BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chacko RT, Ventura J, Zhuang J, Thayumanavan S. Polymer nanogels: a versatile nanoscopic drug delivery platform. Adv Drug Deliv Rev 2012;64:836-51. [PMID: 22342438 DOI: 10.1016/j.addr.2012.02.002] [Cited by in Crossref: 440] [Cited by in F6Publishing: 450] [Article Influence: 44.0] [Reference Citation Analysis]
Number Citing Articles
1 Mumtaz S, Khattak S, Rehman FU, Muhammad P, Hanif S. Bionanocomposites as a new platform for drug delivery systems. Novel Platforms for Drug Delivery Applications 2023. [DOI: 10.1016/b978-0-323-91376-8.00007-0] [Reference Citation Analysis]
2 Jain A, Alex TS, Lang DK, Gupta S. Stimuli-responsive protein fibers for advanced applications. Smart Polymeric Nano-Constructs in Drug Delivery 2023. [DOI: 10.1016/b978-0-323-91248-8.00013-1] [Reference Citation Analysis]
3 Sanjanwala D, Londhe V, Trivedi R, Bonde S, Sawarkar S, Kale V, Patravale V. Polysaccharide-based hydrogels for drug delivery and wound management: A review. Expert Opinion on Drug Delivery 2022. [DOI: 10.1080/17425247.2022.2152791] [Reference Citation Analysis]
4 Laura Soriano Pérez M, Alejandro Funes J, Flores C, Exequiel Ibarra L, Andrea Forrellad M, Taboga O, Noelia Cariddi L, Salinas F, Héctor Ortega H, Alustiza F, Molina M. Development and biological evaluation of pNIPAM-based nanogels as vaccine carriers. International Journal of Pharmaceutics 2022. [DOI: 10.1016/j.ijpharm.2022.122435] [Reference Citation Analysis]
5 Recent Advances and Applications of Hydrogels in Medicine. Biomedical Engineering 2022. [DOI: 10.1002/9783527826674.ch3] [Reference Citation Analysis]
6 Ali AA, Abuwatfa WH, Al-Sayah MH, Husseini GA. Gold-Nanoparticle Hybrid Nanostructures for Multimodal Cancer Therapy. Nanomaterials (Basel) 2022;12:3706. [PMID: 36296896 DOI: 10.3390/nano12203706] [Reference Citation Analysis]
7 Ali AA, Al-Othman A, Al-Sayah M. Multifunctional stimuli-responsive hybrid nanogels for cancer therapy: Current status and challenges. J Control Release 2022:S0168-3659(22)00628-9. [PMID: 36170926 DOI: 10.1016/j.jconrel.2022.09.033] [Reference Citation Analysis]
8 Zhang Z, Chen H, Fang L, He H, Mao C, Zuo H. Solution-Phase Synthesis of DNA Amphiphiles for DNA Micellar Assembly. Bioconjug Chem 2022. [PMID: 36173879 DOI: 10.1021/acs.bioconjchem.2c00325] [Reference Citation Analysis]
9 Idumah CI, Nwuzor IC, Odera SR, Timothy UJ, Ngenegbo U, Tanjung FA. Recent advances in polymeric hydrogel nanoarchitectures for drug delivery applications. International Journal of Polymeric Materials and Polymeric Biomaterials. [DOI: 10.1080/00914037.2022.2120875] [Reference Citation Analysis]
10 Lian GY, Wan Y, Mak TS, Wang QM, Zhang J, Chen J, Wang ZY, Li M, Tang PM, Huang XR, Lee CS, Yu XQ, Lan HY. Self-carried nanodrug (SCND-SIS3): A targeted therapy for lung cancer with superior biocompatibility and immune boosting effects. Biomaterials 2022;:121730. [PMID: 35995622 DOI: 10.1016/j.biomaterials.2022.121730] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Topuz F, Uyar T. Advances in the development of cyclodextrin-based nanogels/microgels for biomedical applications: Drug delivery and beyond. Carbohydrate Polymers 2022. [DOI: 10.1016/j.carbpol.2022.120033] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Pinelli F, Pizzetti F, Veneruso V, Petillo E, Raghunath M, Perale G, Veglianese P, Rossi F. Biomaterial-Mediated Factor Delivery for Spinal Cord Injury Treatment. Biomedicines 2022;10:1673. [DOI: 10.3390/biomedicines10071673] [Reference Citation Analysis]
13 Wang H, Picchio ML, Calderón M. One stone, many birds: Recent advances in functional nanogels for cancer nanotheranostics. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2022;14:e1791. [PMID: 35338603 DOI: 10.1002/wnan.1791] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
14 Vijayan JG. Functionalization of Nanobiomaterials in Nanovaccinology. Nanovaccinology as Targeted Therapeutics 2022. [DOI: 10.1002/9781119858041.ch18] [Reference Citation Analysis]
15 Mehmood S, Uddin MA, Yu H, Wang L, Amin BU, Haq F, Fahad S, Haroon M. Study on synthesis of cross-linked poly(cyclotriphosphazene-co-luteolin) nanospheres and their properties for controlled drug delivery. Colloid Polym Sci. [DOI: 10.1007/s00396-022-04992-0] [Reference Citation Analysis]
16 Gao Y, Qiu W, Liang M, Ma X, Ye M, Xue P, Kang Y, Deng J, Xu Z. Active targeting redox-responsive mannosylated prodrug nanocolloids promote tumor recognition and cell internalization for enhanced colon cancer chemotherapy. Acta Biomater 2022:S1742-7061(22)00322-1. [PMID: 35640802 DOI: 10.1016/j.actbio.2022.05.046] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Kerr A, Sagita E, Mansfield EDH, Nguyen TH, Feeney OM, Pouton CW, Porter CJH, Sanchis J, Perrier S. Polymeric Nanotubes as Drug Delivery Vectors─Comparison of Covalently and Supramolecularly Assembled Constructs. Biomacromolecules 2022. [PMID: 35582852 DOI: 10.1021/acs.biomac.2c00063] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
18 Meng Q, Zhong S, Xu L, Wang J, Zhang Z, Gao Y, Cui X. Review on design strategies and considerations of polysaccharide-based smart drug delivery systems for cancer therapy. Carbohydr Polym 2022;279:119013. [PMID: 34980356 DOI: 10.1016/j.carbpol.2021.119013] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 13.0] [Reference Citation Analysis]
19 Zhu M, Lu D, Milani AH, Mahmoudi N, King SM, Saunders BR. Comparing pH-responsive nanogel swelling in dispersion and inside a polyacrylamide gel using photoluminescence spectroscopy and small-angle neutron scattering. J Colloid Interface Sci 2022;608:378-85. [PMID: 34626983 DOI: 10.1016/j.jcis.2021.09.163] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
20 Pinelli F, Saadati M, Zare EN, Makvandi P, Masi M, Sacchetti A, Rossi F. A perspective on the applications of functionalized nanogels: promises and challenges. International Materials Reviews. [DOI: 10.1080/09506608.2022.2026864] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
21 Ng JCK, Toong DWY, Ow V, Chaw SY, Toh H, Wong PEH, Venkatraman S, Chong TT, Tan LP, Huang YY, Ang HY. Progress in drug-delivery systems in cardiovascular applications: stents, balloons and nanoencapsulation. Nanomedicine (Lond) 2022. [PMID: 35060758 DOI: 10.2217/nnm-2021-0288] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
22 Karczmarzyk K, Kęsik-brodacka M. Attacking the Intruder at the Gate: Prospects of Mucosal Anti SARS-CoV-2 Vaccines. Pathogens 2022;11:117. [DOI: 10.3390/pathogens11020117] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
23 Tiwari N, Osorio‐blanco ER, Sonzogni A, Esporrín‐ubieto D, Wang H, Calderón M. Nanocarriers for Skin Applications: Where Do We Stand? Angewandte Chemie 2022;134. [DOI: 10.1002/ange.202107960] [Reference Citation Analysis]
24 Khan KU, Minhas MU, Badshah SF, Suhail M, Ahmad A, Ijaz S. Overview of nanoparticulate strategies for solubility enhancement of poorly soluble drugs. Life Sci 2022;291:120301. [PMID: 34999114 DOI: 10.1016/j.lfs.2022.120301] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 13.0] [Reference Citation Analysis]
25 Raimond L, Halbus AF, Athab ZH, Paunov VN. Antimould action of Ziram and IPBC loaded in functionalised nanogels against Aspergillus niger and Penicillium chrysogenum. Mater Adv 2022. [DOI: 10.1039/d2ma00271j] [Reference Citation Analysis]
26 Mahendiran B, Azeez NA, Muthusamy S, Krishnakumar GS. Polymer-based bionanomaterials for targeted drug delivery. Fundamentals of Bionanomaterials 2022. [DOI: 10.1016/b978-0-12-824147-9.00009-1] [Reference Citation Analysis]
27 Murugan SS, Kim S, Dalavi PA, Venkatesan J, Seong GH. Biocomposites-Based on Chitooligosaccharides for Biomedical Applications. Chitooligosaccharides 2022. [DOI: 10.1007/978-3-030-92806-3_11] [Reference Citation Analysis]
28 Akshay Kumar K, Ramakrishnan RK, Černík M, Padil VV. Tree gum-based nanostructures and their biomedical applications. Micro- and Nanoengineered Gum-Based Biomaterials for Drug Delivery and Biomedical Applications 2022. [DOI: 10.1016/b978-0-323-90986-0.00008-x] [Reference Citation Analysis]
29 Upadhyay LSB, Kumar N. Nanocarriers: A boon to the drug delivery systems. Advances in Nanotechnology-Based Drug Delivery Systems 2022. [DOI: 10.1016/b978-0-323-88450-1.00019-3] [Reference Citation Analysis]
30 Bera S, Barman R, Ghosh S. Hyperbranched vs. linear poly(disulfide) for intracellular drug delivery. Polym Chem . [DOI: 10.1039/d2py00896c] [Reference Citation Analysis]
31 Ahmed F, Nuruzzaman M, Mondal MIH. Photo-responsive hydrogel-treated fabrics for smart drug delivery systems. Medical Textiles from Natural Resources 2022. [DOI: 10.1016/b978-0-323-90479-7.00024-5] [Reference Citation Analysis]
32 Varalakshmi B, Karpagam T, Anand AV, Balamuralikrishnan B. Nanoscale Smart Drug Delivery Systems and Techniques of Drug Loading to Nanoarchitectures. Nanotechnology in the Life Sciences 2022. [DOI: 10.1007/978-3-030-80371-1_2] [Reference Citation Analysis]
33 Sangam S, Garg P, Sanyal T, Pahari S, Khurana SMP, Mukherjee M. Graphene Quantum Dots and Their Hybrid Hydrogels: A Multifaceted Platform for Theranostic Applications. Synthesis and Applications of Nanoparticles 2022. [DOI: 10.1007/978-981-16-6819-7_20] [Reference Citation Analysis]
34 Costa ALR, de la Torre LG. Gellan gum nanoparticles in drug delivery. Micro- and Nanoengineered Gum-Based Biomaterials for Drug Delivery and Biomedical Applications 2022. [DOI: 10.1016/b978-0-323-90986-0.00009-1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
35 Liu P, Li Y, Wang R, Ren F, Wang X. Oxidative Stress and Antioxidant Nanotherapeutic Approaches for Inflammatory Bowel Disease. Biomedicines 2022;10:85. [DOI: 10.3390/biomedicines10010085] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
36 Rajdev P, Dey P, Ghosh I, Khamrui R, Kar J, Jana SS, Ghosh S. Shape-Dependent Cellular Uptake of Nanostructures Produced from Supramolecular Structure-Directing Unit-Appended Hydrophilic Polymers. ACS Macro Lett 2021;10:1467-73. [PMID: 35549136 DOI: 10.1021/acsmacrolett.1c00588] [Reference Citation Analysis]
37 Wu P, Gao J, Prasad P, Dutta K, Kanjilal P, Thayumanavan S. Influence of Polymer Structure and Architecture on Drug Loading and Redox-Triggered Release. Biomacromolecules 2021. [PMID: 34890192 DOI: 10.1021/acs.biomac.1c01295] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
38 Lin H, Chiang H, Jiang W, Lan Y, Huang G, Hsieh M, Kuo S, Lo C, Chiang Y. Exploitation of a rod-shaped, acid-labile curcumin-loaded polymeric nanogel system in the treatment of systemic inflammation. Materials Science and Engineering: C 2021. [DOI: 10.1016/j.msec.2021.112597] [Reference Citation Analysis]
39 Wang H, Gao L, Fan T, Zhang C, Zhang B, Al-Hartomy OA, Al-Ghamdi A, Wageh S, Qiu M, Zhang H. Strategic Design of Intelligent-Responsive Nanogel Carriers for Cancer Therapy. ACS Appl Mater Interfaces 2021;13:54621-47. [PMID: 34767342 DOI: 10.1021/acsami.1c13634] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
40 He Q, Shen J, Guan X, Han Y, Jiang X, Shen X, Huang X, Chen Y, Lei C, Xiao X, Lin W. A Zr‐Based MOF with N‐heterocycle and its pH‐controlled drug release behavior. Zeitschrift anorg allge chemie 2022;648. [DOI: 10.1002/zaac.202100248] [Reference Citation Analysis]
41 Azady MAR, Ahmed S, Islam MS. A review on polymer nanocomposite hydrogel preparation, characterization, and applications. Eur J Chem 2021;12:329-339. [DOI: 10.5155/eurjchem.12.3.329-339.2100] [Reference Citation Analysis]
42 Mansouri Shirazi N, Eslahi N, Gholipour-kanani A. Production and Characterization of Keratin/Tragacanth Gum Nanohydrogels for Drug Delivery in Medical Textiles. Front Mater 2021;8:720385. [DOI: 10.3389/fmats.2021.720385] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
43 Guo J, Yang Z, Wang X, Xu Y, Lu Y, Qin Z, Zhang L, Xu J, Wang W, Zhang J, Tang J. Advances in Nanomaterials for Injured Heart Repair. Front Bioeng Biotechnol 2021;9:686684. [PMID: 34513807 DOI: 10.3389/fbioe.2021.686684] [Reference Citation Analysis]
44 Tiwari N, Osorio-Blanco ER, Sonzogni A, Esporrín-Ubieto D, Wang H, Calderón M. Nanocarriers for Skin Applications: Where Do We Stand? Angew Chem Int Ed Engl 2021. [PMID: 34487599 DOI: 10.1002/anie.202107960] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
45 Anooj E, Charumathy M, Sharma V, Vibala B, Gopukumar S, Jainab SB, Vallinayagam S. Nanogels: An overview of properties, biomedical applications, future research trends and developments. Journal of Molecular Structure 2021;1239:130446. [DOI: 10.1016/j.molstruc.2021.130446] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
46 Anson F, Thayumanavan S, Hardy JA. Exogenous Introduction of Initiator and Executioner Caspases Results in Different Apoptotic Outcomes. JACS Au 2021;1:1240-56. [PMID: 34467362 DOI: 10.1021/jacsau.1c00261] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
47 Schötz S, Reisbeck F, Schmitt AC, Dimde M, Quaas E, Achazi K, Haag R. Tunable Polyglycerol-Based Redox-Responsive Nanogels for Efficient Cytochrome C Delivery. Pharmaceutics 2021;13:1276. [PMID: 34452237 DOI: 10.3390/pharmaceutics13081276] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
48 Hashemzadeh A, Drummen GPC, Avan A, Darroudi M, Khazaei M, Khajavian R, Rangrazi A, Mirzaei M. When metal-organic framework mediated smart drug delivery meets gastrointestinal cancers. J Mater Chem B 2021;9:3967-82. [PMID: 33908592 DOI: 10.1039/d1tb00155h] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
49 Rajdev P, Ghosh S. Thermodynamic Insights into Protein Adsorption on Supramolecular Assemblies of π-Amphiphiles. J Phys Chem B 2021;125:8981-8. [PMID: 34324355 DOI: 10.1021/acs.jpcb.1c03283] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
50 Matusiak M, Rurarz BP, Kadłubowski S, Wolszczak M, Karczmarczyk U, Maurin M, Kolesińska B, Ulański P. Synthesis and Properties of Targeted Radioisotope Carriers Based on Poly(Acrylic Acid) Nanogels. Pharmaceutics 2021;13:1240. [PMID: 34452201 DOI: 10.3390/pharmaceutics13081240] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
51 Li C, Obireddy SR, Lai WF. Preparation and use of nanogels as carriers of drugs. Drug Deliv 2021;28:1594-602. [PMID: 34308729 DOI: 10.1080/10717544.2021.1955042] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 9.0] [Reference Citation Analysis]
52 Chander S, Kulkarni GT, Dhiman N, Kharkwal H. Protein-Based Nanohydrogels for Bioactive Delivery. Front Chem 2021;9:573748. [PMID: 34307293 DOI: 10.3389/fchem.2021.573748] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
53 Rathore S, Rajoriya V, Kushwaha V, Jain S, Kashaw SK. Preparation and Characterization of 5-Fluorouracil Loaded Nanogels for Skin Cancer Treatments: In Vitro Drug Release, Cytotoxicity and Cellular Uptake Analysis. CNANOM 2021;11:127-138. [DOI: 10.2174/2468187311666210301112644] [Reference Citation Analysis]
54 Zhao Q, Zhang S, Wu F, Li D, Zhang X, Chen W, Xing B. Rationales Design von Nanogelen zur Überwindung biologischer Barrieren auf verschiedenen Verabreichungswegen. Angew Chem 2021;133:14884-14903. [DOI: 10.1002/ange.201911048] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
55 Peng Y, Gao Y, Yang C, Guo R, Shi X, Cao X. Low-Molecular-Weight Poly(ethylenimine) Nanogels Loaded with Ultrasmall Iron Oxide Nanoparticles for T1-Weighted MR Imaging-Guided Gene Therapy of Sarcoma. ACS Appl Mater Interfaces 2021;13:27806-13. [PMID: 34105346 DOI: 10.1021/acsami.1c04081] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
56 Guo Y, Sun Q, Wu FG, Dai Y, Chen X. Polyphenol-Containing Nanoparticles: Synthesis, Properties, and Therapeutic Delivery. Adv Mater 2021;33:e2007356. [PMID: 33876449 DOI: 10.1002/adma.202007356] [Cited by in Crossref: 63] [Cited by in F6Publishing: 71] [Article Influence: 63.0] [Reference Citation Analysis]
57 Mohammadi R, Saboury A, Javanbakht S, Foroutan R, Shaabani A. Carboxymethylcellulose/polyacrylic acid/starch-modified Fe3O4 interpenetrating magnetic nanocomposite hydrogel beads as pH-sensitive carrier for oral anticancer drug delivery system. European Polymer Journal 2021;153:110500. [DOI: 10.1016/j.eurpolymj.2021.110500] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 13.0] [Reference Citation Analysis]
58 Zhang Y, He P, Zhang P, Yi X, Xiao C, Chen X. Polypeptides-Drug Conjugates for Anticancer Therapy. Adv Healthc Mater 2021;10:e2001974. [PMID: 33929786 DOI: 10.1002/adhm.202001974] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 15.0] [Reference Citation Analysis]
59 Carvalho SG, Silvestre ALP, Martins Dos Santos A, Fonseca-Santos B, Rodrigues WD, Palmira Daflon Gremião M, Chorilli M, Villanova JCO. Polymeric-based drug delivery systems for veterinary use: State of the art. Int J Pharm 2021;604:120756. [PMID: 34058307 DOI: 10.1016/j.ijpharm.2021.120756] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
60 Wu Q, Zhang Q, Yu T, Wang X, Jia C, Zhao Z, Zhao J. Self-Assembled Hybrid Nanogel as a Multifunctional Theranostic Probe for Enzyme-Regulated Ultrasound Imaging and Tumor Therapy. ACS Appl Bio Mater 2021;4:4244-53. [PMID: 35006837 DOI: 10.1021/acsabm.1c00079] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 9.0] [Reference Citation Analysis]
61 Oparin RD, Vaksler YA, Krestyaninov MA, Idrissi A, Kiselev MG. Possibility of dopant morphology control in the process of polymer impregnation with pharmaceuticals in a supercritical CO2 medium. Journal of Molecular Liquids 2021;330:115657. [DOI: 10.1016/j.molliq.2021.115657] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
