100 Digiacomo L, Cardarelli F, Pozzi D, Palchetti S, Digman MA, Gratton E, Capriotti AL, Mahmoudi M, Caracciolo G. An apolipoprotein-enriched biomolecular corona switches the cellular uptake mechanism and trafficking pathway of lipid nanoparticles. Nanoscale 2017;9:17254-62. [PMID: 29115333 DOI: 10.1039/c7nr06437c] [Cited by in Crossref: 46] [Cited by in F6Publishing: 46] [Article Influence: 11.5] [Reference Citation Analysis]
101 Teleanu DM, Chircov C, Grumezescu AM, Volceanov A, Teleanu RI. Impact of Nanoparticles on Brain Health: An Up to Date Overview. J Clin Med 2018;7:E490. [PMID: 30486404 DOI: 10.3390/jcm7120490] [Cited by in Crossref: 61] [Cited by in F6Publishing: 64] [Article Influence: 15.3] [Reference Citation Analysis]
102 Etman SM, Elnaggar YSR, Abdelmonsif DA, Abdallah OY. Oral Brain-Targeted Microemulsion for Enhanced Piperine Delivery in Alzheimer's Disease Therapy: In Vitro Appraisal, In Vivo Activity, and Nanotoxicity. AAPS PharmSciTech 2018;19:3698-711. [PMID: 30238305 DOI: 10.1208/s12249-018-1180-3] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 5.8] [Reference Citation Analysis]
103 Hoover GC, Ham J, Tang C, Carrera EI, Seferos DS. Synthesis and self-assembly of thiol-modified tellurophenes. Can J Chem 2018;96:929-33. [DOI: 10.1139/cjc-2018-0077] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
104 Florczak A, Jastrzebska K, Bialas W, Mackiewicz A, Dams-kozlowska H. Optimization of spider silk sphere formation processing conditions to obtain carriers with controlled characteristics: Optimization of spider silk sphere formation. J Biomed Mater Res 2018;106:3211-21. [DOI: 10.1002/jbm.a.36516] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
105 Iqbal J, Abbasi BA, Ahmad R, Mahmood T, Ali B, Khalil AT, Kanwal S, Shah SA, Alam MM, Badshah H, Munir A. Nanomedicines for developing cancer nanotherapeutics: from benchtop to bedside and beyond. Appl Microbiol Biotechnol 2018;102:9449-70. [DOI: 10.1007/s00253-018-9352-3] [Cited by in Crossref: 30] [Cited by in F6Publishing: 41] [Article Influence: 7.5] [Reference Citation Analysis]
106 Xu X, Bayazitoglu Y, Meade A Jr. Evaluation of theranostic perspective of gold-silica nanoshell for cancer nano-medicine: a numerical parametric study. Lasers Med Sci 2019;34:377-88. [PMID: 30215184 DOI: 10.1007/s10103-018-2608-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
107 Komorowski P, Siatkowska M, Wasiak T, Działoszyńska K, Kotarba S, Kądzioła K, Bartoszek N, Sokołowska P, Elgalal M, Sobol‐pacyniak A, Makowski K, Walkowiak B. Simultaneous transcriptome and proteome analysis of EA.hy926 cells under stress conditions induced by nanomaterials. J Biomed Mater Res 2018;107:1024-34. [DOI: 10.1002/jbm.b.34195] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
108 Ran R, Wang H, Liu Y, Hui Y, Sun Q, Seth A, Wibowo D, Chen D, Zhao C. Microfluidic self-assembly of a combinatorial library of single- and dual-ligand liposomes for in vitro and in vivo tumor targeting. European Journal of Pharmaceutics and Biopharmaceutics 2018;130:1-10. [DOI: 10.1016/j.ejpb.2018.06.017] [Cited by in Crossref: 31] [Cited by in F6Publishing: 39] [Article Influence: 7.8] [Reference Citation Analysis]
109 Soares S, Sousa J, Pais A, Vitorino C. Nanomedicine: Principles, Properties, and Regulatory Issues. Front Chem 2018;6:360. [PMID: 30177965 DOI: 10.3389/fchem.2018.00360] [Cited by in Crossref: 153] [Cited by in F6Publishing: 198] [Article Influence: 38.3] [Reference Citation Analysis]
110 Skoczeń A, Matusiak K, Setkowicz Z, Kubala-Kukuś A, Stabrawa I, Ciarach M, Janeczko K, Chwiej J. Low Doses of Polyethylene Glycol Coated Iron Oxide Nanoparticles Cause Significant Elemental Changes within Main Organs. Chem Res Toxicol 2018;31:876-84. [PMID: 30070467 DOI: 10.1021/acs.chemrestox.8b00110] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
111 Prakash B, Kujur A, Yadav A, Kumar A, Singh PP, Dubey N. Nanoencapsulation: An efficient technology to boost the antimicrobial potential of plant essential oils in food system. Food Control 2018;89:1-11. [DOI: 10.1016/j.foodcont.2018.01.018] [Cited by in Crossref: 126] [Cited by in F6Publishing: 98] [Article Influence: 31.5] [Reference Citation Analysis]
112 Feng H, Sun Y, Zhang J, Deng L, Dong A. Influence of supramolecular layer-crosslinked structure on stability of dual pH-Responsive polymer nanoparticles for doxorubicin delivery. Journal of Drug Delivery Science and Technology 2018;45:81-92. [DOI: 10.1016/j.jddst.2018.03.008] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
113 Martins JP, D'Auria R, Liu D, Fontana F, Ferreira MPA, Correia A, Kemell M, Moslova K, Mäkilä E, Salonen J, Casettari L, Hirvonen J, Sarmento B, Santos HA. Engineered Multifunctional Albumin-Decorated Porous Silicon Nanoparticles for FcRn Translocation of Insulin. Small 2018;14:e1800462. [PMID: 29855134 DOI: 10.1002/smll.201800462] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 7.3] [Reference Citation Analysis]