62 Yu L, Kong L, Xie J, Wang W, Chang C, Che H, Liu M. Reduction-sensitive N, N'-Bis(acryloyl) cystinamide-polymerized Nanohydrogel as a Potential Nanocarrier for Paclitaxel Delivery. Des Monomers Polym 2021;24:98-105. [PMID: 33967595 DOI: 10.1080/15685551.2021.1914398] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
63 Keskin D, Zu G, Forson AM, Tromp L, Sjollema J, van Rijn P. Nanogels: A novel approach in antimicrobial delivery systems and antimicrobial coatings. Bioact Mater 2021;6:3634-57. [PMID: 33898869 DOI: 10.1016/j.bioactmat.2021.03.004] [Cited by in Crossref: 25] [Cited by in F6Publishing: 29] [Article Influence: 25.0] [Reference Citation Analysis]
64 Korzhikov-Vlakh V, Tennikova T. Nanogels Capable of Triggered Release. Adv Biochem Eng Biotechnol 2021;178:99-146. [PMID: 33665715 DOI: 10.1007/10_2021_163] [Reference Citation Analysis]
65 Casalini T. Not only in silico drug discovery: Molecular modeling towards in silico drug delivery formulations. J Control Release 2021;332:390-417. [PMID: 33675875 DOI: 10.1016/j.jconrel.2021.03.005] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 15.0] [Reference Citation Analysis]
66 Spencer DS, Shodeinde AB, Beckman DW, Luu BC, Hodges HR, Peppas NA. Cytocompatibility, membrane disruption, and siRNA delivery using environmentally responsive cationic nanogels. J Control Release 2021;332:608-19. [PMID: 33675879 DOI: 10.1016/j.jconrel.2021.03.004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
67 Lu J, Cai L, Dai Y, Liu Y, Zuo F, Ni C, Shi M, Li J. Polydopamine-Based Nanoparticles for Photothermal Therapy/Chemotherapy and their Synergistic Therapy with Autophagy Inhibitor to Promote Antitumor Treatment. Chem Rec 2021;21:781-96. [PMID: 33634962 DOI: 10.1002/tcr.202000170] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 20.0] [Reference Citation Analysis]
68 Xue X, Hu Y, Deng Y, Su J. Recent Advances in Design of Functional Biocompatible Hydrogels for Bone Tissue Engineering. Adv Funct Mater 2021;31:2009432. [DOI: 10.1002/adfm.202009432] [Cited by in Crossref: 61] [Cited by in F6Publishing: 72] [Article Influence: 61.0] [Reference Citation Analysis]
69 Zhao Q, Zhang S, Wu F, Li D, Zhang X, Chen W, Xing B. Rational Design of Nanogels for Overcoming the Biological Barriers in Various Administration Routes. Angew Chem Int Ed 2021;60:14760-78. [DOI: 10.1002/anie.201911048] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 19.0] [Reference Citation Analysis]
70 Peng S, Ouyang B, Xin Y, Zhao W, Shen S, Zhan M, Lu L. Hypoxia-degradable and long-circulating zwitterionic phosphorylcholine-based nanogel for enhanced tumor drug delivery. Acta Pharm Sin B 2021;11:560-71. [PMID: 33643831 DOI: 10.1016/j.apsb.2020.08.012] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 16.0] [Reference Citation Analysis]
71 Gerami SE, Pourmadadi M, Fatoorehchi H, Yazdian F, Rashedi H, Nigjeh MN. Preparation of pH-sensitive chitosan/polyvinylpyrrolidone/α-Fe2O3 nanocomposite for drug delivery application: Emphasis on ameliorating restrictions. Int J Biol Macromol 2021;173:409-20. [PMID: 33454326 DOI: 10.1016/j.ijbiomac.2021.01.067] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 22.0] [Reference Citation Analysis]
72 Cao XT, Vu-quang H, Doan V, Nguyen VC. One-step approach of dual-responsive prodrug nanogels via Diels-Alder reaction for drug delivery. Colloid Polym Sci 2021;299:675-83. [DOI: 10.1007/s00396-020-04789-z] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
73 Skibba M, Drelich A, Poellmann M, Hong S, Brasier AR. Nanoapproaches to Modifying Epigenetics of Epithelial Mesenchymal Transition for Treatment of Pulmonary Fibrosis. Front Pharmacol 2020;11:607689. [PMID: 33384604 DOI: 10.3389/fphar.2020.607689] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 15.0] [Reference Citation Analysis]
74 Gupta P, Gupta H, Poluri KM. Biomedical applications of polysaccharide-based nanocomposites from fungal origin. Microbial and Natural Macromolecules 2021. [DOI: 10.1016/b978-0-12-820084-1.00010-7] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
75 Zhang L, Fu L, Zhang X, Chen L, Cai Q, Yang X. Hierarchical and heterogeneous hydrogel system as a promising strategy for diversified interfacial tissue regeneration. Biomater Sci 2021;9:1547-73. [DOI: 10.1039/d0bm01595d] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
76 Mosaiab T, Farr DC, Kiefel MJ, Houston TA. Carbohydrate Modified Non-Metallic Nanomaterials and Their Application Against Infectious Diseases. Comprehensive Glycoscience 2021. [DOI: 10.1016/b978-0-12-819475-1.00096-1] [Reference Citation Analysis]
77 Morales-moctezuma MD, Spain SG. The effects of cononsolvents on the synthesis of responsive particles via polymerisation-induced thermal self-assembly. Polym Chem 2021;12:4696-706. [DOI: 10.1039/d1py00396h] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
78 Jiang G, Wang N, Jia L, Che H, Wang L, Yang J, Xu H, Wu C, Liu M. Multi-functional DNA-conjugated nanohydrogels for aptamer-directed breast cancer cell targeting. New J Chem 2021;45:20410-20418. [DOI: 10.1039/d1nj04152e] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
79 Dispenza C, Giacomazza D, Jonsson M. Micro- to Nanoscale Bio-Hybrid Hydrogels Engineered by Ionizing Radiation. Biomolecules 2020;11:47. [PMID: 33396401 DOI: 10.3390/biom11010047] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
80 Saha P, Santi M, Emondts M, Roth H, Rahimi K, Großkurth J, Ganguly R, Wessling M, Singha NK, Pich A. Stimuli-Responsive Zwitterionic Core–Shell Microgels for Antifouling Surface Coatings. ACS Appl Mater Interfaces 2020;12:58223-38. [DOI: 10.1021/acsami.0c17427] [Cited by in Crossref: 18] [Cited by in F6Publishing: 22] [Article Influence: 9.0] [Reference Citation Analysis]
81 Pooresmaeil M, Namazi H. pH-sensitive ternary Fe3O4/GQDs@G hybrid microspheres; Synthesis, characterization and drug delivery application. Journal of Alloys and Compounds 2020;846:156419. [DOI: 10.1016/j.jallcom.2020.156419] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 11.5] [Reference Citation Analysis]
82 Preman NK, Barki RR, Vijayan A, Sanjeeva SG, Johnson RP. Recent developments in stimuli-responsive polymer nanogels for drug delivery and diagnostics: A review. European Journal of Pharmaceutics and Biopharmaceutics 2020;157:121-53. [DOI: 10.1016/j.ejpb.2020.10.009] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 11.5] [Reference Citation Analysis]
83 Ashfaq A, Clochard MC, Coqueret X, Dispenza C, Driscoll MS, Ulański P, Al-Sheikhly M. Polymerization Reactions and Modifications of Polymers by Ionizing Radiation. Polymers (Basel) 2020;12:E2877. [PMID: 33266261 DOI: 10.3390/polym12122877] [Cited by in Crossref: 79] [Cited by in F6Publishing: 83] [Article Influence: 39.5] [Reference Citation Analysis]
84 Golińska P, Wypij M. Emerging Applications of Nanomaterials in the Diagnosis and Treatment of Gastrointestinal Disorders. Nanobiotechnology in Diagnosis, Drug Delivery, and Treatment 2020. [DOI: 10.1002/9781119671732.ch3] [Reference Citation Analysis]
85 Judah HL, Liu P, Zarbakhsh A, Resmini M. Influence of Buffers, Ionic Strength, and pH on the Volume Phase Transition Behavior of Acrylamide-Based Nanogels. Polymers (Basel) 2020;12:E2590. [PMID: 33158221 DOI: 10.3390/polym12112590] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
86 de la Cruz N, Sousa-herves A, Rojo J. Glyconanogels as a versatile platform for the multivalent presentation of carbohydrates: From monosaccharides to dendritic glycostructures. European Polymer Journal 2020;140:110023. [DOI: 10.1016/j.eurpolymj.2020.110023] [Reference Citation Analysis]
87 Basak S, Khare HA, Roursgaard M, Kempen PJ, Lee JH, Bazban-Shotorbani S, Kræmer M, Chernyy S, Andresen TL, Almdal K, Kamaly N. Simultaneous Cross-Linking and Cross-Polymerization of Enzyme Responsive Polyethylene Glycol Nanogels in Confined Aqueous Droplets for Reduction of Low-Density Lipoprotein Oxidation. Biomacromolecules 2021;22:386-98. [PMID: 33125232 DOI: 10.1021/acs.biomac.0c01238] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
88 Pinelli F, Ortolà ÓF, Makvandi P, Perale G, Rossi F. In vivo drug delivery applications of nanogels: a review. Nanomedicine (Lond) 2020;15:2707-27. [PMID: 33103960 DOI: 10.2217/nnm-2020-0274] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 11.0] [Reference Citation Analysis]
89 Gao J, Dutta K, Zhuang J, Thayumanavan S. Cellular‐ and Subcellular‐Targeted Delivery Using a Simple All‐in‐One Polymeric Nanoassembly. Angew Chem 2020;132:23672-6. [DOI: 10.1002/ange.202008272] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
90 Gao J, Dutta K, Zhuang J, Thayumanavan S. Cellular‐ and Subcellular‐Targeted Delivery Using a Simple All‐in‐One Polymeric Nanoassembly. Angew Chem Int Ed 2020;59:23466-70. [DOI: 10.1002/anie.202008272] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 8.5] [Reference Citation Analysis]
91 Lima CSA, Balogh TS, Varca JPRO, Varca GHC, Lugão AB, A Camacho-Cruz L, Bucio E, Kadlubowski SS. An Updated Review of Macro, Micro, and Nanostructured Hydrogels for Biomedical and Pharmaceutical Applications. Pharmaceutics 2020;12:E970. [PMID: 33076231 DOI: 10.3390/pharmaceutics12100970] [Cited by in Crossref: 27] [Cited by in F6Publishing: 32] [Article Influence: 13.5] [Reference Citation Analysis]
92 Yuan Y, Jin P, Wang Y, Zhao X, Hu Q, Wu W, Huang J, Zhang N. A dendritic, redox-responsive, supramolecular (Dr.S) system for lysis-triggered delivery for drug-resistant renal cancer. RSC Adv 2020;10:37826-33. [PMID: 35515145 DOI: 10.1039/d0ra06444k] [Reference Citation Analysis]
93 Zhang M, Asghar S, Tian C, Hu Z, Ping Q, Chen Z, Shao F, Xiao Y. Lactoferrin/phenylboronic acid-functionalized hyaluronic acid nanogels loading doxorubicin hydrochloride for targeting glioma. Carbohydr Polym 2021;253:117194. [PMID: 33278970 DOI: 10.1016/j.carbpol.2020.117194] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 8.0] [Reference Citation Analysis]
94 Makvandi P, Iftekhar S, Pizzetti F, Zarepour A, Zare EN, Ashrafizadeh M, Agarwal T, Padil VVT, Mohammadinejad R, Sillanpaa M, Maiti TK, Perale G, Zarrabi A, Rossi F. Functionalization of polymers and nanomaterials for water treatment, food packaging, textile and biomedical applications: a review. Environ Chem Lett 2021;19:583-611. [DOI: 10.1007/s10311-020-01089-4] [Cited by in Crossref: 62] [Cited by in F6Publishing: 36] [Article Influence: 31.0] [Reference Citation Analysis]
95 Ayoubi‐joshaghani MH, Seidi K, Azizi M, Jaymand M, Javaheri T, Jahanban‐esfahlan R, Hamblin MR. Potential Applications of Advanced Nano/Hydrogels in Biomedicine: Static, Dynamic, Multi‐Stage, and Bioinspired. Adv Funct Mater 2020;30:2004098. [DOI: 10.1002/adfm.202004098] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 16.5] [Reference Citation Analysis]
96 Zhou W, Yang G, Ni X, Diao S, Xie C, Fan Q. Recent Advances in Crosslinked Nanogel for Multimodal Imaging and Cancer Therapy. Polymers (Basel) 2020;12:E1902. [PMID: 32846923 DOI: 10.3390/polym12091902] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
97 Nele V, Wojciechowski JP, Armstrong JPK, Stevens MM. Tailoring Gelation Mechanisms for Advanced Hydrogel Applications. Adv Funct Mater 2020;30:2002759. [DOI: 10.1002/adfm.202002759] [Cited by in Crossref: 71] [Cited by in F6Publishing: 72] [Article Influence: 35.5] [Reference Citation Analysis]
98 Abbaszadeh S, Rashidipour M, Khosravi P, Shahryarhesami S, Ashrafi B, Kaviani M, Moradi Sarabi M. Biocompatibility, Cytotoxicity, Antimicrobial and Epigenetic Effects of Novel Chitosan-Based Quercetin Nanohydrogel in Human Cancer Cells. Int J Nanomedicine 2020;15:5963-75. [PMID: 32884259 DOI: 10.2147/IJN.S263013] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
99 Ding S, Mustafa B, Anton N, Serra CA, Chan-Seng D, Vandamme TF. Production of lipophilic nanogels by spontaneous emulsification. Int J Pharm 2020;585:119481. [PMID: 32473375 DOI: 10.1016/j.ijpharm.2020.119481] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
100 Spencer DS, Shodeinde AB, Beckman DW, Luu BC, Hodges HR, Peppas NA. Biodegradable cationic nanogels with tunable size, swelling and pKa for drug delivery. Int J Pharm 2020;588:119691. [PMID: 32721561 DOI: 10.1016/j.ijpharm.2020.119691] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
101 Namazi Z, Jafarzadeh Kashi TS, Erfan M, Najafi F, Bakhtiari L, Ghodsi SR, Farhadnejad H. Facile Synthesis and Characterization of Ibuprofen-mesoporous Hydroxyapatite Nanohybrid as a Sustained Drug Delivery System. Iran J Pharm Res 2019;18:1196-211. [PMID: 32641932 DOI: 10.22037/ijpr.2019.1100769] [Reference Citation Analysis]
102 Varma LT, Singh N, Gorain B, Choudhury H, Tambuwala MM, Kesharwani P, Shukla R. Recent Advances in Self-Assembled Nanoparticles for Drug Delivery. CDD 2020;17:279-91. [DOI: 10.2174/1567201817666200210122340] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 6.5] [Reference Citation Analysis]
103 Bej R, Achazi K, Haag R, Ghosh S. Polymersome Formation by Amphiphilic Polyglycerol- b -polydisulfide- b -polyglycerol and Glutathione-Triggered Intracellular Drug Delivery. Biomacromolecules 2020;21:3353-63. [DOI: 10.1021/acs.biomac.0c00775] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
104 Yuan W, Li Z, Xie X, Zhang ZY, Bian L. Bisphosphonate-based nanocomposite hydrogels for biomedical applications. Bioact Mater 2020;5:819-31. [PMID: 32637746 DOI: 10.1016/j.bioactmat.2020.06.002] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 14.5] [Reference Citation Analysis]
105 Ma Y, Cai F, Li Y, Chen J, Han F, Lin W. A review of the application of nanoparticles in the diagnosis and treatment of chronic kidney disease. Bioact Mater 2020;5:732-43. [PMID: 32596555 DOI: 10.1016/j.bioactmat.2020.05.002] [Cited by in Crossref: 26] [Cited by in F6Publishing: 18] [Article Influence: 13.0] [Reference Citation Analysis]
106 Besse HC, Chen Y, Scheeren HW, Metselaar JM, Lammers T, Moonen CTW, Hennink WE, Deckers R. A Doxorubicin-Glucuronide Prodrug Released from Nanogels Activated by High-Intensity Focused Ultrasound Liberated β-Glucuronidase. Pharmaceutics 2020;12:E536. [PMID: 32532061 DOI: 10.3390/pharmaceutics12060536] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
107 Oehrl A, Schötz S, Haag R. Synthesis of pH-degradable polyglycerol-based nanogels by iEDDA-mediated crosslinking for encapsulation of asparaginase using inverse nanoprecipitation. Colloid Polym Sci 2020;298:719-33. [DOI: 10.1007/s00396-020-04675-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
108 vander Straeten A, Dupont-gillain C. Highly Hydrated Thin Films Obtained via Templating of the Polyelectrolyte Multilayer Internal Structure with Proteins. ACS Appl Polym Mater 2020;2:2602-11. [DOI: 10.1021/acsapm.0c00243] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
109 Meng QY, Cong HL, Hu H, Xu FJ. Rational design and latest advances of codelivery systems for cancer therapy. Mater Today Bio 2020;7:100056. [PMID: 32510051 DOI: 10.1016/j.mtbio.2020.100056] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 12.0] [Reference Citation Analysis]
110 Zhang N, Mei K, Guan P, Hu X, Zhao Y. Protein-Based Artificial Nanosystems in Cancer Therapy. Small 2020;16:e1907256. [PMID: 32378796 DOI: 10.1002/smll.201907256] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 12.0] [Reference Citation Analysis]
111 Rahimivand M, Tafvizi F, Noorbazargan H. Synthesis and characterization of alginate nanocarrier encapsulating Artemisia ciniformis extract and evaluation of the cytotoxicity and apoptosis induction in AGS cell line. Int J Biol Macromol 2020;158:338-57. [PMID: 32380103 DOI: 10.1016/j.ijbiomac.2020.05.006] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
112 Rossetti A, Pizzetti F, Rossi F, Mauri E, Borghi E, Ottaviano E, Sacchetti A. Synthesis and characterization of carbomer-based hydrogels for drug delivery applications. International Journal of Polymeric Materials and Polymeric Biomaterials 2021;70:743-53. [DOI: 10.1080/00914037.2020.1760275] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
113 Shah S, Rangaraj N, Laxmikeshav K, Sampathi S. “Nanogels as drug carriers – Introduction, chemical aspects, release mechanisms and potential applications”. International Journal of Pharmaceutics 2020;581:119268. [DOI: 10.1016/j.ijpharm.2020.119268] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 16.5] [Reference Citation Analysis]
114 Chen Y, Lu Y, Lee RJ, Xiang G. Nano Encapsulated Curcumin: And Its Potential for Biomedical Applications. Int J Nanomedicine 2020;15:3099-120. [PMID: 32431504 DOI: 10.2147/IJN.S210320] [Cited by in Crossref: 58] [Cited by in F6Publishing: 63] [Article Influence: 29.0] [Reference Citation Analysis]
115 Kavand A, Anton N, Vandamme T, Serra CA, Chan-seng D. Synthesis and functionalization of hyperbranched polymers for targeted drug delivery. Journal of Controlled Release 2020;321:285-311. [DOI: 10.1016/j.jconrel.2020.02.019] [Cited by in Crossref: 45] [Cited by in F6Publishing: 35] [Article Influence: 22.5] [Reference Citation Analysis]
116 Wei P, Czaplewska JA, Wang L, Schubert S, Brendel JC, Schubert US. Straightforward Access to Glycosylated, Acid Sensitive Nanogels by Host-Guest Interactions with Sugar-Modified Pillar[5]arenes. ACS Macro Lett 2020;9:540-5. [PMID: 35648509 DOI: 10.1021/acsmacrolett.0c00030] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
117 Ilyin SO, Makarova VV, Polyakova MY, Kulichikhin VG. Phase state and rheology of polyisobutylene blends with silicone resin. Rheol Acta 2020;59:375-86. [DOI: 10.1007/s00397-020-01208-6] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
118 Vijayan VM, Vasudevan PN, Thomas V. Polymeric Nanogels for Theranostic Applications: A Mini-Review. CNANO 2020;16:392-8. [DOI: 10.2174/1573413715666190717145040] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
119 Kim HJ, Oh HJ, Park JS, Lee JS, Kim JH, Park KH. Direct Conversion of Human Dermal Fibroblasts into Cardiomyocyte-Like Cells Using CiCMC Nanogels Coupled with Cardiac Transcription Factors and a Nucleoside Drug. Adv Sci (Weinh) 2020;7:1901818. [PMID: 32274291 DOI: 10.1002/advs.201901818] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
120 Yin Y, Hu B, Yuan X, Cai L, Gao H, Yang Q. Nanogel: A Versatile Nano-Delivery System for Biomedical Applications. Pharmaceutics 2020;12:E290. [PMID: 32210184 DOI: 10.3390/pharmaceutics12030290] [Cited by in Crossref: 63] [Cited by in F6Publishing: 70] [Article Influence: 31.5] [Reference Citation Analysis]
121 Ni Y, Qian Z, Yin Y, Yuan W, Wu F, Jin T. Polyvinyl Alcohol/Chitosan/Polyhexamethylene Biguanide Phase Separation System: A Potential Topical Antibacterial Formulation with Enhanced Antimicrobial Effect. Molecules 2020;25:E1334. [PMID: 32183411 DOI: 10.3390/molecules25061334] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
122 Yuan C, Chen J, Jia Y, Yin D. Preparation of polyglycidyl methacrylate microspheres and nanocomposite hydrogels crosslinked by hydrogen bonds. J Polym Res 2020;27. [DOI: 10.1007/s10965-020-2034-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
123 Hajebi S, Abdollahi A, Roghani-Mamaqani H, Salami-Kalajahi M. Temperature-Responsive Poly(N-Isopropylacrylamide) Nanogels: The Role of Hollow Cavities and Different Shell Cross-Linking Densities on Doxorubicin Loading and Release. Langmuir 2020;36:2683-94. [PMID: 32130018 DOI: 10.1021/acs.langmuir.9b03892] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 19.0] [Reference Citation Analysis]
124 Hassan A, Saeed A, Afzal S, Shahid M, Amin I, Idrees M. Applications and hazards associated with carbon nanotubes in biomedical sciences. Inorganic and Nano-Metal Chemistry 2020;50:741-52. [DOI: 10.1080/24701556.2020.1724151] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
125 Jiang Z, Thayumanavan S. Non-cationic Material Design for Nucleic Acid Delivery. Adv Ther (Weinh) 2020;3:1900206. [PMID: 34164572 DOI: 10.1002/adtp.201900206] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 12.0] [Reference Citation Analysis]
126 Ghosh T, Biswas A, Gavel PK, Das AK. Engineered Dynamic Boronate Ester-Mediated Self-Healable Biocompatible G-Quadruplex Hydrogels for Sustained Release of Vitamins. Langmuir 2020;36:1574-84. [PMID: 31984750 DOI: 10.1021/acs.langmuir.9b03837] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 10.5] [Reference Citation Analysis]
127 Pinelli F, Perale G, Rossi F. Coating and Functionalization Strategies for Nanogels and Nanoparticles for Selective Drug Delivery. Gels 2020;6:E6. [PMID: 32033057 DOI: 10.3390/gels6010006] [Cited by in Crossref: 43] [Cited by in F6Publishing: 44] [Article Influence: 21.5] [Reference Citation Analysis]
128 Rosso AP, Martinelli M. Preparation and characterization of dendronized chitosan/gelatin-based nanogels. European Polymer Journal 2020;124:109506. [DOI: 10.1016/j.eurpolymj.2020.109506] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
129 Ali ES, Sharker SM, Islam MT, Khan IN, Shaw S, Rahman MA, Uddin SJ, Shill MC, Rehman S, Das N, Ahmad S, Shilpi JA, Tripathi S, Mishra SK, Mubarak MS. Targeting cancer cells with nanotherapeutics and nanodiagnostics: Current status and future perspectives. Semin Cancer Biol 2021;69:52-68. [PMID: 32014609 DOI: 10.1016/j.semcancer.2020.01.011] [Cited by in Crossref: 61] [Cited by in F6Publishing: 65] [Article Influence: 30.5] [Reference Citation Analysis]
130 Spatarelu CP, Radu Chiriac AL, Cursaru B, Iordache TV, Gavrila AM, Cojocaru CT, Botez RE, Trica B, Sarbu A, Teodorescu M, Tofan V, Perrin FX, Zaharia A. Composite Nanogels Based on Zeolite-Poly(ethylene glycol) Diacrylate for Controlled Drug Delivery. Nanomaterials (Basel) 2020;10:E195. [PMID: 31979174 DOI: 10.3390/nano10020195] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
131 Maroto-centeno JA, Quesada-pérez M. Coarse-grained simulations of diffusion controlled release of drugs from neutral nanogels: Effect of excluded volume interactions. J Chem Phys 2020;152:024107. [DOI: 10.1063/1.5133900] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
132 Vergara‐castañeda HA, Luna‐bárcenas G, Pool H. Emerging and Potential Bio‐Applications of Agro‐Industrial By‐products Through Implementation of Nanobiotechnology. Food Wastes and By‐products 2020. [DOI: 10.1002/9781119534167.ch14] [Reference Citation Analysis]
133 Khan S, Aazam ES, Jain SK. Synthesis and Characterization of β-Cyclodextrin/poly(1-naphthylamine) Inclusion Complex and In-Vitro Release Studies of Metformin Hydrochloride. J Polym Environ 2020;28:1106-16. [DOI: 10.1007/s10924-019-01646-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
134 Joyce P, Schultz HB, Meola TR, Prestidge CA. Polymer lipid hybrid (PLH) formulations. Delivery of Drugs 2020. [DOI: 10.1016/b978-0-12-817776-1.00001-8] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
135 Wang M, Yan J, Li C, Wang X, Xiong J, Pan D, Wang L, Xu Y, Li X, Yang M. Cationic poly(amide-imide)-conjugated camptothecin prodrug with variable nanomorphology for efficient reductive-responsive drug delivery. European Polymer Journal 2020;123:109462. [DOI: 10.1016/j.eurpolymj.2019.109462] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
136 Uddin S. Chapter 25: Peptide Drug/Device Combinations. Development of Biopharmaceutical Drug-Device Products 2020. [DOI: 10.1007/978-3-030-31415-6_25] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
137 Tusnim J, Hoque ME, Hossain SA, Abdel-wahab A, Abdala A, Wahab MA. Nanocellulose and nanohydrogels for the development of cleaner energy and future sustainable materials. Sustainable Nanocellulose and Nanohydrogels from Natural Sources 2020. [DOI: 10.1016/b978-0-12-816789-2.00004-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
138 Arslan M, Bolu BS, Sanyal R, Sanyal A. A modular and orthogonally reactive platform for fabrication of polymer–drug conjugates for targeted delivery. Polym Chem 2020;11:7137-46. [DOI: 10.1039/d0py01049a] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
139 Ksiazkiewicz AN, Bering L, Jung F, Wolter NA, Viell J, Mitsos A, Pich A. Closing the 1–5 µm size gap: Temperature-programmed, fed-batch synthesis of µm-sized microgels. Chemical Engineering Journal 2020;379:122293. [DOI: 10.1016/j.cej.2019.122293] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
140 Pourjavadi A, Doroudian M, Bagherifard M, Bahmanpour M. Magnetic and light-responsive nanogels based on chitosan functionalized with Au nanoparticles and poly( N -isopropylacrylamide) as a remotely triggered drug carrier. New J Chem 2020;44:17302-12. [DOI: 10.1039/d0nj02345k] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
141 Rajak A, Karan CK, Theato P, Das A. Supramolecularly cross-linked amphiphilic block copolymer assembly by the dipolar interaction of a merocyanine dye. Polym Chem 2020;11:695-703. [DOI: 10.1039/c9py01492f] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
142 Wang Q, Li K, Gao L, Zhang Y, Lin K, Cui Y. Intranasal delivery of berberine via in situ thermoresponsive hydrogels with non-invasive therapy exhibits better antidepressant-like effects. Biomater Sci 2020;8:2853-65. [DOI: 10.1039/c9bm02006c] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
143 Sana SS, Arla SK, Badineni V, Boya VKN. Development of poly (acrylamide-co-diallyldimethylammoniumchloride) nanogels and study of their ability as drug delivery devices. SN Appl Sci 2019;1. [DOI: 10.1007/s42452-019-1742-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
144 Xing L, Fan Y, Shen L, Yang C, Liu X, Ma Y, Qi L, Cho K, Cho C, Jiang H. pH-sensitive and specific ligand-conjugated chitosan nanogels for efficient drug delivery. International Journal of Biological Macromolecules 2019;141:85-97. [DOI: 10.1016/j.ijbiomac.2019.08.237] [Cited by in Crossref: 24] [Cited by in F6Publishing: 27] [Article Influence: 8.0] [Reference Citation Analysis]
145 Bej R, Dey P, Ghosh S. Disulfide chemistry in responsive aggregation of amphiphilic systems. Soft Matter 2020;16:11-26. [PMID: 31776542 DOI: 10.1039/c9sm01960j] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
146 Mosaiab T, Farr DC, Kiefel MJ, Houston TA. Carbohydrate-based nanocarriers and their application to target macrophages and deliver antimicrobial agents. Adv Drug Deliv Rev 2019;151-152:94-129. [PMID: 31513827 DOI: 10.1016/j.addr.2019.09.002] [Cited by in Crossref: 41] [Cited by in F6Publishing: 41] [Article Influence: 13.7] [Reference Citation Analysis]
147 Suhail M, Rosenholm JM, Minhas MU, Badshah SF, Naeem A, Khan KU, Fahad M. Nanogels as drug-delivery systems: a comprehensive overview. Therapeutic Delivery 2019;10:697-717. [DOI: 10.4155/tde-2019-0010] [Cited by in Crossref: 62] [Cited by in F6Publishing: 62] [Article Influence: 20.7] [Reference Citation Analysis]
148 Torres-Martínez A, Angulo-Pachón CA, Galindo F, Miravet JF. Liposome-Enveloped Molecular Nanogels. Langmuir 2019;35:13375-81. [PMID: 31549515 DOI: 10.1021/acs.langmuir.9b02282] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
149 Hernández-Adame L, Angulo C, García-Silva I, Palestino G, Rosales-Mendoza S. An overview of nanogel-based vaccines. Expert Rev Vaccines 2019;18:951-68. [PMID: 31487213 DOI: 10.1080/14760584.2019.1647783] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
150 Albert C, Beladjine M, Tsapis N, Fattal E, Agnely F, Huang N. Pickering emulsions: Preparation processes, key parameters governing their properties and potential for pharmaceutical applications. Journal of Controlled Release 2019;309:302-32. [DOI: 10.1016/j.jconrel.2019.07.003] [Cited by in Crossref: 135] [Cited by in F6Publishing: 113] [Article Influence: 45.0] [Reference Citation Analysis]
151 Elkhoury K, Russell CS, Sanchez-Gonzalez L, Mostafavi A, Williams TJ, Kahn C, Peppas NA, Arab-Tehrany E, Tamayol A. Soft-Nanoparticle Functionalization of Natural Hydrogels for Tissue Engineering Applications. Adv Healthc Mater 2019;8:e1900506. [PMID: 31402589 DOI: 10.1002/adhm.201900506] [Cited by in Crossref: 62] [Cited by in F6Publishing: 63] [Article Influence: 20.7] [Reference Citation Analysis]
152 Grigore ME, Ion R, Iancu L, Grigorescu RM. Tailored porphyrin–gold nanoparticles for biomedical applications. J Porphyrins Phthalocyanines 2019;23:766-80. [DOI: 10.1142/s108842461930012x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
153 Cuggino JC, Blanco ERO, Gugliotta LM, Alvarez Igarzabal CI, Calderón M. Crossing biological barriers with nanogels to improve drug delivery performance. J Control Release 2019;307:221-46. [PMID: 31175895 DOI: 10.1016/j.jconrel.2019.06.005] [Cited by in Crossref: 70] [Cited by in F6Publishing: 76] [Article Influence: 23.3] [Reference Citation Analysis]
154 Pérez-álvarez L, Ruiz-rubio L, Artetxe B, Vivanco MD, Gutiérrez-zorrilla JM, Vilas-vilela JL. Chitosan nanogels as nanocarriers of polyoxometalates for breast cancer therapies. Carbohydrate Polymers 2019;213:159-67. [DOI: 10.1016/j.carbpol.2019.02.091] [Cited by in Crossref: 35] [Cited by in F6Publishing: 38] [Article Influence: 11.7] [Reference Citation Analysis]
155 Stanislawska I, Liwinska W, Lyp M, Stojek Z, Zabost E. Recent Advances in Degradable Hybrids of Biomolecules and NGs for Targeted Delivery. Molecules 2019;24:E1873. [PMID: 31096669 DOI: 10.3390/molecules24101873] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
156 Shang X, Liu Q, Qin T, Xu X, Sun H, Liu M, Zhu H. Fabrication of cRGD-modified reduction-sensitive nanocapsule via Pickering emulsion route to facilitate tumor-targeted delivery. Int J Nanomedicine 2019;14:3361-73. [PMID: 31190797 DOI: 10.2147/IJN.S202063] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
157 Sun X, Liu C, Omer A, Lu W, Zhang S, Jiang X, Wu H, Yu D, Ouyang X. pH-sensitive ZnO/carboxymethyl cellulose/chitosan bio-nanocomposite beads for colon-specific release of 5-fluorouracil. International Journal of Biological Macromolecules 2019;128:468-79. [DOI: 10.1016/j.ijbiomac.2019.01.140] [Cited by in Crossref: 71] [Cited by in F6Publishing: 74] [Article Influence: 23.7] [Reference Citation Analysis]
158 Chellappan DK, Yee NJ, Kaur Ambar Jeet Singh BJ, Panneerselvam J, Madheswaran T, Chellian J, Satija S, Mehta M, Gulati M, Gupta G, Dua K. Formulation and characterization of glibenclamide and quercetin-loaded chitosan nanogels targeting skin permeation. Therapeutic Delivery 2019;10:281-93. [DOI: 10.4155/tde-2019-0019] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 11.0] [Reference Citation Analysis]
159 Maiz-Fernández S, Pérez-Álvarez L, Ruiz-Rubio L, Pérez González R, Sáez-Martínez V, Ruiz Pérez J, Vilas-Vilela JL. Synthesis and Characterization of Covalently Crosslinked pH-Responsive Hyaluronic Acid Nanogels: Effect of Synthesis Parameters. Polymers (Basel) 2019;11:E742. [PMID: 31022975 DOI: 10.3390/polym11040742] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
160 Sologubov SS, Sarmini YA, Samosudova YS, Smirnova NN, Markin AV, Boldyrev KL, Meshkov IB, Tatarinova EA, Muzafarov AM. Thermodynamic properties of polymethylsilsesquioxane nanogels with blocking trimethylsilyl groups. The Journal of Chemical Thermodynamics 2019;131:572-82. [DOI: 10.1016/j.jct.2018.12.015] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
161 Sharma M, Chatterjee M, Singh K, Satapathi S. Design of a multimodal colloidal polymeric drug delivery vesicle: A detailed pharmaceutical study. Nano-Structures & Nano-Objects 2019;18:100245. [DOI: 10.1016/j.nanoso.2019.01.004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
162 Javanbakht S, Nezhad-mokhtari P, Shaabani A, Arsalani N, Ghorbani M. Incorporating Cu-based metal-organic framework/drug nanohybrids into gelatin microsphere for ibuprofen oral delivery. Materials Science and Engineering: C 2019;96:302-9. [DOI: 10.1016/j.msec.2018.11.028] [Cited by in Crossref: 59] [Cited by in F6Publishing: 55] [Article Influence: 19.7] [Reference Citation Analysis]
163 Eslami P, Rossi F, Fedeli S. Hybrid Nanogels: Stealth and Biocompatible Structures for Drug Delivery Applications. Pharmaceutics 2019;11:E71. [PMID: 30736486 DOI: 10.3390/pharmaceutics11020071] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 8.0] [Reference Citation Analysis]
164 Dannert C, Stokke BT, Dias RS. Nanoparticle-Hydrogel Composites: From Molecular Interactions to Macroscopic Behavior. Polymers (Basel) 2019;11:E275. [PMID: 30960260 DOI: 10.3390/polym11020275] [Cited by in Crossref: 86] [Cited by in F6Publishing: 89] [Article Influence: 28.7] [Reference Citation Analysis]
165 Sahu P, Kashaw SK, Sau S, Kushwah V, Jain S, Agrawal RK, Iyer AK. pH triggered and charge attracted nanogel for simultaneous evaluation of penetration and toxicity against skin cancer: In-vitro and ex-vivo study. Int J Biol Macromol 2019;128:740-51. [PMID: 30699336 DOI: 10.1016/j.ijbiomac.2019.01.147] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
166 Kandil R, Merkel OM. Recent Progress of Polymeric Nanogels for Gene Delivery. Curr Opin Colloid Interface Sci 2019;39:11-23. [PMID: 30853837 DOI: 10.1016/j.cocis.2019.01.005] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 13.0] [Reference Citation Analysis]
167 Kousalová J, Etrych T. Polymeric nanogels as drug delivery systems. Physiol Res 2018;67:S305-17. [PMID: 30379552 DOI: 10.33549/physiolres.933979] [Cited by in Crossref: 27] [Cited by in F6Publishing: 30] [Article Influence: 9.0] [Reference Citation Analysis]
168 Ali OM, Hashem Y, Bekhit AA, Khattab SN, Elkhodairy KA, Freag MS, Teleb M, Elzoghby AO. Nanostructures of gelatin for encapsulation of food ingredients. Biopolymer Nanostructures for Food Encapsulation Purposes 2019. [DOI: 10.1016/b978-0-12-815663-6.00008-2] [Reference Citation Analysis]
169 Ghaffari M, Dolatabadi JEN. Nanotechnology for pharmaceuticals. Industrial Applications of Nanomaterials 2019. [DOI: 10.1016/b978-0-12-815749-7.00017-7] [Cited by in Crossref: 5] [Article Influence: 1.7] [Reference Citation Analysis]
170 Hou S, Chen S, Huang Z, Lu Q. Dual-responsive polyphosphazene as a common platform for highly efficient drug self-delivery. J Mater Chem B 2019;7:4319-27. [DOI: 10.1039/c9tb00801b] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
171 Khomein P, Dutta K, Gnanasekaran K, Gianneschi NC, Thayumanavan S. Spatiotemporal control over the host–guest characteristics of a stimulus-triggerable trifunctional polymer assembly. Polym Chem 2019;10:1423-30. [DOI: 10.1039/c8py01788c] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
172 Majcher MJ, Hoare T. Advanced Hydrogel Structures. Polymers and Polymeric Composites: A Reference Series 2019. [DOI: 10.1007/978-3-319-95990-0_16] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
173 Beauté L, McClenaghan N, Lecommandoux S. Photo-triggered polymer nanomedicines: From molecular mechanisms to therapeutic applications. Adv Drug Deliv Rev 2019;138:148-66. [PMID: 30553952 DOI: 10.1016/j.addr.2018.12.010] [Cited by in Crossref: 46] [Cited by in F6Publishing: 47] [Article Influence: 15.3] [Reference Citation Analysis]
174 Pathak C, Vaidya FU, Pandey SM. Mechanism for Development of Nanobased Drug Delivery System. Applications of Targeted Nano Drugs and Delivery Systems 2019. [DOI: 10.1016/b978-0-12-814029-1.00003-x] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 6.7] [Reference Citation Analysis]