114 Hutnick MA, Pokorski JK. Polymeric Interventions for Microbial Infections: A Review. Mol Pharmaceutics 2018;15:2910-21. [DOI: 10.1021/acs.molpharmaceut.8b00342] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 3.3] [Reference Citation Analysis]
115 Hamdy ME, Del Carlo M, Hussein HA, Salah TA, El-Deeb AH, Emara MM, Pezzoni G, Compagnone D. Development of gold nanoparticles biosensor for ultrasensitive diagnosis of foot and mouth disease virus. J Nanobiotechnology 2018;16:48. [PMID: 29751767 DOI: 10.1186/s12951-018-0374-x] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 6.3] [Reference Citation Analysis]
116 Pagaduan JV, Bhatta A, Romer LH, Gracias DH. 3D Hybrid Small Scale Devices. Small 2018;14:e1702497. [PMID: 29749014 DOI: 10.1002/smll.201702497] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
117 Kumar S, Sarita, Nehra M, Dilbaghi N, Tankeshwar K, Kim K. Recent advances and remaining challenges for polymeric nanocomposites in healthcare applications. Progress in Polymer Science 2018;80:1-38. [DOI: 10.1016/j.progpolymsci.2018.03.001] [Cited by in Crossref: 81] [Cited by in F6Publishing: 64] [Article Influence: 20.3] [Reference Citation Analysis]
118 Parhiz H, Khoshnejad M, Myerson JW, Hood E, Patel PN, Brenner JS, Muzykantov VR. Unintended effects of drug carriers: Big issues of small particles. Adv Drug Deliv Rev 2018;130:90-112. [PMID: 30149885 DOI: 10.1016/j.addr.2018.06.023] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 7.8] [Reference Citation Analysis]
119 Gao Z. Advances in surface-coated single-walled carbon nanotubes as near-infrared photoluminescence emitters for single-particle tracking applications in biological environments. Polym J 2018;50:589-601. [DOI: 10.1038/s41428-018-0052-8] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
120 Li D, Deng M, Yu Z, Liu W, Zhou G, Li W, Wang X, Yang D, Zhang W. Biocompatible and Stable GO-Coated Fe 3 O 4 Nanocomposite: A Robust Drug Delivery Carrier for Simultaneous Tumor MR Imaging and Targeted Therapy. ACS Biomater Sci Eng 2018;4:2143-54. [DOI: 10.1021/acsbiomaterials.8b00029] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 6.8] [Reference Citation Analysis]
121 Zhao CY, Cheng R, Yang Z, Tian ZM. Nanotechnology for Cancer Therapy Based on Chemotherapy. Molecules 2018;23:E826. [PMID: 29617302 DOI: 10.3390/molecules23040826] [Cited by in Crossref: 88] [Cited by in F6Publishing: 110] [Article Influence: 22.0] [Reference Citation Analysis]
122 Behzadi S, Serpooshan V, Tao W, Hamaly MA, Alkawareek MY, Dreaden EC, Brown D, Alkilany AM, Farokhzad OC, Mahmoudi M. Cellular uptake of nanoparticles: journey inside the cell. Chem Soc Rev 2017;46:4218-44. [PMID: 28585944 DOI: 10.1039/c6cs00636a] [Cited by in Crossref: 778] [Cited by in F6Publishing: 1006] [Article Influence: 194.5] [Reference Citation Analysis]
123 Ai X, Hu M, Wang Z, Zhang W, Li J, Yang H, Lin J, Xing B. Recent Advances of Membrane-Cloaked Nanoplatforms for Biomedical Applications. Bioconjug Chem 2018;29:838-51. [PMID: 29509403 DOI: 10.1021/acs.bioconjchem.8b00103] [Cited by in Crossref: 22] [Cited by in F6Publishing: 32] [Article Influence: 5.5] [Reference Citation Analysis]
124 Sposito AJ, Kurdekar A, Zhao J, Hewlett I. Application of nanotechnology in biosensors for enhancing pathogen detection. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2018;10:e1512. [PMID: 29528198 DOI: 10.1002/wnan.1512] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
125 Prabha G, Raj V. Synthesis and characterization of chitosan–polyvinylpyrrolidone–bovine serum albumin-coated magnetic iron oxide nanoparticles as potential carrier for delivery of tamoxifen. J IRAN CHEM SOC 2018;15:871-84. [DOI: 10.1007/s13738-017-1286-7] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
126 Ciancone M, Mebrouk K, Bellec N, Le Goff-gaillard C, Arlot-bonnemains Y, Benvegnu T, Fourmigué M, Camerel F, Cammas-marion S. Biocompatible nanoparticles containing hydrophobic nickel-bis(dithiolene) complexes for NIR-mediated doxorubicin release and photothermal therapy. J Mater Chem B 2018;6:1744-53. [DOI: 10.1039/c7tb03289g] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
127 Lee Y, Lee CH. Augmented reality for personalized nanomedicines. Biotechnol Adv 2018;36:335-43. [PMID: 29248686 DOI: 10.1016/j.biotechadv.2017.12.008] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.4] [Reference Citation Analysis]
128 Fornaguera C, García-Celma MJ. Personalized Nanomedicine: A Revolution at the Nanoscale. J Pers Med 2017;7:E12. [PMID: 29023366 DOI: 10.3390/jpm7040012] [Cited by in Crossref: 58] [Cited by in F6Publishing: 59] [Article Influence: 11.6] [Reference Citation Analysis]