175 Torres-Martínez A, Angulo-Pachón CA, Galindo F, Miravet JF. In between molecules and self-assembled fibrillar networks: highly stable nanogel particles from a low molecular weight hydrogelator. Soft Matter 2019;15:3565-72. [PMID: 30951068 DOI: 10.1039/c9sm00252a] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
176 Seto A, Kajiwara R, Song J, Shin E, Kim B, Kofujita H, Oishi Y, Shibasaki Y. Preparation of glycoside polymer micelles with antioxidant polyphenolic cores using alkylated poly(arbutin)s. RSC Adv 2019;9:7777-85. [DOI: 10.1039/c8ra09090d] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
177 Yang WJ, Liang L, Wang X, Cao Y, Xu W, Chang D, Gao Y, Wang L. Versatile functionalization of surface-tailorable polymer nanohydrogels for drug delivery systems. Biomater Sci 2019;7:247-61. [DOI: 10.1039/c8bm01093e] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
178 Chen Y, Tezcan O, Li D, Beztsinna N, Lou B, Etrych T, Ulbrich K, Metselaar JM, Lammers T, Hennink WE. Overcoming multidrug resistance using folate receptor-targeted and pH-responsive polymeric nanogels containing covalently entrapped doxorubicin. Nanoscale 2017;9:10404-19. [PMID: 28702658 DOI: 10.1039/c7nr03592f] [Cited by in Crossref: 45] [Cited by in F6Publishing: 48] [Article Influence: 11.3] [Reference Citation Analysis]
179 Chen X, Yang H, Xiao C, Chen X. Facile Synthesis of Resveratrol Nanogels with Enhanced Fluorescent Emission. Macromol Biosci 2018;19:1800438. [DOI: 10.1002/mabi.201800438] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
180 Li J, Liu P. One-pot fabrication of pH/reduction dual-stimuli responsive chitosan-based supramolecular nanogels for leakage-free tumor-specific DOX delivery with enhanced anti-cancer efficacy. Carbohydrate Polymers 2018;201:583-90. [DOI: 10.1016/j.carbpol.2018.08.102] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 5.5] [Reference Citation Analysis]
181 Mousaviasl S, Saleh T, Shojaosadati SA, Boddohi S. Synthesis and characterization of schizophyllan nanogels via inverse emulsion using biobased materials. International Journal of Biological Macromolecules 2018;120:468-74. [DOI: 10.1016/j.ijbiomac.2018.08.119] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
182 Chambre L, Saw WS, Ekineker G, Kiew LV, Chong WY, Lee HB, Chung LY, Bretonnière Y, Dumoulin F, Sanyal A. Surfactant-Free Direct Access to Porphyrin-Cross-Linked Nanogels for Photodynamic and Photothermal Therapy. Bioconjugate Chem 2018;29:4149-59. [DOI: 10.1021/acs.bioconjchem.8b00787] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
183 Mauri E, Perale G, Rossi F. Nanogel Functionalization: A Versatile Approach To Meet the Challenges of Drug and Gene Delivery. ACS Appl Nano Mater 2018;1:6525-41. [DOI: 10.1021/acsanm.8b01686] [Cited by in Crossref: 46] [Cited by in F6Publishing: 46] [Article Influence: 11.5] [Reference Citation Analysis]
184 Dai Y, Chen X, Zhang X. Recent Developments in the Area of Click‐Crosslinked Nanocarriers for Drug Delivery. Macromol Rapid Commun 2019;40:1800541. [DOI: 10.1002/marc.201800541] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
185 Sahu P, Kashaw SK, Sau S, Kushwah V, Jain S, Agrawal RK, Iyer AK. pH Responsive 5-Fluorouracil Loaded Biocompatible Nanogels For Topical Chemotherapy of Aggressive Melanoma. Colloids Surf B Biointerfaces 2019;174:232-45. [PMID: 30465998 DOI: 10.1016/j.colsurfb.2018.11.018] [Cited by in Crossref: 40] [Cited by in F6Publishing: 40] [Article Influence: 10.0] [Reference Citation Analysis]
186 Štular D, Tomšič B, Jerman I, Simončič B, Mihelčič M, Noč L, German Ilić I. Comparison of responsive behaviour of smart PLA fabrics applied with temperature and pH responsive microgel and nanogel. Progress in Organic Coatings 2018;124:213-23. [DOI: 10.1016/j.porgcoat.2018.08.007] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
187 Javanbakht S, Pooresmaeil M, Hashemi H, Namazi H. Carboxymethylcellulose capsulated Cu-based metal-organic framework-drug nanohybrid as a pH-sensitive nanocomposite for ibuprofen oral delivery. International Journal of Biological Macromolecules 2018;119:588-96. [DOI: 10.1016/j.ijbiomac.2018.07.181] [Cited by in Crossref: 92] [Cited by in F6Publishing: 94] [Article Influence: 23.0] [Reference Citation Analysis]
188 Piogé S, Tran TN, Mckenzie TG, Pascual S, Ashokkumar M, Fontaine L, Qiao G. Sono-RAFT Polymerization-Induced Self-Assembly in Aqueous Dispersion: Synthesis of LCST-type Thermosensitive Nanogels. Macromolecules 2018;51:8862-9. [DOI: 10.1021/acs.macromol.8b01606] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 8.8] [Reference Citation Analysis]
189 Parilti R, Riva R, Howdle SM, Dupont-Gillain C, Jerome C. Sulindac encapsulation and release from functional poly(HEMA) microparticles prepared in supercritical carbon dioxide. Int J Pharm 2018;549:161-8. [PMID: 30056217 DOI: 10.1016/j.ijpharm.2018.07.060] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
190 Wang X, Luo J, He L, Cheng X, Yan G, Wang J, Tang R. Hybrid pH-sensitive nanogels surface-functionalized with collagenase for enhanced tumor penetration. Journal of Colloid and Interface Science 2018;525:269-81. [DOI: 10.1016/j.jcis.2018.04.084] [Cited by in Crossref: 34] [Cited by in F6Publishing: 31] [Article Influence: 8.5] [Reference Citation Analysis]
191 Chiriac A, Rusu A, Diaconu A, Tudorachi N, Nita L, Neamtu I, Rusu D. Functional and structural analysis of a network containing a polymer structure with spiroacetal moieties and riboflavin as low molecular mass gelator. Materials Chemistry and Physics 2018;217:242-53. [DOI: 10.1016/j.matchemphys.2018.06.064] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
192 Javanbakht S, Nazari N, Rakhshaei R, Namazi H. Cu-crosslinked carboxymethylcellulose/naproxen/graphene quantum dot nanocomposite hydrogel beads for naproxen oral delivery. Carbohydrate Polymers 2018;195:453-9. [DOI: 10.1016/j.carbpol.2018.04.103] [Cited by in Crossref: 64] [Cited by in F6Publishing: 68] [Article Influence: 16.0] [Reference Citation Analysis]
193 Chen T, Hou K, Ren Q, Chen G, Wei P, Zhu M. Nanoparticle-Polymer Synergies in Nanocomposite Hydrogels: From Design to Application. Macromol Rapid Commun 2018;39:1800337. [DOI: 10.1002/marc.201800337] [Cited by in Crossref: 62] [Cited by in F6Publishing: 65] [Article Influence: 15.5] [Reference Citation Analysis]
194 Zhang T, Yang R, Yang S, Guan J, Zhang D, Ma Y, Liu H. Research progress of self-assembled nanogel and hybrid hydrogel systems based on pullulan derivatives. Drug Deliv 2018;25:278-92. [PMID: 29334800 DOI: 10.1080/10717544.2018.1425776] [Cited by in Crossref: 44] [Cited by in F6Publishing: 36] [Article Influence: 11.0] [Reference Citation Analysis]
195 Akbar MU, Zia KM, Nazir A, Iqbal J, Ejaz SA, Akash MSH. Pluronic-Based Mixed Polymeric Micelles Enhance the Therapeutic Potential of Curcumin. AAPS PharmSciTech 2018;19:2719-39. [PMID: 29978290 DOI: 10.1208/s12249-018-1098-9] [Cited by in Crossref: 34] [Cited by in F6Publishing: 37] [Article Influence: 8.5] [Reference Citation Analysis]
196 Agrawal G, Agrawal R. Functional Microgels: Recent Advances in Their Biomedical Applications. Small 2018;14:1801724. [DOI: 10.1002/smll.201801724] [Cited by in Crossref: 68] [Cited by in F6Publishing: 71] [Article Influence: 17.0] [Reference Citation Analysis]
197 Basso J, Miranda A, Nunes S, Cova T, Sousa J, Vitorino C, Pais A. Hydrogel-Based Drug Delivery Nanosystems for the Treatment of Brain Tumors. Gels 2018;4:E62. [PMID: 30674838 DOI: 10.3390/gels4030062] [Cited by in Crossref: 59] [Cited by in F6Publishing: 63] [Article Influence: 14.8] [Reference Citation Analysis]
198 Lanzalaco S, Sirés I, Galia A, Sabatino MA, Dispenza C, Scialdone O. Facile crosslinking of poly(vinylpyrrolidone) by electro-oxidation with IrO2-based anode under potentiostatic conditions. J Appl Electrochem 2018;48:1343-52. [DOI: 10.1007/s10800-018-1237-8] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
199 Huang D, Qian H, Qiao H, Chen W, Feijen J, Zhong Z. Bioresponsive functional nanogels as an emerging platform for cancer therapy. Expert Opin Drug Deliv 2018;15:703-16. [PMID: 29976103 DOI: 10.1080/17425247.2018.1497607] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 6.3] [Reference Citation Analysis]
200 Hildebrandt H, Paloheimo O, Mäntylä E, Willman S, Hakanen S, Albrecht K, Groll J, Möller M, Vihinen-Ranta M. Reactive Self-Assembly and Specific Cellular Delivery of NCO-sP(EO-stat-PO)-Derived Nanogels. Macromol Biosci 2018;18:e1800094. [PMID: 29974620 DOI: 10.1002/mabi.201800094] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
201 Dey P, Rajdev P, Pramanik P, Ghosh S. Specific Supramolecular Interaction Regulated Entropically Favorable Assembly of Amphiphilic Macromolecules. Macromolecules 2018;51:5182-90. [DOI: 10.1021/acs.macromol.8b01025] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 7.8] [Reference Citation Analysis]
202 Harada LK, Silva EC, Campos WF, Del Fiol FS, Vila M, Dąbrowska K, Krylov VN, Balcão VM. Biotechnological applications of bacteriophages: State of the art. Microbiological Research 2018;212-213:38-58. [DOI: 10.1016/j.micres.2018.04.007] [Cited by in Crossref: 115] [Cited by in F6Publishing: 118] [Article Influence: 28.8] [Reference Citation Analysis]
203 Štular D, Primc G, Mozetič M, Jerman I, Mihelčič M, Ruiz-zepeda F, Tomšič B, Simončič B, Gorjanc M. Influence of non-thermal plasma treatement on the adsorption of a stimuli-responsive nanogel onto polyethylene terephthalate fabric. Progress in Organic Coatings 2018;120:198-207. [DOI: 10.1016/j.porgcoat.2018.03.023] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
204 Nuhn L, Bolli E, Massa S, Vandenberghe I, Movahedi K, Devreese B, Van Ginderachter JA, De Geest BG. Targeting Protumoral Tumor-Associated Macrophages with Nanobody-Functionalized Nanogels through Strain Promoted Azide Alkyne Cycloaddition Ligation. Bioconjug Chem 2018;29:2394-405. [PMID: 29889515 DOI: 10.1021/acs.bioconjchem.8b00319] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 9.3] [Reference Citation Analysis]
205 Palanikumar L, Choi ES, Oh JY, Park SA, Choi H, Kim K, Kim C, Ryu JH. Importance of Encapsulation Stability of Nanocarriers with High Drug Loading Capacity for Increasing in Vivo Therapeutic Efficacy. Biomacromolecules 2018;19:3030-9. [PMID: 29883544 DOI: 10.1021/acs.biomac.8b00589] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
206 Wang H, Chen Q, Zhou S. Carbon-based hybrid nanogels: a synergistic nanoplatform for combined biosensing, bioimaging, and responsive drug delivery. Chem Soc Rev 2018;47:4198-232. [PMID: 29667656 DOI: 10.1039/c7cs00399d] [Cited by in Crossref: 147] [Cited by in F6Publishing: 154] [Article Influence: 36.8] [Reference Citation Analysis]
207 Kuo Y, Rajesh R. Current development of nanocarrier delivery systems for Parkinson's disease pharmacotherapy. Journal of the Taiwan Institute of Chemical Engineers 2018;87:15-25. [DOI: 10.1016/j.jtice.2018.03.028] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.8] [Reference Citation Analysis]
208 Gu H, Mu S, Qiu G, Liu X, Zhang L, Yuan Y, Astruc D. Redox-stimuli-responsive drug delivery systems with supramolecular ferrocenyl-containing polymers for controlled release. Coordination Chemistry Reviews 2018;364:51-85. [DOI: 10.1016/j.ccr.2018.03.013] [Cited by in Crossref: 90] [Cited by in F6Publishing: 91] [Article Influence: 22.5] [Reference Citation Analysis]
209 Borišev I, Mrđanovic J, Petrovic D, Seke M, Jović D, Srđenović B, Latinovic N, Djordjevic A. Nanoformulations of doxorubicin: how far have we come and where do we go from here? Nanotechnology 2018;29:332002. [PMID: 29798934 DOI: 10.1088/1361-6528/aac7dd] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 4.5] [Reference Citation Analysis]
210 Ghaffari R, Eslahi N, Tamjid E, Simchi A. Dual-Sensitive Hydrogel Nanoparticles Based on Conjugated Thermoresponsive Copolymers and Protein Filaments for Triggerable Drug Delivery. ACS Appl Mater Interfaces 2018;10:19336-46. [DOI: 10.1021/acsami.8b01154] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 8.3] [Reference Citation Analysis]
211 Spencer DS, Luu BC, Beckman DW, Peppas NA. Control of Cationic Nanogel PEGylation in Heterogeneous ARGET ATRP Emulsion Polymerization with PEG Macromonomers. J Polym Sci A Polym Chem 2018;56:1536-44. [PMID: 30906114 DOI: 10.1002/pola.29035] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
212 Wu W, Luo L, Wang Y, Wu Q, Dai HB, Li JS, Durkan C, Wang N, Wang GX. Endogenous pH-responsive nanoparticles with programmable size changes for targeted tumor therapy and imaging applications. Theranostics 2018;8:3038-58. [PMID: 29896301 DOI: 10.7150/thno.23459] [Cited by in Crossref: 117] [Cited by in F6Publishing: 122] [Article Influence: 29.3] [Reference Citation Analysis]
213 Pippa N, Sentoukas T, Pispas S, Demetzos C, Papalois A, Bouropoulos N. pH-responsive polymeric nanoassemblies encapsulated into alginate beads: morphological characterization and swelling studies. J Polym Res 2018;25. [DOI: 10.1007/s10965-018-1519-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
214 Morelli A, Puppi D, Cheptene V, Disgraziati D, Ruggeri G, Chiellini F. Design, Preparation, and Characterization of Thermoresponsive Hybrid Nanogels Using a Novel Ulvan‐Acrylate Crosslinker as Potential Carriers for Protein Encapsulation. Macromol Chem Phys 2018;219:1700631. [DOI: 10.1002/macp.201700631] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
215 Gevrek TN, Cosar M, Aydin D, Kaga E, Arslan M, Sanyal R, Sanyal A. Facile Fabrication of a Modular “Catch and Release” Hydrogel Interface: Harnessing Thiol–Disulfide Exchange for Reversible Protein Capture and Cell Attachment. ACS Appl Mater Interfaces 2018;10:14399-409. [DOI: 10.1021/acsami.8b00802] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 8.0] [Reference Citation Analysis]
216 Lopalco A, Cutrignelli A, Denora N, Perrone M, Iacobazzi RM, Fanizza E, Lopedota A, Depalo N, de Candia M, Franco M, Laquintana V. Delivery of Proapoptotic Agents in Glioma Cell Lines by TSPO Ligand-Dextran Nanogels. Int J Mol Sci 2018;19:E1155. [PMID: 29641449 DOI: 10.3390/ijms19041155] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
217 Li Y, Bui QN, Duy LTM, Yang HY, Lee DS. One-Step Preparation of pH-Responsive Polymeric Nanogels as Intelligent Drug Delivery Systems for Tumor Therapy. Biomacromolecules 2018;19:2062-70. [PMID: 29625005 DOI: 10.1021/acs.biomac.8b00195] [Cited by in Crossref: 51] [Cited by in F6Publishing: 54] [Article Influence: 12.8] [Reference Citation Analysis]
218 Park H, Choi Y, Jeena MT, Ahn E, Choi Y, Kang M, Lee CG, Kwon T, Rhee H, Ryu J, Kim B. Reduction-Triggered Self-Cross-Linked Hyperbranched Polyglycerol Nanogels for Intracellular Delivery of Drugs and Proteins. Macromol Biosci 2018;18:1700356. [DOI: 10.1002/mabi.201700356] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
219 Sun W, Zhang J, Zhang C, Wang P, Peng C, Shen M, Shi X. Construction of Hybrid Alginate Nanogels Loaded with Manganese Oxide Nanoparticles for Enhanced Tumor Magnetic Resonance Imaging. ACS Macro Lett 2018;7:137-42. [PMID: 35610908 DOI: 10.1021/acsmacrolett.7b00999] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 5.8] [Reference Citation Analysis]
220 Zhu Q, Chen X, Xu X, Zhang Y, Zhang C, Mo R. Tumor-Specific Self-Degradable Nanogels as Potential Carriers for Systemic Delivery of Anticancer Proteins. Adv Funct Mater 2018;28:1707371. [DOI: 10.1002/adfm.201707371] [Cited by in Crossref: 70] [Cited by in F6Publishing: 71] [Article Influence: 17.5] [Reference Citation Analysis]
221 Musazzi UM, Cencetti C, Franzé S, Zoratto N, Di Meo C, Procacci P, Matricardi P, Cilurzo F. Gellan Nanohydrogels: Novel Nanodelivery Systems for Cutaneous Administration of Piroxicam. Mol Pharmaceutics 2018;15:1028-36. [DOI: 10.1021/acs.molpharmaceut.7b00926] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 4.5] [Reference Citation Analysis]
222 Jiang Z, Chen J, Cui L, Zhuang X, Ding J, Chen X. Advances in Stimuli-Responsive Polypeptide Nanogels. Small Methods 2018;2:1700307. [DOI: 10.1002/smtd.201700307] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 8.8] [Reference Citation Analysis]
223 Ratemi E. pH-responsive polymers for drug delivery applications. Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications, Volume 1 2018. [DOI: 10.1016/b978-0-08-101997-9.00005-9] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
224 Oh KT. Development of New Tri-block Copolymers for Pharmaceutical Applications. 6th International Conference on the Development of Biomedical Engineering in Vietnam (BME6) 2018. [DOI: 10.1007/978-981-10-4361-1_133] [Reference Citation Analysis]
225 Salinas Y, Castilla AM, Resmini M. An l -proline based thermoresponsive and pH-switchable nanogel as a drug delivery vehicle. Polym Chem 2018;9:2271-80. [DOI: 10.1039/c8py00308d] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
226 Qiao Z, Gao Y. Acid- and Redox-Responsive Smart Polymeric Nanomaterials for Controlled Drug Delivery. In Vivo Self-Assembly Nanotechnology for Biomedical Applications 2018. [DOI: 10.1007/978-981-10-6913-0_5] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
227 Kumar M, Sharma P, Maheshwari R, Tekade M, Shrivastava SK, Tekade RK. Beyond the Blood–Brain Barrier. Nanotechnology-Based Targeted Drug Delivery Systems for Brain Tumors. Elsevier; 2018. pp. 397-437. [DOI: 10.1016/b978-0-12-812218-1.00015-4] [Cited by in Crossref: 5] [Article Influence: 1.3] [Reference Citation Analysis]