129 Zhang TX, Zhu GY, Lu BY, Zhang CL, Peng Q. Concentration-dependent protein adsorption at the nano-bio interfaces of polymeric nanoparticles and serum proteins. Nanomedicine (Lond) 2017;12:2757-69. [PMID: 29017387 DOI: 10.2217/nnm-2017-0238] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 6.6] [Reference Citation Analysis]
130 El-leithy ES, Abdel-rashid RS. Lipid nanocarriers for tamoxifen citrate/coenzyme Q10 dual delivery. Journal of Drug Delivery Science and Technology 2017;41:239-50. [DOI: 10.1016/j.jddst.2017.07.020] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
131 Prabha G, Raj V. Sodium alginate–polyvinyl alcohol–bovin serum albumin coated Fe3O4 nanoparticles as anticancer drug delivery vehicle: Doxorubicin loading and in vitro release study and cytotoxicity to HepG2 and L02 cells. Materials Science and Engineering: C 2017;79:410-22. [DOI: 10.1016/j.msec.2017.04.075] [Cited by in Crossref: 49] [Cited by in F6Publishing: 50] [Article Influence: 9.8] [Reference Citation Analysis]
132 Paul PK, Nopparat J, Nuanplub M, Treetong A, Suedee R. Improvement in insulin absorption into gastrointestinal epithelial cells by using molecularly imprinted polymer nanoparticles: Microscopic evaluation and ultrastructure. International Journal of Pharmaceutics 2017;530:279-90. [DOI: 10.1016/j.ijpharm.2017.07.071] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
133 Sulaiman GM, Tawfeeq AT, Naji AS. Biosynthesis, characterization of magnetic iron oxide nanoparticles and evaluations of the cytotoxicity and DNA damage of human breast carcinoma cell lines. Artificial Cells, Nanomedicine, and Biotechnology 2018;46:1215-29. [DOI: 10.1080/21691401.2017.1366335] [Cited by in Crossref: 27] [Cited by in F6Publishing: 37] [Article Influence: 5.4] [Reference Citation Analysis]
134 Singh MS, Tammam SN, Shetab Boushehri MA, Lamprecht A. MDR in cancer: Addressing the underlying cellular alterations with the use of nanocarriers. Pharmacol Res 2017;126:2-30. [PMID: 28760489 DOI: 10.1016/j.phrs.2017.07.023] [Cited by in Crossref: 23] [Cited by in F6Publishing: 29] [Article Influence: 4.6] [Reference Citation Analysis]
135 Ke W, Zha Z, Mukerabigwi JF, Chen W, Wang Y, He C, Ge Z. Matrix Metalloproteinase-Responsive Multifunctional Peptide-Linked Amphiphilic Block Copolymers for Intelligent Systemic Anticancer Drug Delivery. Bioconjug Chem 2017;28:2190-8. [PMID: 28661654 DOI: 10.1021/acs.bioconjchem.7b00330] [Cited by in Crossref: 26] [Cited by in F6Publishing: 36] [Article Influence: 5.2] [Reference Citation Analysis]
136 Dai W, Wang X, Song G, Liu T, He B, Zhang H, Wang X, Zhang Q. Combination antitumor therapy with targeted dual-nanomedicines. Adv Drug Deliv Rev 2017;115:23-45. [PMID: 28285944 DOI: 10.1016/j.addr.2017.03.001] [Cited by in Crossref: 84] [Cited by in F6Publishing: 81] [Article Influence: 16.8] [Reference Citation Analysis]
137 Li D, Ma Y, Du J, Tao W, Du X, Yang X, Wang J. Tumor Acidity/NIR Controlled Interaction of Transformable Nanoparticle with Biological Systems for Cancer Therapy. Nano Lett 2017;17:2871-8. [DOI: 10.1021/acs.nanolett.6b05396] [Cited by in Crossref: 85] [Cited by in F6Publishing: 92] [Article Influence: 17.0] [Reference Citation Analysis]
138 Huang H, Yang DP, Liu M, Wang X, Zhang Z, Zhou G, Liu W, Cao Y, Zhang WJ, Wang X. pH-sensitive Au-BSA-DOX-FA nanocomposites for combined CT imaging and targeted drug delivery. Int J Nanomedicine 2017;12:2829-43. [PMID: 28435261 DOI: 10.2147/IJN.S128270] [Cited by in Crossref: 27] [Cited by in F6Publishing: 35] [Article Influence: 5.4] [Reference Citation Analysis]
139 de la Puente P, Azab AK. Nanoparticle delivery systems, general approaches, and their implementation in multiple myeloma. Eur J Haematol 2017;98:529-41. [PMID: 28208215 DOI: 10.1111/ejh.12870] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 2.8] [Reference Citation Analysis]
140 Halappanavar S, Vogel U, Wallin H, Yauk CL. Promise and peril in nanomedicine: the challenges and needs for integrated systems biology approaches to define health risk. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2018;10. [PMID: 28294555 DOI: 10.1002/wnan.1465] [Cited by in Crossref: 30] [Cited by in F6Publishing: 22] [Article Influence: 6.0] [Reference Citation Analysis]
141 Adumeau L, Genevois C, Roudier L, Schatz C, Couillaud F, Mornet S. Impact of surface grafting density of PEG macromolecules on dually fluorescent silica nanoparticles used for the in vivo imaging of subcutaneous tumors. Biochim Biophys Acta Gen Subj 2017;1861:1587-96. [PMID: 28179102 DOI: 10.1016/j.bbagen.2017.01.036] [Cited by in Crossref: 17] [Cited by in F6Publishing: 22] [Article Influence: 3.4] [Reference Citation Analysis]
142 Lv S, Tang Z, Song W, Zhang D, Li M, Liu H, Cheng J, Zhong W, Chen X. Inhibiting Solid Tumor Growth In Vivo by Non-Tumor-Penetrating Nanomedicine. Small 2017;13. [PMID: 28079981 DOI: 10.1002/smll.201600954] [Cited by in Crossref: 27] [Cited by in F6Publishing: 33] [Article Influence: 5.4] [Reference Citation Analysis]