228 Kankala RK, Wang S, Chen A, Zhang YS. Self-Assembled Nanogels: From Particles to Scaffolds and Membranes. Handbook of Nanomaterials for Cancer Theranostics 2018. [DOI: 10.1016/b978-0-12-813339-2.00002-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
229 Majcher MJ, Hoare T. Advanced Hydrogel Structures. Polymers and Polymeric Composites: A Reference Series 2018. [DOI: 10.1007/978-3-319-92066-5_16-1] [Reference Citation Analysis]
230 Setia A, Ahuja P. Nanohydrogels. Organic Materials as Smart Nanocarriers for Drug Delivery 2018. [DOI: 10.1016/b978-0-12-813663-8.00008-7] [Cited by in Crossref: 6] [Article Influence: 1.5] [Reference Citation Analysis]
231 Das P, Pan I, Cohen E, Reches M. Self-assembly of a metallo-peptide into a drug delivery system using a “switch on” displacement strategy. J Mater Chem B 2018;6:8228-37. [DOI: 10.1039/c8tb01483c] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
232 Gruber A, Işık D, Fontanezi BB, Böttcher C, Schäfer-korting M, Klinger D. A versatile synthetic platform for amphiphilic nanogels with tunable hydrophobicity. Polym Chem 2018;9:5572-84. [DOI: 10.1039/c8py01123k] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
233 Rimondino G, Biglione C, Martinelli M, Alvarez Igarzábal C, Strumia M. Design of Multifunctional Nanogels with Intelligent Behavior. Polymer Gels 2018. [DOI: 10.1007/978-981-10-6086-1_7] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
234 Oz Y, Sanyal A. The Taming of the Maleimide: Fabrication of Maleimide-Containing 'Clickable' Polymeric Materials. Chem Rec 2018;18:570-86. [PMID: 29286198 DOI: 10.1002/tcr.201700060] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 4.8] [Reference Citation Analysis]
235 Sharifzadeh G, Hosseinkhani H. Biomolecule-Responsive Hydrogels in Medicine. Adv Healthc Mater 2017;6. [PMID: 29057617 DOI: 10.1002/adhm.201700801] [Cited by in Crossref: 48] [Cited by in F6Publishing: 54] [Article Influence: 9.6] [Reference Citation Analysis]
236 Amani H, Habibey R, Hajmiresmail SJ, Latifi S, Pazoki-Toroudi H, Akhavan O. Antioxidant nanomaterials in advanced diagnoses and treatments of ischemia reperfusion injuries. J Mater Chem B 2017;5:9452-76. [PMID: 32264560 DOI: 10.1039/c7tb01689a] [Cited by in Crossref: 115] [Cited by in F6Publishing: 123] [Article Influence: 23.0] [Reference Citation Analysis]
237 Nishimura T, Yamada A, Umezaki K, Sawada S, Mukai S, Sasaki Y, Akiyoshi K. Self-Assembled Polypeptide Nanogels with Enzymatically Transformable Surface as a Small Interfering RNA Delivery Platform. Biomacromolecules 2017;18:3913-23. [DOI: 10.1021/acs.biomac.7b00937] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 4.2] [Reference Citation Analysis]
238 Ji P, Zhou B, Zhan Y, Wang Y, Zhang Y, Li Y, He P. Multistimulative Nanogels with Enhanced Thermosensitivity for Intracellular Therapeutic Delivery. ACS Appl Mater Interfaces 2017;9:39143-51. [DOI: 10.1021/acsami.7b08209] [Cited by in Crossref: 38] [Cited by in F6Publishing: 37] [Article Influence: 7.6] [Reference Citation Analysis]
239 M GA, S AT, Ayyavu M, A S, Kandasamy R. Synthesis and characterization of cystamine conjugated chitosan-SS-mPEG based 5-Fluorouracil loaded polymeric nanoparticles for redox responsive drug release. Eur J Pharm Sci 2018;116:37-47. [PMID: 29080854 DOI: 10.1016/j.ejps.2017.10.035] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 3.8] [Reference Citation Analysis]
240 Li J, Wang S, Shi X, Shen M. Aqueous-phase synthesis of iron oxide nanoparticles and composites for cancer diagnosis and therapy. Adv Colloid Interface Sci 2017;249:374-85. [PMID: 28335985 DOI: 10.1016/j.cis.2017.02.009] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 4.4] [Reference Citation Analysis]
241 Li L, Pang X, Liu G. Near-Infrared Light-Triggered Polymeric Nanomicelles for Cancer Therapy and Imaging. ACS Biomater Sci Eng 2018;4:1928-41. [DOI: 10.1021/acsbiomaterials.7b00648] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 6.0] [Reference Citation Analysis]
242 Paik BA, Mane SR, Jia X, Kiick KL. Responsive Hybrid (Poly)peptide-Polymer Conjugates. J Mater Chem B 2017;5:8274-88. [PMID: 29430300 DOI: 10.1039/C7TB02199B] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 3.8] [Reference Citation Analysis]
243 Xiong D, Zhang R, Luo W, Gu H, Peng S, Zhang L. Hydrazone cross-linked micelles based on redox degradable block copolymer for enhanced stability and controlled drug release. Reactive and Functional Polymers 2017;119:64-74. [DOI: 10.1016/j.reactfunctpolym.2017.08.003] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
244 Liu J, Pu H, Liu S, Kan J, Jin C. Synthesis, characterization, bioactivity and potential application of phenolic acid grafted chitosan: A review. Carbohydrate Polymers 2017;174:999-1017. [DOI: 10.1016/j.carbpol.2017.07.014] [Cited by in Crossref: 154] [Cited by in F6Publishing: 159] [Article Influence: 30.8] [Reference Citation Analysis]
245 Štular D, Tomšič B, Simončič B, Jerman I, Mihelčič M, Čolović M. Modification of cotton fabric with temperature/pH responsive hydrogel: influence of particles size. IOP Conf Ser : Mater Sci Eng 2017;254:072024. [DOI: 10.1088/1757-899x/254/7/072024] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
246 Rajan R, Matsumura K. Tunable Dual-Thermoresponsive Core-Shell Nanogels Exhibiting UCST and LCST Behavior. Macromol Rapid Commun 2017;38. [PMID: 28960587 DOI: 10.1002/marc.201700478] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 6.6] [Reference Citation Analysis]
247 Khoee S, Asadi H. Nanogels: Chemical Approaches to Preparation. Concise Encyclopedia of Biomedical Polymers and Polymeric Biomaterials 2017. [DOI: 10.1081/e-ebppc-120050693] [Reference Citation Analysis]
248 Khomein P, Swaminathan S, Young ER, Thayumanavan S. Fluorescence Enhancement Through Incorporation of Chromophores in Polymeric Nanoparticles. J Inorg Organomet Polym 2018;28:407-13. [DOI: 10.1007/s10904-017-0670-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
249 Zha Q, Wang X, Cheng X, Fu S, Yang G, Yao W, Tang R. Acid–degradable carboxymethyl chitosan nanogels via an ortho ester linkage mediated improved penetration and growth inhibition of 3-D tumor spheroids in vitro. Materials Science and Engineering: C 2017;78:246-57. [DOI: 10.1016/j.msec.2017.04.098] [Cited by in Crossref: 39] [Cited by in F6Publishing: 37] [Article Influence: 7.8] [Reference Citation Analysis]
250 Ullah F, Javed F, Othman MBH, Ahmad Z, Md. Akil H. Synthesis and physicochemical investigation of chitosan-built hydrogel with induced glucose sensitivity. International Journal of Polymeric Materials and Polymeric Biomaterials 2017;66:824-34. [DOI: 10.1080/00914037.2016.1276061] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
251 Jain A, Sahu A, Jain A, Gulbake A. Prodrugs and Bioconjugate Hydrogels: A Valuable Strategy for the Prolonged-Delivery of Drugs. Functional Hydrogels in Drug Delivery 2017. [DOI: 10.1201/9781315152271-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
252 Utrata-Wesołek A, Żymełka-Miara I, Kowalczuk A, Trzebicka B, Dworak A. Photocrosslinking of Polyglycidol and Its Derivative: Route to Thermoresponsive Hydrogels. Photochem Photobiol 2018;94:52-60. [PMID: 28767126 DOI: 10.1111/php.12819] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
253 Chen W, Hou Y, Tu Z, Gao L, Haag R. pH-degradable PVA-based nanogels via photo-crosslinking of thermo-preinduced nanoaggregates for controlled drug delivery. Journal of Controlled Release 2017;259:160-7. [DOI: 10.1016/j.jconrel.2016.10.032] [Cited by in Crossref: 45] [Cited by in F6Publishing: 46] [Article Influence: 9.0] [Reference Citation Analysis]
254 Li D, van Nostrum CF, Mastrobattista E, Vermonden T, Hennink WE. Nanogels for intracellular delivery of biotherapeutics. Journal of Controlled Release 2017;259:16-28. [DOI: 10.1016/j.jconrel.2016.12.020] [Cited by in Crossref: 91] [Cited by in F6Publishing: 81] [Article Influence: 18.2] [Reference Citation Analysis]
255 Choi JH, Lee JS, Park KM, Bae JW, Lee Y, Park KD. Multi-layered nanogels with MMP-sheddable PEG masks: Preparation and promotion of tumor cell uptake by controlling surface characteristics. Colloids and Surfaces B: Biointerfaces 2017;156:71-8. [DOI: 10.1016/j.colsurfb.2017.05.007] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
256 Beu TA, Farcaş A. CHARMM force field and molecular dynamics simulations of protonated polyethylenimine. J Comput Chem 2017;38:2335-48. [DOI: 10.1002/jcc.24890] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
257 Su Y, Dang J, Zhang H, Zhang Y, Tian W. Supramolecular Host–Guest Interaction-Enhanced Adjustable Drug Release Based on β-Cyclodextrin-Functionalized Thermoresponsive Porous Polymer Films. Langmuir 2017;33:7393-402. [DOI: 10.1021/acs.langmuir.7b01502] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 3.4] [Reference Citation Analysis]
258 Drude N, Singh S, Winz OH, Möller M, Mottaghy FM, Morgenroth A. Multistage Passive and Active Delivery of Radiolabeled Nanogels for Superior Tumor Penetration Efficiency. Biomacromolecules 2017;18:2489-98. [DOI: 10.1021/acs.biomac.7b00629] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
259 Brannigan RP, Khutoryanskiy VV. Synthesis and evaluation of mucoadhesive acryloyl-quaternized PDMAEMA nanogels for ocular drug delivery. Colloids and Surfaces B: Biointerfaces 2017;155:538-43. [DOI: 10.1016/j.colsurfb.2017.04.050] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 6.6] [Reference Citation Analysis]
260 Zhang M, Nowak M, Malo de Molina P, Abramovitch M, Santizo K, Mitragotri S, Helgeson ME. Synthesis of Oil-Laden Poly(ethylene glycol) Diacrylate Hydrogel Nanocapsules from Double Nanoemulsions. Langmuir 2017;33:6116-26. [DOI: 10.1021/acs.langmuir.7b01162] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
261 Moscovici M, Hlevca C, Casarica A, Pavaloiu R. Nanocellulose and Nanogels as Modern Drug Delivery Systems. In: Jawaid M, Mohammad F, editors. Nanocellulose and Nanohydrogel Matrices. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2017. pp. 209-69. [DOI: 10.1002/9783527803835.ch9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
262 Besford QA, Wojnilowicz M, Suma T, Bertleff-zieschang N, Caruso F, Cavalieri F. Lactosylated Glycogen Nanoparticles for Targeting Prostate Cancer Cells. ACS Appl Mater Interfaces 2017;9:16869-79. [DOI: 10.1021/acsami.7b02676] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 6.8] [Reference Citation Analysis]
263 Vicario-de-la-Torre M, Forcada J. The Potential of Stimuli-Responsive Nanogels in Drug and Active Molecule Delivery for Targeted Therapy. Gels 2017;3:E16. [PMID: 30920515 DOI: 10.3390/gels3020016] [Cited by in Crossref: 36] [Cited by in F6Publishing: 36] [Article Influence: 7.2] [Reference Citation Analysis]
264 Yuan C, Hong B, Chang Y, Mao J, Li Y, Xu Y, Zeng B, Luo W, Gérard JF, Dai L. Cross-Linking Induced Self-Organization of Polymers into Degradable Assemblies. ACS Appl Mater Interfaces 2017;9:14700-8. [PMID: 28388087 DOI: 10.1021/acsami.7b02252] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
265 Abandansari HS, Abuali M, Nabid MR, Niknejad H. Enhance chemotherapy efficacy and minimize anticancer drug side effects by using reversibly pH- and redox-responsive cross-linked unimolecular micelles. Polymer 2017;116:16-26. [DOI: 10.1016/j.polymer.2017.03.062] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 3.8] [Reference Citation Analysis]
266 Griffin JI, Cheng SKK, Hayashi T, Carson D, Saraswathy M, Nair DP, Simberg D. Cell-penetrating peptide CGKRK mediates efficient and widespread targeting of bladder mucosa following focal injury. Nanomedicine 2017;13:1925-32. [PMID: 28428051 DOI: 10.1016/j.nano.2017.04.004] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
267 Goto A, Yen H, Anraku Y, Fukushima S, Lai P, Kato M, Kishimura A, Kataoka K. Facile Preparation of Delivery Platform of Water-Soluble Low-Molecular-Weight Drugs Based on Polyion Complex Vesicle (PICsome) Encapsulating Mesoporous Silica Nanoparticle. ACS Biomater Sci Eng 2017;3:807-15. [DOI: 10.1021/acsbiomaterials.6b00562] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
268 Neamtu I, Rusu AG, Diaconu A, Nita LE, Chiriac AP. Basic concepts and recent advances in nanogels as carriers for medical applications. Drug Deliv 2017;24:539-57. [PMID: 28181831 DOI: 10.1080/10717544.2016.1276232] [Cited by in Crossref: 218] [Cited by in F6Publishing: 169] [Article Influence: 43.6] [Reference Citation Analysis]
269 Podgórna K, Jankowska K, Szczepanowicz K. Polysaccharide gel nanoparticles modified by the Layer-by-Layer technique for biomedical applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2017;519:192-8. [DOI: 10.1016/j.colsurfa.2016.07.067] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.6] [Reference Citation Analysis]
270 Cohen-Karni D, Kovaliov M, Li S, Jaffee S, Tomycz ND, Averick S. Fentanyl Initiated Polymers Prepared by ATRP for Targeted Delivery. Bioconjug Chem 2017;28:1251-9. [PMID: 28328199 DOI: 10.1021/acs.bioconjchem.7b00078] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
271 Wu H, Jin H, Wang C, Zhang Z, Ruan H, Sun L, Yang C, Li Y, Qin W, Wang C. Synergistic Cisplatin/Doxorubicin Combination Chemotherapy for Multidrug-Resistant Cancer via Polymeric Nanogels Targeting Delivery. ACS Appl Mater Interfaces 2017;9:9426-36. [PMID: 28247750 DOI: 10.1021/acsami.6b16844] [Cited by in Crossref: 105] [Cited by in F6Publishing: 109] [Article Influence: 21.0] [Reference Citation Analysis]
272 Fu W, Luo C, Morin EA, He W, Li Z, Zhao B. UCST-Type Thermosensitive Hairy Nanogels Synthesized by RAFT Polymerization-Induced Self-Assembly. ACS Macro Lett 2017;6:127-33. [PMID: 35632881 DOI: 10.1021/acsmacrolett.6b00888] [Cited by in Crossref: 50] [Cited by in F6Publishing: 50] [Article Influence: 10.0] [Reference Citation Analysis]
273 Pramanik P, Ray D, Aswal VK, Ghosh S. Supramolecularly Engineered Amphiphilic Macromolecules: Molecular Interaction Overrules Packing Parameters. Angew Chem Int Ed Engl 2017;56:3516-20. [PMID: 28211226 DOI: 10.1002/anie.201611715] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 7.8] [Reference Citation Analysis]
274 Pramanik P, Ray D, Aswal VK, Ghosh S. Supramolecularly Engineered Amphiphilic Macromolecules: Molecular Interaction Overrules Packing Parameters. Angew Chem 2017;129:3570-4. [DOI: 10.1002/ange.201611715] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 3.2] [Reference Citation Analysis]
275 Jiang G, Weng J, Kong L, Xu H, Liu M. Reduction-sensitive N,N′-dimethacryloylcystine nanohydrogel for triggered drug release. Materials Letters 2017;189:122-5. [DOI: 10.1016/j.matlet.2016.11.084] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
276 Jiang P, Li S, Lai J, Zheng H, Lin C, Shi P, Wang Y. Nanoparticle-Programmed Surface for Drug Release and Cell Regulation via Reversible Hybridization Reaction. ACS Appl Mater Interfaces 2017;9:4467-74. [PMID: 28117570 DOI: 10.1021/acsami.6b14355] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
277 Buwalda SJ, Vermonden T, Hennink WE. Hydrogels for Therapeutic Delivery: Current Developments and Future Directions. Biomacromolecules 2017;18:316-30. [DOI: 10.1021/acs.biomac.6b01604] [Cited by in Crossref: 244] [Cited by in F6Publishing: 251] [Article Influence: 48.8] [Reference Citation Analysis]
278 Yi H, Liu P, Sheng N, Gong P, Ma Y, Cai L. In situ crosslinked smart polypeptide nanoparticles for multistage responsive tumor-targeted drug delivery. Nanoscale 2016;8:5985-95. [PMID: 26926103 DOI: 10.1039/c5nr07348k] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 7.8] [Reference Citation Analysis]
279 Segal M, Avinery R, Buzhor M, Shaharabani R, Harnoy AJ, Tirosh E, Beck R, Amir RJ. Molecular Precision and Enzymatic Degradation: From Readily to Undegradable Polymeric Micelles by Minor Structural Changes. J Am Chem Soc 2017;139:803-10. [PMID: 27990807 DOI: 10.1021/jacs.6b10624] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 6.0] [Reference Citation Analysis]
280 Madhu C, Voshavar C, Rajasekhar K, Govindaraju T. Cyclic dipeptide based cell-penetrating peptidomimetics for effective DNA delivery. Org Biomol Chem 2017;15:3170-4. [DOI: 10.1039/c7ob00167c] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 4.4] [Reference Citation Analysis]
281 Zhang X, Han L, Liu M, Wang K, Tao L, Wan Q, Wei Y. Recent progress and advances in redox-responsive polymers as controlled delivery nanoplatforms. Mater Chem Front 2017;1:807-22. [DOI: 10.1039/c6qm00135a] [Cited by in Crossref: 90] [Cited by in F6Publishing: 91] [Article Influence: 18.0] [Reference Citation Analysis]
282 Cheng W, Liu Y. Redox-responsive hydrogels. Biopolymer-Based Composites. Elsevier; 2017. pp. 31-60. [DOI: 10.1016/b978-0-08-101914-6.00002-8] [Cited by in Crossref: 4] [Article Influence: 0.8] [Reference Citation Analysis]
283 Sun W, Hu Q, Ji W, Wright G, Gu Z. Leveraging Physiology for Precision Drug Delivery. Physiological Reviews 2017;97:189-225. [DOI: 10.1152/physrev.00015.2016] [Cited by in Crossref: 101] [Cited by in F6Publishing: 102] [Article Influence: 20.2] [Reference Citation Analysis]
284 Dispenza C, Sabatino MA, Ajovalasit A, Ditta LA, Ragusa M, Purrello M, Costa V, Conigliaro A, Alessandro R. Nanogel-antimiR-31 conjugates affect colon cancer cells behaviour. RSC Adv 2017;7:52039-47. [DOI: 10.1039/c7ra09797b] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