143 Bakalova T, Svobodová L, Rosická P, Borůvková K, Voleský L, Louda P. The application potential of SiO2, TiO2 or Ag nanoparticles as fillers in machining process fluids. Journal of Cleaner Production 2017;142:2237-43. [DOI: 10.1016/j.jclepro.2016.11.054] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
144 Li J, Mao H, Kawazoe N, Chen G. Insight into the interactions between nanoparticles and cells. Biomater Sci 2017;5:173-89. [DOI: 10.1039/c6bm00714g] [Cited by in Crossref: 55] [Cited by in F6Publishing: 60] [Article Influence: 11.0] [Reference Citation Analysis]
145 Sharma S, Sethi K, Roy I. Magnetic nanoscale metal–organic frameworks for magnetically aided drug delivery and photodynamic therapy. New J Chem 2017;41:11860-6. [DOI: 10.1039/c7nj02032e] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 5.0] [Reference Citation Analysis]
146 Tyler B, Gullotti D, Mangraviti A, Utsuki T, Brem H. Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Adv Drug Deliv Rev 2016;107:163-75. [PMID: 27426411 DOI: 10.1016/j.addr.2016.06.018] [Cited by in Crossref: 461] [Cited by in F6Publishing: 411] [Article Influence: 76.8] [Reference Citation Analysis]
147 Belling JN, Jackman JA, Yorulmaz Avsar S, Park JH, Wang Y, Potroz MG, Ferhan AR, Weiss PS, Cho NJ. Stealth Immune Properties of Graphene Oxide Enabled by Surface-Bound Complement Factor H. ACS Nano 2016;10:10161-72. [PMID: 27792317 DOI: 10.1021/acsnano.6b05409] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 5.8] [Reference Citation Analysis]
148 Karimi M, Mirshekari H, Moosavi Basri SM, Bahrami S, Moghoofei M, Hamblin MR. Bacteriophages and phage-inspired nanocarriers for targeted delivery of therapeutic cargos. Adv Drug Deliv Rev 2016;106:45-62. [PMID: 26994592 DOI: 10.1016/j.addr.2016.03.003] [Cited by in Crossref: 85] [Cited by in F6Publishing: 82] [Article Influence: 14.2] [Reference Citation Analysis]
149 Malhaire H, Gimel JC, Roger E, Benoît JP, Lagarce F. How to design the surface of peptide-loaded nanoparticles for efficient oral bioavailability? Adv Drug Deliv Rev 2016;106:320-36. [PMID: 27058155 DOI: 10.1016/j.addr.2016.03.011] [Cited by in Crossref: 66] [Cited by in F6Publishing: 59] [Article Influence: 11.0] [Reference Citation Analysis]
150 Ho W, Zhang XQ, Xu X. Biomaterials in siRNA Delivery: A Comprehensive Review. Adv Healthc Mater 2016;5:2715-31. [PMID: 27700013 DOI: 10.1002/adhm.201600418] [Cited by in Crossref: 45] [Cited by in F6Publishing: 45] [Article Influence: 7.5] [Reference Citation Analysis]
151 Yao J, Feng J, Gao X, Wei D, Kang T, Zhu Q, Jiang T, Wei X, Chen J. Neovasculature and circulating tumor cells dual-targeting nanoparticles for the treatment of the highly-invasive breast cancer. Biomaterials 2017;113:1-17. [PMID: 27794222 DOI: 10.1016/j.biomaterials.2016.10.033] [Cited by in Crossref: 39] [Cited by in F6Publishing: 44] [Article Influence: 6.5] [Reference Citation Analysis]
152 Rocha TL, Mestre NC, Sabóia-Morais SM, Bebianno MJ. Environmental behaviour and ecotoxicity of quantum dots at various trophic levels: A review. Environ Int 2017;98:1-17. [PMID: 27745949 DOI: 10.1016/j.envint.2016.09.021] [Cited by in Crossref: 74] [Cited by in F6Publishing: 71] [Article Influence: 12.3] [Reference Citation Analysis]
153 Nassiri Koopaei N, Abdollahi M. Opportunities and obstacles to the development of nanopharmaceuticals for human use. Daru 2016;24:23. [PMID: 27716350 DOI: 10.1186/s40199-016-0163-8] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
154 Wang Z, Tan J, McConville C, Kannappan V, Tawari PE, Brown J, Ding J, Armesilla AL, Irache JM, Mei QB, Tan Y, Liu Y, Jiang W, Bian XW, Wang W. Poly lactic-co-glycolic acid controlled delivery of disulfiram to target liver cancer stem-like cells. Nanomedicine 2017;13:641-57. [PMID: 27521693 DOI: 10.1016/j.nano.2016.08.001] [Cited by in Crossref: 37] [Cited by in F6Publishing: 45] [Article Influence: 6.2] [Reference Citation Analysis]
155 Tummala S, Kumar MNS, Pindiprolu SK. Improved anti-tumor activity of oxaliplatin by encapsulating in anti-DR5 targeted gold nanoparticles. Drug Delivery 2016;23:3505-19. [DOI: 10.1080/10717544.2016.1199606] [Cited by in Crossref: 33] [Cited by in F6Publishing: 37] [Article Influence: 5.5] [Reference Citation Analysis]
156 Bwatanglang IB, Mohammad F, Yusof NA, Abdullah J, Alitheen NB, Hussein MZ, Abu N, Mohammed NE, Nordin N, Zamberi NR, Yeap SK. In vivo tumor targeting and anti-tumor effects of 5-fluororacil loaded, folic acid targeted quantum dot system. J Colloid Interface Sci 2016;480:146-58. [PMID: 27428851 DOI: 10.1016/j.jcis.2016.07.011] [Cited by in Crossref: 37] [Cited by in F6Publishing: 35] [Article Influence: 6.2] [Reference Citation Analysis]
157 Giannakou C, Park MV, de Jong WH, van Loveren H, Vandebriel RJ, Geertsma RE. A comparison of immunotoxic effects of nanomedicinal products with regulatory immunotoxicity testing requirements. Int J Nanomedicine 2016;11:2935-52. [PMID: 27382281 DOI: 10.2147/IJN.S102385] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 5.8] [Reference Citation Analysis]
158 Prabha G, Raj V. Preparation and characterization of polymer nanocomposites coated magnetic nanoparticles for drug delivery applications. Journal of Magnetism and Magnetic Materials 2016;408:26-34. [DOI: 10.1016/j.jmmm.2016.01.070] [Cited by in Crossref: 47] [Cited by in F6Publishing: 29] [Article Influence: 7.8] [Reference Citation Analysis]
159 Samadian H, Hosseini-nami S, Kamrava SK, Ghaznavi H, Shakeri-zadeh A. Folate-conjugated gold nanoparticle as a new nanoplatform for targeted cancer therapy. J Cancer Res Clin Oncol 2016;142:2217-29. [DOI: 10.1007/s00432-016-2179-3] [Cited by in Crossref: 65] [Cited by in F6Publishing: 78] [Article Influence: 10.8] [Reference Citation Analysis]
160 Xue Y, Xu X, Zhang XQ, Farokhzad OC, Langer R. Preventing diet-induced obesity in mice by adipose tissue transformation and angiogenesis using targeted nanoparticles. Proc Natl Acad Sci U S A 2016;113:5552-7. [PMID: 27140638 DOI: 10.1073/pnas.1603840113] [Cited by in Crossref: 77] [Cited by in F6Publishing: 91] [Article Influence: 12.8] [Reference Citation Analysis]
161 Winkler DA. Recent advances, and unresolved issues, in the application of computational modelling to the prediction of the biological effects of nanomaterials. Toxicology and Applied Pharmacology 2016;299:96-100. [DOI: 10.1016/j.taap.2015.12.016] [Cited by in Crossref: 46] [Cited by in F6Publishing: 44] [Article Influence: 7.7] [Reference Citation Analysis]
162 Owens GJ, Singh RK, Foroutan F, Alqaysi M, Han C, Mahapatra C, Kim H, Knowles JC. Sol–gel based materials for biomedical applications. Progress in Materials Science 2016;77:1-79. [DOI: 10.1016/j.pmatsci.2015.12.001] [Cited by in Crossref: 372] [Cited by in F6Publishing: 276] [Article Influence: 62.0] [Reference Citation Analysis]
163 Prabha G, Raj V. Formation and characterization of β-cyclodextrin (β-CD) - polyethyleneglycol (PEG) - polyethyleneimine (PEI) coated Fe3O4 nanoparticles for loading and releasing 5-Fluorouracil drug. Biomed Pharmacother 2016;80:173-82. [PMID: 27133054 DOI: 10.1016/j.biopha.2016.03.015] [Cited by in Crossref: 28] [Cited by in F6Publishing: 32] [Article Influence: 4.7] [Reference Citation Analysis]
164 Prabha G, Raj V. Preparation and characterization of chitosan-Polyethylene glycol-polyvinylpyrrolidone-coated superparamagnetic iron oxide nanoparticles as carrier system: Drug loading and in vitro drug release study: PREPARATION AND CHARACTERIZATION OF CS. J Biomed Mater Res 2016;104:808-16. [DOI: 10.1002/jbm.b.33637] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
165 Krzyżewska I, Kyzioł-komosińska J, Rosik-dulewska C, Czupioł J, Antoszczyszyn-szpicka P. Inorganic nanomaterials in the aquatic environment: behavior, toxicity, and interaction with environmental elements. Archives of Environmental Protection 2016;42:87-101. [DOI: 10.1515/aep-2016-0011] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
166 Peng Q, Mu H. The potential of protein-nanomaterial interaction for advanced drug delivery. J Control Release 2016;225:121-32. [PMID: 26812004 DOI: 10.1016/j.jconrel.2016.01.041] [Cited by in Crossref: 85] [Cited by in F6Publishing: 76] [Article Influence: 14.2] [Reference Citation Analysis]
167 Ekkelenkamp AE, Jansman MMT, Roelofs K, Engbersen JFJ, Paulusse JMJ. Surfactant-free preparation of highly stable zwitterionic poly(amido amine) nanogels with minimal cytotoxicity. Acta Biomater 2016;30:126-34. [PMID: 26518103 DOI: 10.1016/j.actbio.2015.10.037] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 3.0] [Reference Citation Analysis]
168 Sweeney AE. Nanomedicine concepts in the general medical curriculum: initiating a discussion. Int J Nanomedicine 2015;10:7319-31. [PMID: 26677322 DOI: 10.2147/IJN.S96480] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
169 Qi Y, Geng Y, Ma B, He Y, Cui C. In vitro hemolytic properties’ assessment of K 2 Ti 6 O 13 nanowires. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems 2015;229:201-5. [DOI: 10.1177/1740349914529755] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
170 Chung BL, Toth MJ, Kamaly N, Sei YJ, Becraft J, Mulder WJ, Fayad ZA, Farokhzad OC, Kim Y, Langer R. Nanomedicines for Endothelial Disorders. Nano Today 2015;10:759-76. [PMID: 26955397 DOI: 10.1016/j.nantod.2015.11.009] [Cited by in Crossref: 25] [Cited by in F6Publishing: 33] [Article Influence: 3.6] [Reference Citation Analysis]
171 Pérez E, Olmo R, Teijón C, Muñíz E, Montero N, Teijón JM, Blanco MD. Biocompatibility evaluation of pH and glutathione-responsive nanohydrogels after intravenous administration. Colloids and Surfaces B: Biointerfaces 2015;136:222-31. [DOI: 10.1016/j.colsurfb.2015.09.017] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