285 Homyak C, Anson F, Thayumanavan S. Supramolecular Polymers in Nanomedicine. Comprehensive Supramolecular Chemistry II 2017. [DOI: 10.1016/b978-0-12-409547-2.12566-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
286 Mahato R. Multifunctional Micro- and Nanoparticles. Emerging Nanotechnologies for Diagnostics, Drug Delivery and Medical Devices 2017. [DOI: 10.1016/b978-0-323-42978-8.00002-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
287 Peng X, Yuan H, Xu J, Lu F, Wang L, Guo X, Wang S, Li S, Li Y, Yang G. A hydrophilicity-based fluorescent strategy to differentiate cysteine/homocysteine over glutathione both in vivo and in vitro. RSC Adv 2017;7:5549-53. [DOI: 10.1039/c6ra27074c] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
288 Tsintou M, Wang C, Dalamagkas K, Weng D, Zhang Y, Niu W. Nanogels for biomedical applications. Nanobiomaterials Science, Development and Evaluation 2017. [DOI: 10.1016/b978-0-08-100963-5.00005-7] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
289 Chen S, Bian Q, Wang P, Zheng X, Lv L, Dang Z, Wang G. Photo, pH and redox multi-responsive nanogels for drug delivery and fluorescence cell imaging. Polym Chem 2017;8:6150-7. [DOI: 10.1039/c7py01424d] [Cited by in Crossref: 77] [Cited by in F6Publishing: 80] [Article Influence: 15.4] [Reference Citation Analysis]
290 Chen H, Ma Y, Wang X, Zha Z. Multifunctional phase-change hollow mesoporous Prussian blue nanoparticles as a NIR light responsive drug co-delivery system to overcome cancer therapeutic resistance. J Mater Chem B 2017;5:7051-8. [DOI: 10.1039/c7tb01712j] [Cited by in Crossref: 49] [Cited by in F6Publishing: 52] [Article Influence: 9.8] [Reference Citation Analysis]
291 Ding C, Tong L, Feng J, Fu J. Recent Advances in Stimuli-Responsive Release Function Drug Delivery Systems for Tumor Treatment. Molecules 2016;21:E1715. [PMID: 27999414 DOI: 10.3390/molecules21121715] [Cited by in Crossref: 90] [Cited by in F6Publishing: 92] [Article Influence: 15.0] [Reference Citation Analysis]
292 van Elk M, Murphy BP, Eufrásio-da-silva T, O’reilly DP, Vermonden T, Hennink WE, Duffy GP, Ruiz-hernández E. Nanomedicines for advanced cancer treatments: Transitioning towards responsive systems. International Journal of Pharmaceutics 2016;515:132-64. [DOI: 10.1016/j.ijpharm.2016.10.013] [Cited by in Crossref: 69] [Cited by in F6Publishing: 71] [Article Influence: 11.5] [Reference Citation Analysis]
293 Chen J, Zou Y, Deng C, Meng F, Zhang J, Zhong Z. Multifunctional Click Hyaluronic Acid Nanogels for Targeted Protein Delivery and Effective Cancer Treatment in Vivo. Chem Mater 2016;28:8792-9. [DOI: 10.1021/acs.chemmater.6b04404] [Cited by in Crossref: 71] [Cited by in F6Publishing: 72] [Article Influence: 11.8] [Reference Citation Analysis]
294 Molina M, Wedepohl S, Miceli E, Calderón M. Overcoming drug resistance with on-demand charged thermoresponsive dendritic nanogels. Nanomedicine (Lond) 2017;12:117-29. [PMID: 27879151 DOI: 10.2217/nnm-2016-0308] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 3.2] [Reference Citation Analysis]
295 Bode GH, Coué G, Freese C, Pickl KE, Sanchez-Purrà M, Albaiges B, Borrós S, van Winden EC, Tziveleka LA, Sideratou Z, Engbersen JFJ, Singh S, Albrecht K, Groll J, Möller M, Pötgens AJG, Schmitz C, Fröhlich E, Grandfils C, Sinner FM, Kirkpatrick CJ, Steinbusch HWM, Frank HG, Unger RE, Martinez-Martinez P. An in vitro and in vivo study of peptide-functionalized nanoparticles for brain targeting: The importance of selective blood-brain barrier uptake. Nanomedicine 2017;13:1289-300. [PMID: 27884636 DOI: 10.1016/j.nano.2016.11.009] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 2.2] [Reference Citation Analysis]
296 Chen W, Zou Y, Zhong Z, Haag R. Cyclo(RGD)-Decorated Reduction-Responsive Nanogels Mediate Targeted Chemotherapy of Integrin Overexpressing Human Glioblastoma In Vivo. Small 2017;13:1601997. [DOI: 10.1002/smll.201601997] [Cited by in Crossref: 41] [Cited by in F6Publishing: 45] [Article Influence: 6.8] [Reference Citation Analysis]
297 Eslahi N, Abdorahim M, Simchi A. Smart Polymeric Hydrogels for Cartilage Tissue Engineering: A Review on the Chemistry and Biological Functions. Biomacromolecules 2016;17:3441-63. [PMID: 27775329 DOI: 10.1021/acs.biomac.6b01235] [Cited by in Crossref: 151] [Cited by in F6Publishing: 153] [Article Influence: 25.2] [Reference Citation Analysis]
298 Debele TA, Mekuria SL, Tsai H. Polysaccharide based nanogels in the drug delivery system: Application as the carrier of pharmaceutical agents. Materials Science and Engineering: C 2016;68:964-81. [DOI: 10.1016/j.msec.2016.05.121] [Cited by in Crossref: 167] [Cited by in F6Publishing: 124] [Article Influence: 27.8] [Reference Citation Analysis]
299 Zabihi F, Wieczorek S, Dimde M, Hedtrich S, Börner HG, Haag R. Intradermal drug delivery by nanogel-peptide conjugates; specific and efficient transport of temoporfin. Journal of Controlled Release 2016;242:35-41. [DOI: 10.1016/j.jconrel.2016.07.033] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 4.8] [Reference Citation Analysis]
300 Güven O. Ionizing radiation: a versatile tool for nanostructuring of polymers. Pure and Applied Chemistry 2016;88:1049-61. [DOI: 10.1515/pac-2016-0813] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 2.2] [Reference Citation Analysis]
301 Bandyopadhyay S, Andersen MK, Alvi MAA, Sharma A, Raju R, Mcdonagh BH, Glomm WR. Incorporation of Fe@Au nanoparticles into multiresponsive pNIPAM-AAc colloidal gels modulates drug uptake and release. Colloid Polym Sci 2016;294:1929-42. [DOI: 10.1007/s00396-016-3944-1] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
302 Nishimura T, Takara M, Mukai SA, Sawada S, Sasaki Y, Akiyoshi K. A light sensitive self-assembled nanogel as a tecton for protein patterning materials. Chem Commun (Camb) 2016;52:1222-5. [PMID: 26610266 DOI: 10.1039/c5cc08416d] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 3.5] [Reference Citation Analysis]
303 Liaw DJ, Yagudaeva E, Prostyakova A, Lazov M, Zybin D, Ischenko A, Zubov V, Chang CH, Huang YC, Kapustin D. Sorption behavior of polyaramides in relation to isolation of nucleic acids and proteins. Colloids Surf B Biointerfaces 2016;145:912-21. [PMID: 27341305 DOI: 10.1016/j.colsurfb.2016.05.068] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
304 Sarika P, James NR. Polyelectrolyte complex nanoparticles from cationised gelatin and sodium alginate for curcumin delivery. Carbohydrate Polymers 2016;148:354-61. [DOI: 10.1016/j.carbpol.2016.04.073] [Cited by in Crossref: 110] [Cited by in F6Publishing: 85] [Article Influence: 18.3] [Reference Citation Analysis]
305 Philippova O. Solution Properties of Associating Polymers. Macromolecular Self&;#x02010;assembly 2016. [DOI: 10.1002/9781118887813.ch5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
306 Kumar P, Behl G, Sikka M, Chhikara A, Chopra M. Poly(ethylene glycol)-co-methacrylamide-co-acrylic acid based nanogels for delivery of doxorubicin. J Biomater Sci Polym Ed 2016;27:1413-33. [PMID: 27383582 DOI: 10.1080/09205063.2016.1207588] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
307 Wang Y, Luo Y, Zhao Q, Wang Z, Xu Z, Jia X. An Enzyme-Responsive Nanogel Carrier Based on PAMAM Dendrimers for Drug Delivery. ACS Appl Mater Interfaces 2016;8:19899-906. [DOI: 10.1021/acsami.6b05567] [Cited by in Crossref: 54] [Cited by in F6Publishing: 56] [Article Influence: 9.0] [Reference Citation Analysis]
308 Jeevanandam J, Chan YS, Danquah MK. Nano-formulations of drugs: Recent developments, impact and challenges. Biochimie 2016;128-129:99-112. [PMID: 27436182 DOI: 10.1016/j.biochi.2016.07.008] [Cited by in Crossref: 106] [Cited by in F6Publishing: 110] [Article Influence: 17.7] [Reference Citation Analysis]
309 Asadi H, Khoee S. Dual responsive nanogels for intracellular doxorubicin delivery. Int J Pharm 2016;511:424-35. [PMID: 27444549 DOI: 10.1016/j.ijpharm.2016.07.037] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 3.0] [Reference Citation Analysis]
310 Gurav DD, Kulkarni AS, Khan A, Shinde VS. pH-responsive targeted and controlled doxorubicin delivery using hyaluronic acid nanocarriers. Colloids and Surfaces B: Biointerfaces 2016;143:352-8. [DOI: 10.1016/j.colsurfb.2016.03.049] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 5.3] [Reference Citation Analysis]
311 Jiang Z, Dong X, Liu H, Wang Y, Zhang L, Sun Y. Multifunctionality of self-assembled nanogels of curcumin-hyaluronic acid conjugates on inhibiting amyloid β-protein fibrillation and cytotoxicity. Reactive and Functional Polymers 2016;104:22-9. [DOI: 10.1016/j.reactfunctpolym.2016.04.019] [Cited by in Crossref: 34] [Cited by in F6Publishing: 33] [Article Influence: 5.7] [Reference Citation Analysis]
312 Li N, Zhao L, Qi L, Li Z, Luan Y. Polymer assembly: Promising carriers as co-delivery systems for cancer therapy. Progress in Polymer Science 2016;58:1-26. [DOI: 10.1016/j.progpolymsci.2015.10.009] [Cited by in Crossref: 77] [Cited by in F6Publishing: 79] [Article Influence: 12.8] [Reference Citation Analysis]
313 Jia X, Han Y, Pei M, Zhao X, Tian K, Zhou T, Liu P. Multi-functionalized hyaluronic acid nanogels crosslinked with carbon dots as dual receptor-mediated targeting tumor theranostics. Carbohydr Polym 2016;152:391-7. [PMID: 27516286 DOI: 10.1016/j.carbpol.2016.06.109] [Cited by in Crossref: 67] [Cited by in F6Publishing: 66] [Article Influence: 11.2] [Reference Citation Analysis]
314 Wu H, Wang C. Biodegradable Smart Nanogels: A New Platform for Targeting Drug Delivery and Biomedical Diagnostics. Langmuir 2016;32:6211-25. [DOI: 10.1021/acs.langmuir.6b00842] [Cited by in Crossref: 107] [Cited by in F6Publishing: 106] [Article Influence: 17.8] [Reference Citation Analysis]
315 Kim H, Kim B, Lee C, Ryu JL, Hong S, Kim J, Ha E, Paik H. Redox-responsive biodegradable nanogels for photodynamic therapy using Chlorin e6. J Mater Sci 2016;51:8442-51. [DOI: 10.1007/s10853-016-0104-4] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
316 Khaliq NU, Sandra FC, Park DY, Lee JY, Oh KS, Kim D, Byun Y, Kim IS, Kwon IC, Kim SY, Yuk SH. Doxorubicin/heparin composite nanoparticles for caspase-activated prodrug chemotherapy. Biomaterials 2016;101:131-42. [PMID: 27286189 DOI: 10.1016/j.biomaterials.2016.05.056] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 4.7] [Reference Citation Analysis]
317 Cuggino JC, Molina M, Wedepohl S, Igarzabal CIA, Calderón M, Gugliotta LM. Responsive nanogels for application as smart carriers in endocytic pH-triggered drug delivery systems. European Polymer Journal 2016;78:14-24. [DOI: 10.1016/j.eurpolymj.2016.02.022] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 6.3] [Reference Citation Analysis]
318 P.r. S, James NR, Kumar P.r. A, K. Raj D. Galactosylated alginate-curcumin micelles for enhanced delivery of curcumin to hepatocytes. International Journal of Biological Macromolecules 2016;86:1-9. [DOI: 10.1016/j.ijbiomac.2016.01.037] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 6.2] [Reference Citation Analysis]
319 Zhang Y, Ding J, Li M, Chen X, Xiao C, Zhuang X, Huang Y, Chen X. One-Step “Click Chemistry”-Synthesized Cross-Linked Prodrug Nanogel for Highly Selective Intracellular Drug Delivery and Upregulated Antitumor Efficacy. ACS Appl Mater Interfaces 2016;8:10673-82. [DOI: 10.1021/acsami.6b00426] [Cited by in Crossref: 56] [Cited by in F6Publishing: 58] [Article Influence: 9.3] [Reference Citation Analysis]
320 Zhang Y, Tang S, Thapaliya ER, Raymo FM. Supramolecular nanocarriers with photoresponsive cargo. SPIE Proceedings 2016. [DOI: 10.1117/12.2207926] [Reference Citation Analysis]
321 Qiao ZY, Zhao WJ, Cong Y, Zhang D, Hu Z, Duan ZY, Wang H. Self-Assembled ROS-Sensitive Polymer-Peptide Therapeutics Incorporating Built-in Reporters for Evaluation of Treatment Efficacy. Biomacromolecules 2016;17:1643-52. [PMID: 27023216 DOI: 10.1021/acs.biomac.6b00041] [Cited by in Crossref: 43] [Cited by in F6Publishing: 43] [Article Influence: 7.2] [Reference Citation Analysis]
322 Rizzi LG, Levin Y. Influence of network topology on the swelling of polyelectrolyte nanogels. The Journal of Chemical Physics 2016;144:114903. [DOI: 10.1063/1.4943981] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
323 Kheiri Manjili H, Ma'mani L, Tavaddod S, Mashhadikhan M, Shafiee A, Naderi-Manesh H. D, L-Sulforaphane Loaded Fe3O4@ Gold Core Shell Nanoparticles: A Potential Sulforaphane Delivery System. PLoS One 2016;11:e0151344. [PMID: 26982588 DOI: 10.1371/journal.pone.0151344] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 4.0] [Reference Citation Analysis]
324 Gasparini G, Bang EK, Montenegro J, Matile S. Cellular uptake: lessons from supramolecular organic chemistry. Chem Commun (Camb) 2015;51:10389-402. [PMID: 26030211 DOI: 10.1039/c5cc03472h] [Cited by in Crossref: 104] [Cited by in F6Publishing: 108] [Article Influence: 17.3] [Reference Citation Analysis]
325 Functional Materials and Applied Systems. Bio- and Multifunctional Polymer Architectures 2016. [DOI: 10.1002/9781119188896.ch6] [Reference Citation Analysis]
326 Barkhordari S, Yadollahi M. Carboxymethyl cellulose capsulated layered double hydroxides/drug nanohybrids for Cephalexin oral delivery. Applied Clay Science 2016;121-122:77-85. [DOI: 10.1016/j.clay.2015.12.026] [Cited by in Crossref: 70] [Cited by in F6Publishing: 71] [Article Influence: 11.7] [Reference Citation Analysis]
327 Liang K, Ng S, Lee F, Lim J, Chung JE, Lee SS, Kurisawa M. Targeted intracellular protein delivery based on hyaluronic acid-green tea catechin nanogels. Acta Biomater 2016;33:142-52. [PMID: 26785145 DOI: 10.1016/j.actbio.2016.01.011] [Cited by in Crossref: 62] [Cited by in F6Publishing: 64] [Article Influence: 10.3] [Reference Citation Analysis]
328 Lim C, Youn YS, Lee KS, Hoang NH, Sim T, Lee ES, Oh KT. Development of a robust pH-sensitive polyelectrolyte ionomer complex for anticancer nanocarriers. Int J Nanomedicine 2016;11:703-13. [PMID: 26955270 DOI: 10.2147/IJN.S99271] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 0.3] [Reference Citation Analysis]
329 Khoee S, Asadi H. Nanogels: Chemical Approaches to Preparation. Encyclopedia of Biomedical Polymers and Polymeric Biomaterials. Taylor & Francis; 2015. pp. 5266-93. [DOI: 10.1081/e-ebpp-120050693] [Cited by in Crossref: 9] [Article Influence: 1.5] [Reference Citation Analysis]
330 Karimi M, Eslami M, Sahandi-Zangabad P, Mirab F, Farajisafiloo N, Shafaei Z, Ghosh D, Bozorgomid M, Dashkhaneh F, Hamblin MR. pH-Sensitive stimulus-responsive nanocarriers for targeted delivery of therapeutic agents. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2016;8:696-716. [PMID: 26762467 DOI: 10.1002/wnan.1389] [Cited by in Crossref: 120] [Cited by in F6Publishing: 130] [Article Influence: 20.0] [Reference Citation Analysis]
331 Galia A, Lanzalaco S, Sabatino MA, Dispenza C, Scialdone O, Sirés I. Crosslinking of poly(vinylpyrrolidone) activated by electrogenerated hydroxyl radicals: A first step towards a simple and cheap synthetic route of nanogel vectors. Electrochemistry Communications 2016;62:64-8. [DOI: 10.1016/j.elecom.2015.12.005] [Cited by in Crossref: 46] [Cited by in F6Publishing: 44] [Article Influence: 7.7] [Reference Citation Analysis]
332 Hemmati K, Masoumi A, Ghaemy M. Tragacanth gum-based nanogel as a superparamagnetic molecularly imprinted polymer for quercetin recognition and controlled release. Carbohydrate Polymers 2016;136:630-40. [DOI: 10.1016/j.carbpol.2015.09.006] [Cited by in Crossref: 62] [Cited by in F6Publishing: 62] [Article Influence: 10.3] [Reference Citation Analysis]
333 Ma M, Lei M, Tan X, Tan F, Li N. Theranostic liposomes containing conjugated polymer dots and doxorubicin for bio-imaging and targeted therapeutic delivery. RSC Adv 2016;6:1945-57. [DOI: 10.1039/c5ra24485d] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 3.8] [Reference Citation Analysis]
334 Dan Mogoşanu G, Mihai Grumezescu A, Everard Bejenaru L, Bejenaru C. Natural and synthetic polymers for drug delivery and targeting. Nanobiomaterials in Drug Delivery. Elsevier; 2016. pp. 229-84. [DOI: 10.1016/b978-0-323-42866-8.00008-3] [Cited by in Crossref: 9] [Article Influence: 1.5] [Reference Citation Analysis]
335 Debele TA, Mekuria SL, Lin S, Tsai H. Synthesis and characterization of bioreducible heparin-polyethyleneimine nanogels: application as imaging-guided photosensitizer delivery vehicle in photodynamic therapy. RSC Adv 2016;6:14692-704. [DOI: 10.1039/c5ra25650j] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 3.8] [Reference Citation Analysis]
336 Dispenza C, Sabatino MA, Grimaldi N, Mangione MR, Walo M, Murugan E, Jonsson M. On the origin of functionalization in one-pot radiation synthesis of nanogels from aqueous polymer solutions. RSC Adv 2016;6:2582-91. [DOI: 10.1039/c5ra23926e] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 3.5] [Reference Citation Analysis]
337 Ragab SS, Thapaliya ER, Zhang Y, Tang S, Mcmahan JB, Syed S, Captain B, Raymo FM. Synthesis in living cells with the assistance of supramolecular nanocarriers. RSC Adv 2016;6:32441-5. [DOI: 10.1039/c6ra04335f] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
338 Altinbasak I, Sanyal R, Sanyal A. Best of both worlds: Diels–Alder chemistry towards fabrication of redox-responsive degradable hydrogels for protein release. RSC Adv 2016;6:74757-64. [DOI: 10.1039/c6ra16126j] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 5.2] [Reference Citation Analysis]