172 Liu Q, Li H, Xia Q, Liu Y, Xiao K. Role of surface charge in determining the biological effects of CdSe/ZnS quantum dots. Int J Nanomedicine 2015;10:7073-88. [PMID: 26604757 DOI: 10.2147/IJN.S94543] [Cited by in Crossref: 12] [Cited by in F6Publishing: 21] [Article Influence: 1.7] [Reference Citation Analysis]
173 Santhosh PB, Drašler B, Drobne D, Kreft ME, Kralj S, Makovec D, Ulrih NP. Effect of superparamagnetic iron oxide nanoparticles on fluidity and phase transition of phosphatidylcholine liposomal membranes. Int J Nanomedicine 2015;10:6089-103. [PMID: 26491286 DOI: 10.2147/IJN.S89679] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.3] [Reference Citation Analysis]
174 Golovin YI, Gribanovsky SL, Golovin DY, Klyachko NL, Majouga AG, Master АM, Sokolsky M, Kabanov AV. Towards nanomedicines of the future: Remote magneto-mechanical actuation of nanomedicines by alternating magnetic fields. J Control Release 2015;219:43-60. [PMID: 26407671 DOI: 10.1016/j.jconrel.2015.09.038] [Cited by in Crossref: 105] [Cited by in F6Publishing: 115] [Article Influence: 15.0] [Reference Citation Analysis]
175 Prakash JS, Rajamanickam K. Aptamers and Their Significant Role in Cancer Therapy and Diagnosis. Biomedicines 2015;3:248-69. [PMID: 28536411 DOI: 10.3390/biomedicines3030248] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 2.7] [Reference Citation Analysis]
176 Fent J, Bihari P, Vippola M, Sarlin E, Lakatos S. In vitro platelet activation, aggregation and platelet–granulocyte complex formation induced by surface modified single-walled carbon nanotubes. Toxicology in Vitro 2015;29:1132-9. [DOI: 10.1016/j.tiv.2015.04.017] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 0.9] [Reference Citation Analysis]
177 Zou H, Wang Z, Feng M. Nanocarriers with tunable surface properties to unblock bottlenecks in systemic drug and gene delivery. J Control Release 2015;214:121-33. [PMID: 26208425 DOI: 10.1016/j.jconrel.2015.07.014] [Cited by in Crossref: 40] [Cited by in F6Publishing: 39] [Article Influence: 5.7] [Reference Citation Analysis]
178 Friberg S, Nyström AM. Nanotechnology in the war against cancer: new arms against an old enemy – a clinical view. Future Oncology 2015;11:1961-75. [DOI: 10.2217/fon.15.91] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 0.7] [Reference Citation Analysis]
179 Baetke SC, Lammers T, Kiessling F. Applications of nanoparticles for diagnosis and therapy of cancer. Br J Radiol 2015;88:20150207. [PMID: 25969868 DOI: 10.1259/bjr.20150207] [Cited by in Crossref: 194] [Cited by in F6Publishing: 206] [Article Influence: 27.7] [Reference Citation Analysis]
180 Shao XR, Wei XQ, Song X, Hao LY, Cai XX, Zhang ZR, Peng Q, Lin YF. Independent effect of polymeric nanoparticle zeta potential/surface charge, on their cytotoxicity and affinity to cells. Cell Prolif 2015;48:465-74. [PMID: 26017818 DOI: 10.1111/cpr.12192] [Cited by in Crossref: 72] [Cited by in F6Publishing: 94] [Article Influence: 10.3] [Reference Citation Analysis]
181 Yin JJ, Zhou ZW, Zhou SF. Cyclodextrin-based targeting strategies for tumor treatment. Drug Deliv Transl Res 2013;3:364-74. [PMID: 25788282 DOI: 10.1007/s13346-013-0140-4] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 1.9] [Reference Citation Analysis]
182 Beck-Broichsitter M, Nicolas J, Couvreur P. Design attributes of long-circulating polymeric drug delivery vehicles. Eur J Pharm Biopharm 2015;97:304-17. [PMID: 25857838 DOI: 10.1016/j.ejpb.2015.03.033] [Cited by in Crossref: 41] [Cited by in F6Publishing: 38] [Article Influence: 5.9] [Reference Citation Analysis]
183 Xu X, Ho W, Zhang X, Bertrand N, Farokhzad O. Cancer nanomedicine: from targeted delivery to combination therapy. Trends Mol Med 2015;21:223-32. [PMID: 25656384 DOI: 10.1016/j.molmed.2015.01.001] [Cited by in Crossref: 402] [Cited by in F6Publishing: 415] [Article Influence: 57.4] [Reference Citation Analysis]
184 Zhang XQ, Even-Or O, Xu X, van Rosmalen M, Lim L, Gadde S, Farokhzad OC, Fisher EA. Nanoparticles containing a liver X receptor agonist inhibit inflammation and atherosclerosis. Adv Healthc Mater 2015;4:228-36. [PMID: 25156796 DOI: 10.1002/adhm.201400337] [Cited by in Crossref: 52] [Cited by in F6Publishing: 52] [Article Influence: 7.4] [Reference Citation Analysis]
185 Lalitha K, Nagarajan S. Strongly fluorescent organogels and self-assembled nanostructures from pyrene coupled coumarin derivatives: application in cell imaging. J Mater Chem B 2015;3:5690-701. [DOI: 10.1039/c5tb00694e] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 4.3] [Reference Citation Analysis]
186 Sherwani MA, Tufail S, Khan AA, Owais M. Dendrimer-PLGA based multifunctional immuno-nanocomposite mediated synchronous and tumor selective delivery of siRNA and cisplatin: potential in treatment of hepatocellular carcinoma. RSC Adv 2015;5:39512-31. [DOI: 10.1039/c5ra03651h] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 2.1] [Reference Citation Analysis]
187 Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release 2015;200:138-57. [PMID: 25545217 DOI: 10.1016/j.jconrel.2014.12.030] [Cited by in Crossref: 979] [Cited by in F6Publishing: 1038] [Article Influence: 122.4] [Reference Citation Analysis]
188 Leong DT, Ng KW. Probing the relevance of 3D cancer models in nanomedicine research. Adv Drug Deliv Rev 2014;79-80:95-106. [PMID: 24996135 DOI: 10.1016/j.addr.2014.06.007] [Cited by in Crossref: 69] [Cited by in F6Publishing: 69] [Article Influence: 8.6] [Reference Citation Analysis]
189 Devi LB, Das SK, Mandal AB. Impact of Surface Functionalization of AgNPs on Binding and Conformational Change of Hemoglobin (Hb) and Hemolytic Behavior. J Phys Chem C 2014;118:29739-49. [DOI: 10.1021/jp5075048] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 3.3] [Reference Citation Analysis]
190 Kathawala MH, Khoo SPK, Sudhaharan T, Zhao X, Say Chye Loo J, Ahmed S, Woei Ng K. Fluorescence techniques used to measure interactions between hydroxyapatite nanoparticles and epidermal growth factor receptors. Biotechnology Journal 2015;10:171-9. [DOI: 10.1002/biot.201400404] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
191 Verwegen M, Cornelissen JJ. Clustered nanocarriers: the effect of size on the clustering of CCMV virus-like particles with soft macromolecules. Macromol Biosci 2015;15:98-110. [PMID: 25388619 DOI: 10.1002/mabi.201400326] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
192 Rocha TL, Gomes T, Cardoso C, Letendre J, Pinheiro JP, Sousa VS, Teixeira MR, Bebianno MJ. Immunocytotoxicity, cytogenotoxicity and genotoxicity of cadmium-based quantum dots in the marine mussel Mytilus galloprovincialis. Marine Environmental Research 2014;101:29-37. [DOI: 10.1016/j.marenvres.2014.07.009] [Cited by in Crossref: 60] [Cited by in F6Publishing: 60] [Article Influence: 7.5] [Reference Citation Analysis]
193 Primo EN, Oviedo MB, Sánchez CG, Rubianes MD, Rivas GA. Bioelectrochemical sensing of promethazine with bamboo-type multiwalled carbon nanotubes dispersed in calf-thymus double stranded DNA. Bioelectrochemistry 2014;99:8-16. [DOI: 10.1016/j.bioelechem.2014.05.002] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 3.1] [Reference Citation Analysis]
194 Gaspar VM, Costa EC, Queiroz JA, Pichon C, Sousa F, Correia IJ. Folate-targeted multifunctional amino acid-chitosan nanoparticles for improved cancer therapy. Pharm Res 2015;32:562-77. [PMID: 25186437 DOI: 10.1007/s11095-014-1486-0] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 4.4] [Reference Citation Analysis]
195 Frasco MF, Almeida GM, Santos-Silva F, Pereira Mdo C, Coelho MA. Transferrin surface-modified PLGA nanoparticles-mediated delivery of a proteasome inhibitor to human pancreatic cancer cells. J Biomed Mater Res A 2015;103:1476-84. [PMID: 25046528 DOI: 10.1002/jbm.a.35286] [Cited by in Crossref: 36] [Cited by in F6Publishing: 33] [Article Influence: 4.5] [Reference Citation Analysis]
196 Subramanian SB, Francis AP, Devasena T. Chitosan-starch nanocomposite particles as a drug carrier for the delivery of bis-desmethoxy curcumin analog. Carbohydr Polym 2014;114:170-8. [PMID: 25263878 DOI: 10.1016/j.carbpol.2014.07.053] [Cited by in Crossref: 52] [Cited by in F6Publishing: 34] [Article Influence: 6.5] [Reference Citation Analysis]
197 Zhu J, Huang H, Dong S, Ge L, Zhang Y. Progress in aptamer-mediated drug delivery vehicles for cancer targeting and its implications in addressing chemotherapeutic challenges. Theranostics 2014;4:931-44. [PMID: 25057317 DOI: 10.7150/thno.9663] [Cited by in Crossref: 57] [Cited by in F6Publishing: 56] [Article Influence: 7.1] [Reference Citation Analysis]
198 Swami A, Reagan MR, Basto P, Mishima Y, Kamaly N, Glavey S, Zhang S, Moschetta M, Seevaratnam D, Zhang Y, Liu J, Memarzadeh M, Wu J, Manier S, Shi J, Bertrand N, Lu ZN, Nagano K, Baron R, Sacco A, Roccaro AM, Farokhzad OC, Ghobrial IM. Engineered nanomedicine for myeloma and bone microenvironment targeting. Proc Natl Acad Sci U S A 2014;111:10287-92. [PMID: 24982170 DOI: 10.1073/pnas.1401337111] [Cited by in Crossref: 181] [Cited by in F6Publishing: 186] [Article Influence: 22.6] [Reference Citation Analysis]
199 Ge Z, Li Q, Wang Y. Free Energy Calculation of Nanodiamond-Membrane Association—The Effect of Shape and Surface Functionalization. J Chem Theory Comput 2014;10:2751-8. [DOI: 10.1021/ct500194s] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 2.5] [Reference Citation Analysis]
200 Hajipour MJ, Laurent S, Aghaie A, Rezaee F, Mahmoudi M. Personalized protein coronas: a "key" factor at the nanobiointerface. Biomater Sci 2014;2:1210-21. [PMID: 32481892 DOI: 10.1039/c4bm00131a] [Cited by in Crossref: 169] [Cited by in F6Publishing: 152] [Article Influence: 21.1] [Reference Citation Analysis]