339 Neoh KG, Lu S, Kang E, Mahendran R, Chiong E. Tailoring Soft Nanoparticles for Potential Application as Drug Carriers in Bladder Cancer Chemotherapy. ACS Symposium Series 2016. [DOI: 10.1021/bk-2016-1224.ch009] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
340 Zeng Z, She Y, Peng Z, Wei J, He X. Enzyme-mediated in situ formation of pH-sensitive nanogels for proteins delivery. RSC Adv 2016;6:8032-42. [DOI: 10.1039/c5ra25133h] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.2] [Reference Citation Analysis]
341 Saraswathy M, Stansbury J, Nair D. Water dispersible siloxane nanogels: a novel technique to control surface characteristics and drug release kinetics. J Mater Chem B 2016;4:5299-307. [DOI: 10.1039/c6tb01002d] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.5] [Reference Citation Analysis]
342 Garcia-amorós J, Tang S, Zhang Y, Thapaliya ER, Raymo FM. Self-Assembling Nanoparticles of Amphiphilic Polymers for In Vitro and In Vivo FRET Imaging. In: Sortino S, editor. Light-Responsive Nanostructured Systems for Applications in Nanomedicine. Cham: Springer International Publishing; 2016. pp. 29-59. [DOI: 10.1007/978-3-319-22942-3_2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
343 Liu K, Jiang X, Hunziker P. Carbohydrate-based amphiphilic nano delivery systems for cancer therapy. Nanoscale 2016;8:16091-156. [DOI: 10.1039/c6nr04489a] [Cited by in Crossref: 117] [Cited by in F6Publishing: 121] [Article Influence: 19.5] [Reference Citation Analysis]
344 Singh N, Joshi A, Verma G. Engineered nanomaterials for biomedicine. Engineering of Nanobiomaterials 2016. [DOI: 10.1016/b978-0-323-41532-3.00010-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
345 Weiss-maurin M, Cordella D, Jérôme C, Taton D, Detrembleur C. Direct one-pot synthesis of poly(ionic liquid) nanogels by cobalt-mediated radical cross-linking copolymerization in organic or aqueous media. Polym Chem 2016;7:2521-30. [DOI: 10.1039/c6py00112b] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
346 Tonglairoum P, Brannigan RP, Opanasopit P, Khutoryanskiy VV. Maleimide-bearing nanogels as novel mucoadhesive materials for drug delivery. J Mater Chem B 2016;4:6581-7. [DOI: 10.1039/c6tb02124g] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 6.5] [Reference Citation Analysis]
347 Mudassir J, Darwis Y, Khan AA, Khiang PK. Nanogels: Synthetic and Natural, Drug Delivery. Encyclopedia of Biomedical Polymers and Polymeric Biomaterials 2015. [DOI: 10.1081/e-ebpp-120050014] [Reference Citation Analysis]
348 Pawar S, Pande V. Oleic Acid Coated Gelatin Nanoparticles Impregnated Gel for Sustained Delivery of Zaltoprofen: Formulation and Textural Characterization. Adv Pharm Bull 2015;5:537-48. [PMID: 26819927 DOI: 10.15171/apb.2015.073] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
349 Zeng J, Du P, Liu L, Li J, Tian K, Jia X, Zhao X, Liu P. Superparamagnetic Reduction/pH/Temperature Multistimuli-Responsive Nanoparticles for Targeted and Controlled Antitumor Drug Delivery. Mol Pharmaceutics 2015;12:4188-99. [DOI: 10.1021/acs.molpharmaceut.5b00342] [Cited by in Crossref: 42] [Cited by in F6Publishing: 43] [Article Influence: 6.0] [Reference Citation Analysis]
350 Zhang H, Zhai Y, Wang J, Zhai G. New progress and prospects: The application of nanogel in drug delivery. Mater Sci Eng C Mater Biol Appl 2016;60:560-8. [PMID: 26706564 DOI: 10.1016/j.msec.2015.11.041] [Cited by in Crossref: 166] [Cited by in F6Publishing: 166] [Article Influence: 23.7] [Reference Citation Analysis]
351 Soni KS, Desale SS, Bronich TK. Nanogels: An overview of properties, biomedical applications and obstacles to clinical translation. J Control Release 2016;240:109-26. [PMID: 26571000 DOI: 10.1016/j.jconrel.2015.11.009] [Cited by in Crossref: 302] [Cited by in F6Publishing: 306] [Article Influence: 43.1] [Reference Citation Analysis]
352 Pippa N, Pispas S, Demetzos C. Mixed Biocompatible Block Copolymer/Lipid Nanostructures as Drug Nanocarriers: Advantages and Pharmaceutical Perspectives. Handbook of Polymers for Pharmaceutical Technologies 2015. [DOI: 10.1002/9781119041559.ch11] [Reference Citation Analysis]
353 Lukowiak MC, Thota BN, Haag R. Dendritic core–shell systems as soft drug delivery nanocarriers. Biotechnology Advances 2015;33:1327-41. [DOI: 10.1016/j.biotechadv.2015.03.014] [Cited by in Crossref: 45] [Cited by in F6Publishing: 41] [Article Influence: 6.4] [Reference Citation Analysis]
354 Li N, Zhao L, Qi L, Li Z, Luan Y. WITHDRAWN: Polymer assembly: Promising carriers as co-delivery systems for cancer therapy. Progress in Polymer Science 2015. [DOI: 10.1016/j.progpolymsci.2015.11.002] [Reference Citation Analysis]
355 Srinivasan M, Rajabi M, Mousa SA. Multifunctional Nanomaterials and Their Applications in Drug Delivery and Cancer Therapy. Nanomaterials (Basel) 2015;5:1690-703. [PMID: 28347089 DOI: 10.3390/nano5041690] [Cited by in Crossref: 82] [Cited by in F6Publishing: 83] [Article Influence: 11.7] [Reference Citation Analysis]
356 Vishnu Priya M, Sabitha M, Jayakumar R. Colloidal chitin nanogels: A plethora of applications under one shell. Carbohydr Polym 2016;136:609-17. [PMID: 26572393 DOI: 10.1016/j.carbpol.2015.09.054] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 3.3] [Reference Citation Analysis]
357 de Gracia Lux C, Lux J, Collet G, He S, Chan M, Olejniczak J, Foucault-collet A, Almutairi A. Short Soluble Coumarin Crosslinkers for Light-Controlled Release of Cells and Proteins from Hydrogels. Biomacromolecules 2015;16:3286-96. [DOI: 10.1021/acs.biomac.5b00950] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 4.7] [Reference Citation Analysis]
358 Cheng W, Wang G, Kumar JN, Liu Y. Surfactant-Free Emulsion-Based Preparation of Redox-Responsive Nanogels. Macromol Rapid Commun 2015;36:2102-6. [PMID: 26379215 DOI: 10.1002/marc.201500421] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
359 Byrne M, Murphy R, Kapetanakis A, Ramsey J, Cryan S, Heise A. Star-Shaped Polypeptides: Synthesis and Opportunities for Delivery of Therapeutics. Macromol Rapid Commun 2015;36:1862-76. [DOI: 10.1002/marc.201500300] [Cited by in Crossref: 55] [Cited by in F6Publishing: 55] [Article Influence: 7.9] [Reference Citation Analysis]
360 Gordon MR, Canakci M, Li L, Zhuang J, Osborne B, Thayumanavan S. Field Guide to Challenges and Opportunities in Antibody-Drug Conjugates for Chemists. Bioconjug Chem 2015;26:2198-215. [PMID: 26308881 DOI: 10.1021/acs.bioconjchem.5b00399] [Cited by in Crossref: 58] [Cited by in F6Publishing: 58] [Article Influence: 8.3] [Reference Citation Analysis]
361 Oliveira H, Sillankorva S, Merabishvili M, Kluskens LD, Azeredo J. Unexploited opportunities for phage therapy. Front Pharmacol 2015;6:180. [PMID: 26441644 DOI: 10.3389/fphar.2015.00180] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 4.9] [Reference Citation Analysis]
362 Sarika P, James NR, Nishna N, Anil Kumar P, Raj DK. Galactosylated pullulan–curcumin conjugate micelles for site specific anticancer activity to hepatocarcinoma cells. Colloids and Surfaces B: Biointerfaces 2015;133:347-55. [DOI: 10.1016/j.colsurfb.2015.06.020] [Cited by in Crossref: 40] [Cited by in F6Publishing: 32] [Article Influence: 5.7] [Reference Citation Analysis]
363 Gonzalez Solveyra E, Szleifer I. What is the role of curvature on the properties of nanomaterials for biomedical applications? Wiley Interdiscip Rev Nanomed Nanobiotechnol 2016;8:334-54. [PMID: 26310432 DOI: 10.1002/wnan.1365] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 3.9] [Reference Citation Analysis]
364 Zhu Y, Yao X, Chen X, Chen L. pH-sensitive hydroxyethyl starch-doxorubicin conjugates as antitumor prodrugs with enhanced anticancer efficacy. J Appl Polym Sci 2015;132:n/a-n/a. [DOI: 10.1002/app.42778] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
365 Li Y, Maciel D, Rodrigues J, Shi X, Tomás H. Biodegradable Polymer Nanogels for Drug/Nucleic Acid Delivery. Chem Rev 2015;115:8564-608. [PMID: 26259712 DOI: 10.1021/cr500131f] [Cited by in Crossref: 337] [Cited by in F6Publishing: 335] [Article Influence: 48.1] [Reference Citation Analysis]
366 Thapaliya ER, Fowley C, Callan B, Tang S, Zhang Y, Callan JF, Raymo FM. Energy-Transfer Schemes To Probe Fluorescent Nanocarriers and Their Emissive Cargo. Langmuir 2015;31:9557-65. [PMID: 26275045 DOI: 10.1021/acs.langmuir.5b01949] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.3] [Reference Citation Analysis]
367 Zan M, Li J, Luo S, Ge Z. Dual pH-triggered multistage drug delivery systems based on host-guest interaction-associated polymeric nanogels. Chem Commun (Camb) 2014;50:7824-7. [PMID: 24909859 DOI: 10.1039/c4cc03120b] [Cited by in Crossref: 78] [Cited by in F6Publishing: 81] [Article Influence: 11.1] [Reference Citation Analysis]
368 Swaminathan S, Fowley C, Thapaliya ER, McCaughan B, Tang S, Fraix A, Captain B, Sortino S, Callan JF, Raymo FM. Supramolecular nanoreactors for intracellular singlet-oxygen sensitization. Nanoscale 2015;7:14071-9. [PMID: 26238536 DOI: 10.1039/c5nr02672e] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.6] [Reference Citation Analysis]
369 Maximova ED, Faizuloev EB, Nikonova AA, Kotova SL, Solov’eva AB, Izumrudov VA, Litmanovich EA, Kudryashova EV, Melik-nubarov NS. Cross-linking as a tool for enhancement of transfection efficiency of cationic vectors. European Polymer Journal 2015;69:110-20. [DOI: 10.1016/j.eurpolymj.2015.05.024] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
370 Lee JM, Oh KT, Youn YS, Lee ES. Highly enhanced phototoxicity of chlorin e6-conjugated poly(β-cyclodextrin) with gas forming capacity at an acidic tumor extracellular pH and its in vitro evaluation: Gas-Forming Chlorin e6-Conjugated Poly(β-Cyclodextrin). Polym Adv Technol 2016;27:162-8. [DOI: 10.1002/pat.3612] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
371 Stebbins ND, Faig JJ, Yu W, Guliyev R, Uhrich KE. Polyactives: controlled and sustained bioactive release via hydrolytic degradation. Biomater Sci 2015;3:1171-87. [PMID: 26222033 DOI: 10.1039/c5bm00051c] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 3.6] [Reference Citation Analysis]
372 Zhao X, Huang Q, Jin Y. Gold nanorod delivery of LSD1 siRNA induces human mesenchymal stem cell differentiation. Mater Sci Eng C Mater Biol Appl 2015;54:142-9. [PMID: 26046277 DOI: 10.1016/j.msec.2015.05.013] [Cited by in Crossref: 34] [Cited by in F6Publishing: 27] [Article Influence: 4.9] [Reference Citation Analysis]
373 Chen W, Achazi K, Schade B, Haag R. Charge-conversional and reduction-sensitive poly(vinyl alcohol) nanogels for enhanced cell uptake and efficient intracellular doxorubicin release. Journal of Controlled Release 2015;205:15-24. [DOI: 10.1016/j.jconrel.2014.11.012] [Cited by in Crossref: 80] [Cited by in F6Publishing: 81] [Article Influence: 11.4] [Reference Citation Analysis]
374 Yin F, Yang C, Wang Q, Zeng S, Hu R, Lin G, Tian J, Hu S, Lan RF, Yoon HS, Lu F, Wang K, Yong KT. A Light-Driven Therapy of Pancreatic Adenocarcinoma Using Gold Nanorods-Based Nanocarriers for Co-Delivery of Doxorubicin and siRNA. Theranostics 2015;5:818-33. [PMID: 26000055 DOI: 10.7150/thno.11335] [Cited by in Crossref: 77] [Cited by in F6Publishing: 82] [Article Influence: 11.0] [Reference Citation Analysis]
375 Zhang Y, Swaminathan S, Tang S, Garcia-amorós J, Boulina M, Captain B, Baker JD, Raymo FM. Photoactivatable BODIPYs Designed To Monitor the Dynamics of Supramolecular Nanocarriers. J Am Chem Soc 2015;137:4709-19. [DOI: 10.1021/ja5125308] [Cited by in Crossref: 56] [Cited by in F6Publishing: 57] [Article Influence: 8.0] [Reference Citation Analysis]
376 Mazibuko Z, Choonara YE, Kumar P, Du Toit LC, Modi G, Naidoo D, Pillay V. A Review of the Potential Role of Nano-Enabled Drug Delivery Technologies in Amyotrophic Lateral Sclerosis: Lessons Learned from Other Neurodegenerative Disorders. Journal of Pharmaceutical Sciences 2015;104:1213-29. [DOI: 10.1002/jps.24322] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.7] [Reference Citation Analysis]
377 Ma K, Xu Y, An Z. Templateless synthesis of polyacrylamide-based Nanogels via RAFT dispersion polymerization. Macromol Rapid Commun 2015;36:566-70. [PMID: 25684634 DOI: 10.1002/marc.201400730] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.6] [Reference Citation Analysis]
378 Thoniyot P, Tan MJ, Karim AA, Young DJ, Loh XJ. Nanoparticle-Hydrogel Composites: Concept, Design, and Applications of These Promising, Multi-Functional Materials. Adv Sci (Weinh) 2015;2:1400010. [PMID: 27980900 DOI: 10.1002/advs.201400010] [Cited by in Crossref: 502] [Cited by in F6Publishing: 513] [Article Influence: 71.7] [Reference Citation Analysis]
379 Tian Y, Zheng J, Tang X, Ren Q, Wang Y, Yang W. Near-Infrared Light-Responsive Nanogels with Diselenide-Cross-Linkers for On-Demand Degradation and Triggered Drug Release. Part Part Syst Charact 2015;32:547-51. [DOI: 10.1002/ppsc.201400244] [Cited by in Crossref: 52] [Cited by in F6Publishing: 51] [Article Influence: 7.4] [Reference Citation Analysis]
380 Self-assembling in natural, synthetic, and hybrid materials with applications in controlled drug delivery. Controlled Drug Delivery 2015. [DOI: 10.1016/b978-1-907568-45-9.00005-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
381 Biglione C, Sousa-herves A, Menger M, Wedepohl S, Calderón M, Strumia MC. Facile ultrasonication approach for the efficient synthesis of ethylene glycol-based thermoresponsive nanogels. RSC Adv 2015;5:15407-13. [DOI: 10.1039/c4ra15784b] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
382 Khalili ST, Mohsenifar A, Beyki M, Zhaveh S, Rahmani-cherati T, Abdollahi A, Bayat M, Tabatabaei M. Encapsulation of Thyme essential oils in chitosan-benzoic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. LWT - Food Science and Technology 2015;60:502-8. [DOI: 10.1016/j.lwt.2014.07.054] [Cited by in Crossref: 96] [Cited by in F6Publishing: 98] [Article Influence: 13.7] [Reference Citation Analysis]
383 Maeki M, Saito T, Sato Y, Yasui T, Kaji N, Ishida A, Tani H, Baba Y, Harashima H, Tokeshi M. A strategy for synthesis of lipid nanoparticles using microfluidic devices with a mixer structure. RSC Adv 2015;5:46181-5. [DOI: 10.1039/c5ra04690d] [Cited by in Crossref: 53] [Cited by in F6Publishing: 54] [Article Influence: 7.6] [Reference Citation Analysis]
384 Li C, Huang W, Zhou L, Huang P, Pang Y, Zhu X, Yan D. PEGylated poly(diselenide-phosphate) nanogel as efficient self-delivery nanomedicine for cancer therapy. Polym Chem 2015;6:6498-508. [DOI: 10.1039/c5py00995b] [Cited by in Crossref: 36] [Cited by in F6Publishing: 35] [Article Influence: 5.1] [Reference Citation Analysis]
385 Hong N, Li Y, Zeng W, Zhang M, Peng X, Qiu X. Ultrahigh molecular weight, lignosulfonate-based polymers: preparation, self-assembly behaviours and dispersion property in coal–water slurry. RSC Adv 2015;5:21588-95. [DOI: 10.1039/c5ra02157j] [Cited by in Crossref: 36] [Cited by in F6Publishing: 36] [Article Influence: 5.1] [Reference Citation Analysis]
386 Zhang X, Malhotra S, Molina M, Haag R. Micro- and nanogels with labile crosslinks – from synthesis to biomedical applications. Chem Soc Rev 2015;44:1948-73. [DOI: 10.1039/c4cs00341a] [Cited by in Crossref: 240] [Cited by in F6Publishing: 239] [Article Influence: 34.3] [Reference Citation Analysis]
387 Gharib DH, Amemori S, Naya M, Kokado K, Sada K. Gel thermoresponsiveness driven by switching of the charge-transfer interaction. RSC Adv 2015;5:89319-22. [DOI: 10.1039/c5ra18388j] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
388 Qiao Z, Zhang D, Hou C, Zhao S, Liu Y, Gao Y, Tan N, Wang H. A pH-responsive natural cyclopeptide RA-V drug formulation for improved breast cancer therapy. J Mater Chem B 2015;3:4514-23. [DOI: 10.1039/c5tb00445d] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.0] [Reference Citation Analysis]
389 Şenel S. Functionalization of marine materials for drug delivery systems. Functional Marine Biomaterials 2015. [DOI: 10.1016/b978-1-78242-086-6.00007-8] [Reference Citation Analysis]
390 Sun BO, Fang Y, Li Z, Chen Z, Xiang J. Advances in the application of nanotechnology in the diagnosis and treatment of gastrointestinal tumors. Mol Clin Oncol 2015;3:274-80. [PMID: 25798253 DOI: 10.3892/mco.2014.470] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
391 Wu W, Yao W, Wang X, Xie C, Zhang J, Jiang X. Bioreducible heparin-based nanogel drug delivery system. Biomaterials 2015;39:260-8. [PMID: 25468376 DOI: 10.1016/j.biomaterials.2014.11.005] [Cited by in Crossref: 81] [Cited by in F6Publishing: 67] [Article Influence: 10.1] [Reference Citation Analysis]
392 Fernandes Stefanello T, Szarpak-Jankowska A, Appaix F, Louage B, Hamard L, De Geest BG, van der Sanden B, Nakamura CV, Auzély-Velty R. Thermoresponsive hyaluronic acid nanogels as hydrophobic drug carrier to macrophages. Acta Biomater 2014;10:4750-8. [PMID: 25110287 DOI: 10.1016/j.actbio.2014.07.033] [Cited by in Crossref: 46] [Cited by in F6Publishing: 40] [Article Influence: 5.8] [Reference Citation Analysis]
393 Mudassir J, Darwis Y, Khiang PK. Prerequisite Characteristics of Nanocarriers Favoring Oral Insulin Delivery: Nanogels as an Opportunity. International Journal of Polymeric Materials and Polymeric Biomaterials 2014;64:155-67. [DOI: 10.1080/00914037.2014.921919] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
394 Molla MR, Marcinko T, Prasad P, Deming D, Garman SC, Thayumanavan S. Unlocking a caged lysosomal protein from a polymeric nanogel with a pH trigger. Biomacromolecules 2014;15:4046-53. [PMID: 25291086 DOI: 10.1021/bm501091p] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 4.8] [Reference Citation Analysis]