201 Benien P, Swami A. 3D tumor models: history, advances and future perspectives. Future Oncology 2014;10:1311-27. [DOI: 10.2217/fon.13.274] [Cited by in Crossref: 94] [Cited by in F6Publishing: 101] [Article Influence: 11.8] [Reference Citation Analysis]
202 Gamucci O, Bertero A, Malvindi MA, Sabella S, Pompa PP, Mazzolai B, Bardi G. Detection of fluorescent nanoparticle interactions with primary immune cell subpopulations by flow cytometry. J Vis Exp 2014. [PMID: 24747480 DOI: 10.3791/51345] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
203 Chu Z, Zhang S, Zhang B, Zhang C, Fang CY, Rehor I, Cigler P, Chang HC, Lin G, Liu R, Li Q. Unambiguous observation of shape effects on cellular fate of nanoparticles. Sci Rep 2014;4:4495. [PMID: 24675513 DOI: 10.1038/srep04495] [Cited by in Crossref: 144] [Cited by in F6Publishing: 144] [Article Influence: 18.0] [Reference Citation Analysis]
204 Gao Y, Wang ZY, Zhang J, Zhang Y, Huo H, Wang T, Jiang T, Wang S. RVG-peptide-linked trimethylated chitosan for delivery of siRNA to the brain. Biomacromolecules 2014;15:1010-8. [PMID: 24547943 DOI: 10.1021/bm401906p] [Cited by in Crossref: 74] [Cited by in F6Publishing: 77] [Article Influence: 9.3] [Reference Citation Analysis]
205 Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 2014;66:2-25. [PMID: 24270007 DOI: 10.1016/j.addr.2013.11.009] [Cited by in Crossref: 1748] [Cited by in F6Publishing: 1652] [Article Influence: 218.5] [Reference Citation Analysis]
206 Sanna V, Pala N, Sechi M. Targeted therapy using nanotechnology: focus on cancer. Int J Nanomedicine 2014;9:467-83. [PMID: 24531078 DOI: 10.2147/IJN.S36654] [Cited by in Crossref: 52] [Cited by in F6Publishing: 138] [Article Influence: 6.5] [Reference Citation Analysis]
207 Bazile D. Nanotechnologies in Drug Delivery - An Industrial Perspective. Journal of Drug Delivery Science and Technology 2014;24:12-21. [DOI: 10.1016/s1773-2247(14)50002-0] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 3.3] [Reference Citation Analysis]
208 Poma A, Guerreiro A, Caygill S, Moczko E, Piletsky S. Automatic reactor for solid-phase synthesis of molecularly imprinted polymeric nanoparticles (MIP NPs) in water. RSC Adv 2014;4:4203-6. [PMID: 26722622 DOI: 10.1039/C3RA46838K] [Cited by in Crossref: 56] [Cited by in F6Publishing: 61] [Article Influence: 7.0] [Reference Citation Analysis]
209 Xu X, Xie K, Zhang XQ, Pridgen EM, Park GY, Cui DS, Shi J, Wu J, Kantoff PW, Lippard SJ, Langer R, Walker GC, Farokhzad OC. Enhancing tumor cell response to chemotherapy through nanoparticle-mediated codelivery of siRNA and cisplatin prodrug. Proc Natl Acad Sci U S A 2013;110:18638-43. [PMID: 24167294 DOI: 10.1073/pnas.1303958110] [Cited by in Crossref: 228] [Cited by in F6Publishing: 229] [Article Influence: 25.3] [Reference Citation Analysis]
210 Raemdonck K, Braeckmans K, Demeester J, De Smedt SC. Merging the best of both worlds: hybrid lipid-enveloped matrix nanocomposites in drug delivery. Chem Soc Rev 2014;43:444-72. [PMID: 24100581 DOI: 10.1039/c3cs60299k] [Cited by in Crossref: 120] [Cited by in F6Publishing: 118] [Article Influence: 13.3] [Reference Citation Analysis]
211 Hull LC, Farrell D, Grodzinski P. Highlights of recent developments and trends in cancer nanotechnology research--view from NCI Alliance for Nanotechnology in Cancer. Biotechnol Adv 2014;32:666-78. [PMID: 23948249 DOI: 10.1016/j.biotechadv.2013.08.003] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 3.6] [Reference Citation Analysis]
212 Oh W, Kwon OS, Jang J. Conducting Polymer Nanomaterials for Biomedical Applications: Cellular Interfacing and Biosensing. Polymer Reviews 2013;53:407-42. [DOI: 10.1080/15583724.2013.805771] [Cited by in Crossref: 89] [Cited by in F6Publishing: 36] [Article Influence: 9.9] [Reference Citation Analysis]
213 Rizzo LY, Theek B, Storm G, Kiessling F, Lammers T. Recent progress in nanomedicine: therapeutic, diagnostic and theranostic applications. Curr Opin Biotechnol 2013;24:1159-66. [PMID: 23578464 DOI: 10.1016/j.copbio.2013.02.020] [Cited by in Crossref: 201] [Cited by in F6Publishing: 182] [Article Influence: 22.3] [Reference Citation Analysis]
214 Reyes-ortega F, Parra-ruiz FJ, Averick SE, Rodríguez G, Aguilar MR, Matyjaszewski K, San Román J. Smart heparin-based bioconjugates synthesized by a combination of ATRP and click chemistry. Polym Chem 2013;4:2800. [DOI: 10.1039/c3py00055a] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 2.2] [Reference Citation Analysis]
215 Sanna V, Siddiqui IA, Sechi M, Mukhtar H. Nanoformulation of natural products for prevention and therapy of prostate cancer. Cancer Lett 2013;334:142-51. [PMID: 23201598 DOI: 10.1016/j.canlet.2012.11.037] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 2.9] [Reference Citation Analysis]