395 Molina M, Giulbudagian M, Calderón M. Positively Charged Thermoresponsive Nanogels for Anticancer Drug Delivery. Macromol Chem Phys 2014;215:2414-9. [DOI: 10.1002/macp.201400286] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 4.9] [Reference Citation Analysis]
396 Wang Y, Xu H, Wang J, Ge L, Zhu J. Development of a Thermally Responsive Nanogel Based on Chitosan–Poly(N-Isopropylacrylamide- co -Acrylamide) for Paclitaxel Delivery. Journal of Pharmaceutical Sciences 2014;103:2012-21. [DOI: 10.1002/jps.23995] [Cited by in Crossref: 48] [Cited by in F6Publishing: 46] [Article Influence: 6.0] [Reference Citation Analysis]
397 Zhong Y, Meng F, Deng C, Zhong Z. Ligand-Directed Active Tumor-Targeting Polymeric Nanoparticles for Cancer Chemotherapy. Biomacromolecules 2014;15:1955-69. [DOI: 10.1021/bm5003009] [Cited by in Crossref: 370] [Cited by in F6Publishing: 388] [Article Influence: 46.3] [Reference Citation Analysis]
398 Pérez E, Martínez A, Teijón C, Teijón JM, Blanco MD. Bioresponsive nanohydrogels based on HEAA and NIPA for poorly soluble drugs delivery. Int J Pharm 2014;470:107-19. [PMID: 24813784 DOI: 10.1016/j.ijpharm.2014.05.002] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 2.4] [Reference Citation Analysis]
399 Soni G, Yadav KS. Nanogels as potential nanomedicine carrier for treatment of cancer: A mini review of the state of the art. Saudi Pharm J 2016;24:133-9. [PMID: 27013905 DOI: 10.1016/j.jsps.2014.04.001] [Cited by in Crossref: 104] [Cited by in F6Publishing: 103] [Article Influence: 13.0] [Reference Citation Analysis]
400 Liu N, Vignolle J, Vincent J, Robert F, Landais Y, Cramail H, Taton D. One-Pot Synthesis and PEGylation of Hyperbranched Polyacetals with a Degree of Branching of 100%. Macromolecules 2014;47:1532-42. [DOI: 10.1021/ma4026509] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 4.0] [Reference Citation Analysis]
401 Dorn U, Enders S. Mixing enthalpy and liquid–liquid equilibrium of aqueous polyethylene glycol (PEG) solutions. Molecular Physics 2014;112:2310-24. [DOI: 10.1080/00268976.2014.887800] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
402 Rajdev P, Molla MR, Ghosh S. Understanding the Role of H-Bonding in Aqueous Self-Assembly of Two Naphthalene Diimide (NDI)-Conjugated Amphiphiles. Langmuir 2014;30:1969-76. [DOI: 10.1021/la500089b] [Cited by in Crossref: 48] [Cited by in F6Publishing: 48] [Article Influence: 6.0] [Reference Citation Analysis]
403 Pérez E, Fernández A, Olmo R, Teijón JM, Blanco MD. pH and glutathion-responsive hydrogel for localized delivery of paclitaxel. Colloids Surf B Biointerfaces 2014;116:247-56. [PMID: 24491841 DOI: 10.1016/j.colsurfb.2014.01.004] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 3.3] [Reference Citation Analysis]
404 Zhang Y, Xiao C, Li M, Ding J, He C, Zhuang X, Chen X. Core-cross-linked micellar nanoparticles from a linear-dendritic prodrug for dual-responsive drug delivery. Polym Chem 2014;5:2801-8. [DOI: 10.1039/c3py01566a] [Cited by in Crossref: 50] [Cited by in F6Publishing: 50] [Article Influence: 6.3] [Reference Citation Analysis]
405 Malzahn K, Jamieson WD, Dröge M, Mailänder V, Jenkins ATA, Weiss CK, Landfester K. Advanced dextran based nanogels for fighting Staphylococcus aureus infections by sustained zinc release. J Mater Chem B 2014;2:2175-83. [DOI: 10.1039/c3tb21335h] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 3.8] [Reference Citation Analysis]
406 Zhang X, Achazi K, Steinhilber D, Kratz F, Dernedde J, Haag R. A facile approach for dual-responsive prodrug nanogels based on dendritic polyglycerols with minimal leaching. Journal of Controlled Release 2014;174:209-16. [DOI: 10.1016/j.jconrel.2013.11.005] [Cited by in Crossref: 118] [Cited by in F6Publishing: 121] [Article Influence: 14.8] [Reference Citation Analysis]
407 Huang Q, Liu T, Bao C, Lin Q, Ma M, Zhu L. Light and reductive dual stimuli-responsive PEI nanoparticles: “AND” logic response and controllable release. J Mater Chem B 2014;2:3333-9. [DOI: 10.1039/c4tb00087k] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 3.3] [Reference Citation Analysis]
408 Tang Z, Guan Y, Zhang Y. Contraction-type glucose-sensitive microgel functionalized with a 2-substituted phenylboronic acid ligand. Polym Chem 2014;5:1782-90. [DOI: 10.1039/c3py01190a] [Cited by in Crossref: 51] [Cited by in F6Publishing: 52] [Article Influence: 6.4] [Reference Citation Analysis]
409 Kowalczuk A, Trzcinska R, Trzebicka B, Müller AH, Dworak A, Tsvetanov CB. Loading of polymer nanocarriers: Factors, mechanisms and applications. Progress in Polymer Science 2014;39:43-86. [DOI: 10.1016/j.progpolymsci.2013.10.004] [Cited by in Crossref: 135] [Cited by in F6Publishing: 135] [Article Influence: 16.9] [Reference Citation Analysis]
410 Giulbudagian M, Asadian-birjand M, Steinhilber D, Achazi K, Molina M, Calderón M. Fabrication of thermoresponsive nanogels by thermo-nanoprecipitation and in situ encapsulation of bioactives. Polym Chem 2014;5:6909-13. [DOI: 10.1039/c4py01186d] [Cited by in Crossref: 50] [Cited by in F6Publishing: 50] [Article Influence: 6.3] [Reference Citation Analysis]
411 Raghupathi K, Li L, Ventura J, Jennings M, Thayumanavan S. pH responsive soft nanoclusters with size and charge variation features. Polym Chem 2014;5:1737-42. [DOI: 10.1039/c3py01277h] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 2.5] [Reference Citation Analysis]
412 Ballard N, Bon SAF. Dynamic uptake and release from poly(methacryloyl hydrazide) microgel particles through reversible hydrazide-aldehyde chemistry. Polym Chem 2014;5:6789-96. [DOI: 10.1039/c4py00726c] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
413 Zhu X, Anquillare EL, Farokhzad OC, Shi J. Polymer- and Protein-Based Nanotechnologies for Cancer Theranostics. Cancer Theranostics. Elsevier; 2014. pp. 419-36. [DOI: 10.1016/b978-0-12-407722-5.00022-0] [Cited by in Crossref: 7] [Article Influence: 0.9] [Reference Citation Analysis]
414 Qian H, Wang X, Yuan K, Xie C, Wu W, Jiang X, Hu L. Delivery of doxorubicin in vitro and in vivo using bio-reductive cellulose nanogels. Biomater Sci 2014;2:220-32. [DOI: 10.1039/c3bm60176e] [Cited by in Crossref: 51] [Cited by in F6Publishing: 51] [Article Influence: 6.4] [Reference Citation Analysis]
415 Zheng Y, Fu F, Zhang M, Shen M, Zhu M, Shi X. Multifunctional dendrimers modified with alpha-tocopheryl succinate for targeted cancer therapy. Med Chem Commun 2014;5:879-85. [DOI: 10.1039/c3md00324h] [Cited by in Crossref: 41] [Cited by in F6Publishing: 42] [Article Influence: 5.1] [Reference Citation Analysis]
416 Wang Q, Xiao X, Hu Y, Wang H, Yang Y. Reinforcement of phenylalanine-based supramolecular hydrogels by hybridizing poly(N-isopropylacrylamide) nanogels. RSC Adv 2014;4:22380-6. [DOI: 10.1039/c4ra03357d] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
417 Yu S, He C, Lv Q, Sun H, Chen X. pH and reduction dual responsive cross-linked polyurethane micelles as an intracellular drug delivery system. RSC Adv 2014;4:63070-8. [DOI: 10.1039/c4ra14221g] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
418 Hachet E, Sereni N, Pignot-Paintrand I, Ravaine V, Szarpak-Jankowska A, Auzély-Velty R. Thiol-ene clickable hyaluronans: from macro-to nanogels. J Colloid Interface Sci 2014;419:52-5. [PMID: 24491329 DOI: 10.1016/j.jcis.2013.12.044] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.4] [Reference Citation Analysis]
419 Pikabea A, Ramos J, Forcada J. Production of Cationic Nanogels with Potential Use in Controlled Drug Delivery. Part Part Syst Charact 2014;31:101-9. [DOI: 10.1002/ppsc.201300265] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 3.7] [Reference Citation Analysis]
420 Jia F, Liu X, Li L, Mallapragada S, Narasimhan B, Wang Q. Multifunctional nanoparticles for targeted delivery of immune activating and cancer therapeutic agents. J Control Release 2013;172:1020-34. [PMID: 24140748 DOI: 10.1016/j.jconrel.2013.10.012] [Cited by in Crossref: 165] [Cited by in F6Publishing: 169] [Article Influence: 18.3] [Reference Citation Analysis]
421 Demetzos C, Pippa N. Advanced drug delivery nanosystems (aDDnSs): a mini-review. Drug Deliv 2014;21:250-7. [PMID: 24134707 DOI: 10.3109/10717544.2013.844745] [Cited by in Crossref: 57] [Cited by in F6Publishing: 58] [Article Influence: 6.3] [Reference Citation Analysis]
422 Chen CY, Chen CT. Reaction-based and single fluorescent emitter decorated ratiometric nanoprobe to detect hydrogen peroxide. Chemistry 2013;19:16050-7. [PMID: 24123627 DOI: 10.1002/chem.201302342] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.4] [Reference Citation Analysis]
423 Raemdonck K, Braeckmans K, Demeester J, De Smedt SC. Merging the best of both worlds: hybrid lipid-enveloped matrix nanocomposites in drug delivery. Chem Soc Rev 2014;43:444-72. [PMID: 24100581 DOI: 10.1039/c3cs60299k] [Cited by in Crossref: 134] [Cited by in F6Publishing: 137] [Article Influence: 14.9] [Reference Citation Analysis]
424 Carolina Bellera, Melisa E. Gantner, María E. Ruiz, Alan Talevi. Recent Advances on Nanotechnology Applications to Cancer Drug Therapy. J Can Res Updates 2013;2. [DOI: 10.6000/1929-2279.2013.02.03.3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
425 Basak D, Ghosh S. pH-Regulated Controlled Swelling and Sustained Release from the Core Functionalized Amphiphilic Block Copolymer Micelle. ACS Macro Lett 2013;2:799-804. [PMID: 35606983 DOI: 10.1021/mz400357g] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 3.7] [Reference Citation Analysis]
426 Kim JO, Oberoi HS, Desale S, Kabanov AV, Bronich TK. Polypeptide nanogels with hydrophobic moieties in the cross-linked ionic cores: synthesis, characterization and implications for anticancer drug delivery. J Drug Target 2013;21:981-93. [PMID: 23998716 DOI: 10.3109/1061186X.2013.831421] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 2.6] [Reference Citation Analysis]
427 Nukolova NV, Oberoi HS, Zhao Y, Chekhonin VP, Kabanov AV, Bronich TK. LHRH-targeted nanogels as a delivery system for cisplatin to ovarian cancer. Mol Pharm 2013;10:3913-21. [PMID: 23957812 DOI: 10.1021/mp4003688] [Cited by in Crossref: 37] [Cited by in F6Publishing: 40] [Article Influence: 4.1] [Reference Citation Analysis]
428 de la Rosa VR. Poly(2-oxazoline)s as materials for biomedical applications. J Mater Sci: Mater Med 2014;25:1211-25. [DOI: 10.1007/s10856-013-5034-y] [Cited by in Crossref: 120] [Cited by in F6Publishing: 126] [Article Influence: 13.3] [Reference Citation Analysis]
429 Joglekar M, Trewyn BG. Polymer-based stimuli-responsive nanosystems for biomedical applications. Biotechnol J 2013;8:931-45. [PMID: 23843342 DOI: 10.1002/biot.201300073] [Cited by in Crossref: 78] [Cited by in F6Publishing: 79] [Article Influence: 8.7] [Reference Citation Analysis]
430 Dailing E, Liu J, Lewis S, Stansbury J. Nanogels as a Basis for Network Construction. Macromol Symp 2013;329:113-7. [PMID: 28867921 DOI: 10.1002/masy.201200109] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
431 Zhuang J, Gordon MR, Ventura J, Li L, Thayumanavan S. Multi-stimuli responsive macromolecules and their assemblies. Chem Soc Rev 2013;42:7421-35. [PMID: 23765263 DOI: 10.1039/c3cs60094g] [Cited by in Crossref: 487] [Cited by in F6Publishing: 492] [Article Influence: 54.1] [Reference Citation Analysis]
432 Lim EK, Jang E, Lee K, Haam S, Huh YM. Delivery of cancer therapeutics using nanotechnology. Pharmaceutics 2013;5:294-317. [PMID: 24300452 DOI: 10.3390/pharmaceutics5020294] [Cited by in Crossref: 67] [Cited by in F6Publishing: 70] [Article Influence: 7.4] [Reference Citation Analysis]
433 Kumar NA, Rejinold NS, Anjali P, Balakrishnan A, Biswas R, Jayakumar R. Preparation of chitin nanogels containing nickel nanoparticles. Carbohydr Polym 2013;97:469-74. [PMID: 23911472 DOI: 10.1016/j.carbpol.2013.05.009] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 2.3] [Reference Citation Analysis]
434 Su CW, Chen SY, Liu DM. Polysaccharide-lecithin reverse micelles with enzyme-degradable triglyceride shell for overcoming tumor multidrug resistance. Chem Commun (Camb) 2013;49:3772-4. [PMID: 23536208 DOI: 10.1039/c3cc40836a] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
435 Chen W, Zheng M, Meng F, Cheng R, Deng C, Feijen J, Zhong Z. In situ forming reduction-sensitive degradable nanogels for facile loading and triggered intracellular release of proteins. Biomacromolecules 2013;14:1214-22. [PMID: 23477570 DOI: 10.1021/bm400206m] [Cited by in Crossref: 100] [Cited by in F6Publishing: 100] [Article Influence: 11.1] [Reference Citation Analysis]
436 Li Y, Gao GH, Lee DS. Stimulus-sensitive polymeric nanoparticles and their applications as drug and gene carriers. Adv Healthc Mater 2013;2:388-417. [PMID: 23184586 DOI: 10.1002/adhm.201200313] [Cited by in Crossref: 118] [Cited by in F6Publishing: 121] [Article Influence: 13.1] [Reference Citation Analysis]
437 Han X, Zhang X, Yin Q, Hu J, Liu H, Hu Y. Thermoresponsive Diblock Copolymer with Tunable Soluble-Insoluble and Soluble-Insoluble-Soluble Transitions. Macromol Rapid Commun 2013;34:574-80. [DOI: 10.1002/marc.201200785] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 3.0] [Reference Citation Analysis]
438 Zhang J, Huang Y, Liu D, Gao Y, Qian S. Preparation of apigenin nanocrystals using supercritical antisolvent process for dissolution and bioavailability enhancement. Eur J Pharm Sci 2013;48:740-7. [PMID: 23305994 DOI: 10.1016/j.ejps.2012.12.026] [Cited by in Crossref: 79] [Cited by in F6Publishing: 81] [Article Influence: 8.8] [Reference Citation Analysis]
439 Kostova B, Kamenska E, Rachev D, Simeonova S, Georgiev G, Balashev K. Polyzwitterionic copolymer nanoparticles loaded in situ with metoprolol tartrate: synthesis, morphology and drug release properties. J Polym Res 2013;20. [DOI: 10.1007/s10965-012-0060-x] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
440 Yuan L, Chen W, Hu J, Zhang JZ, Yang D. Mechanistic Study of the Covalent Loading of Paclitaxel via Disulfide Linkers for Controlled Drug Release. Langmuir 2013;29:734-43. [DOI: 10.1021/la304324r] [Cited by in Crossref: 48] [Cited by in F6Publishing: 48] [Article Influence: 5.3] [Reference Citation Analysis]
441 Legros C, De Pauw-gillet M, Tam KC, Lecommmandoux S, Taton D. pH and redox responsive hydrogels and nanogels made from poly(2-ethyl-2-oxazoline). Polym Chem 2013;4:4801. [DOI: 10.1039/c3py00685a] [Cited by in Crossref: 44] [Cited by in F6Publishing: 44] [Article Influence: 4.9] [Reference Citation Analysis]
442 Wang Q, Zhang D, Yang X, Xu H, Shen AQ, Yang Y. Atom-economical in situ synthesis of BaSO4 as imaging contrast agents within poly(N-isopropylacrylamide) microgels using one-step droplet microfluidics. Green Chem 2013;15:2222. [DOI: 10.1039/c3gc40728d] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 1.8] [Reference Citation Analysis]
443 Ding J, Shi F, Li D, Chen L, Zhuang X, Chen X. Enhanced endocytosis of acid-sensitive doxorubicin derivatives with intelligent nanogel for improved security and efficacy. Biomater Sci 2013;1:633-46. [DOI: 10.1039/c3bm60024f] [Cited by in Crossref: 50] [Cited by in F6Publishing: 50] [Article Influence: 5.6] [Reference Citation Analysis]
444 Gowda R, Jones NR, Banerjee S, Robertson GP. Use of Nanotechnology to Develop Multi-Drug Inhibitors For Cancer Therapy. J Nanomed Nanotechnol 2013;4:184. [PMID: 25013742 DOI: 10.4172/2157-7439.1000184] [Cited by in Crossref: 37] [Cited by in F6Publishing: 40] [Article Influence: 4.1] [Reference Citation Analysis]
445 Zhu J, Shi X. Dendrimer-based nanodevices for targeted drug delivery applications. J Mater Chem B 2013;1:4199. [DOI: 10.1039/c3tb20724b] [Cited by in Crossref: 136] [Cited by in F6Publishing: 140] [Article Influence: 15.1] [Reference Citation Analysis]
446 Lai C, Lai N, Chuang Y, Chou F, Yang C, Lin C. Trivalent galactosyl-functionalized mesoporous silica nanoparticles as a target-specific delivery system for boron neutron capture therapy. Nanoscale 2013;5:9412. [DOI: 10.1039/c3nr02594b] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 3.2] [Reference Citation Analysis]
447 Ge Z, Liu S. Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance. Chem Soc Rev 2013;42:7289. [DOI: 10.1039/c3cs60048c] [Cited by in Crossref: 733] [Cited by in F6Publishing: 752] [Article Influence: 81.4] [Reference Citation Analysis]
448 Steinhilber D, Witting M, Zhang X, Staegemann M, Paulus F, Friess W, Küchler S, Haag R. Surfactant free preparation of biodegradable dendritic polyglycerol nanogels by inverse nanoprecipitation for encapsulation and release of pharmaceutical biomacromolecules. J Control Release 2013;169:289-95. [PMID: 23262202 DOI: 10.1016/j.jconrel.2012.12.008] [Cited by in Crossref: 116] [Cited by in F6Publishing: 120] [Article Influence: 11.6] [Reference Citation Analysis]
449 Bickerton S, Jiwpanich S, Thayumanavan S. Interconnected roles of scaffold hydrophobicity, drug loading, and encapsulation stability in polymeric nanocarriers. Mol Pharm 2012;9:3569-78. [PMID: 23088589 DOI: 10.1021/mp3004226] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 2.6] [Reference Citation Analysis]
450 Sankar RM, Meera KMS, Samanta D, Murali A, Jithendra P, Baran Mandal A, Jaisankar SN. The reinforced hydrogel for drug loading: immobilization of single-walled carbon nanotubes in cross-linked polymers via multiple interactions. RSC Adv 2012;2:12424. [DOI: 10.1039/c2ra22483f] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 1.7] [Reference Citation Analysis]