1 |
Hu N, Li W, Jiang W, Wen J, Gu S. Creating a Microenvironment to Give Wings to Dental Pulp Regeneration-Bioactive Scaffolds. Pharmaceutics 2023;15. [PMID: 36678787 DOI: 10.3390/pharmaceutics15010158] [Reference Citation Analysis]
|
2 |
Ghosh S, Qiao W, Yang Z, Orrego S, Neelakantan P. Engineering Dental Tissues Using Biomaterials with Piezoelectric Effect: Current Progress and Future Perspectives. J Funct Biomater 2022;14. [PMID: 36662055 DOI: 10.3390/jfb14010008] [Reference Citation Analysis]
|
3 |
Minic S, Vital S, Chaussain C, Boukpessi T, Mangione F. Tissue Characteristics in Endodontic Regeneration: A Systematic Review. Int J Mol Sci 2022;23:10534. [PMID: 36142446 DOI: 10.3390/ijms231810534] [Reference Citation Analysis]
|
4 |
Ranamalla SR, Porfire AS, Tomuță I, Banciu M. An Overview of the Supramolecular Systems for Gene and Drug Delivery in Tissue Regeneration. Pharmaceutics 2022;14:1733. [DOI: 10.3390/pharmaceutics14081733] [Reference Citation Analysis]
|
5 |
Kobayashi Y, Nouet J, Baljinnyam E, Siddiqui Z, Fine DH, Fraidenraich D, Kumar VA, Shimizu E. iPSC-derived cranial neural crest-like cells can replicate dental pulp tissue with the aid of angiogenic hydrogel. Bioactive Materials 2022;14:290-301. [DOI: 10.1016/j.bioactmat.2021.11.014] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
6 |
Kim K, Siddiqui Z, Acevedo-Jake AM, Roy A, Choudhury M, Grasman J, Kumar V. Angiogenic Hydrogels to Accelerate Early Wound Healing. Macromol Biosci 2022;:e2200067. [PMID: 35579914 DOI: 10.1002/mabi.202200067] [Reference Citation Analysis]
|
7 |
Li Y, Fraser D, Mereness J, Van Hove A, Basu S, Newman M, Benoit DSW. Tissue Engineered Neurovascularization Strategies for Craniofacial Tissue Regeneration. ACS Appl Bio Mater 2022;5:20-39. [PMID: 35014834 DOI: 10.1021/acsabm.1c00979] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
|
8 |
Trubelja A, Kasper FK, Farach-Carson MC, Harrington DA. Bringing hydrogel-based craniofacial therapies to the clinic. Acta Biomater 2022;138:1-20. [PMID: 34743044 DOI: 10.1016/j.actbio.2021.10.056] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
9 |
Acevedo-Jake A, Shi S, Siddiqui Z, Sanyal S, Schur R, Kaja S, Yuan A, Kumar VA. Preclinical Efficacy of Pro- and Anti-Angiogenic Peptide Hydrogels to Treat Age-Related Macular Degeneration. Bioengineering (Basel) 2021;8:190. [PMID: 34940343 DOI: 10.3390/bioengineering8120190] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
10 |
Wu DT, Munguia-Lopez JG, Cho YW, Ma X, Song V, Zhu Z, Tran SD. Polymeric Scaffolds for Dental, Oral, and Craniofacial Regenerative Medicine. Molecules 2021;26:7043. [PMID: 34834134 DOI: 10.3390/molecules26227043] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
|
11 |
Duncan WJ, Coates DE. Meeting the challenges and clinical requirements for dental regeneration; the New Zealand experience. Bone 2021;154:116181. [PMID: 34509689 DOI: 10.1016/j.bone.2021.116181] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
12 |
Panchal D, Kataria J, Patel K, Crowe K, Pai V, Azizogli AR, Kadian N, Sanyal S, Roy A, Dodd-O J, Acevedo-Jake AM, Kumar VA. Peptide-Based Inhibitors for SARS-CoV-2 and SARS-CoV. Adv Ther (Weinh) 2021;:2100104. [PMID: 34514085 DOI: 10.1002/adtp.202100104] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
13 |
Siddiqui Z, Sarkar B, Kim KK, Kumar A, Paul R, Mahajan A, Grasman JM, Yang J, Kumar VA. Self-assembling Peptide Hydrogels Facilitate Vascularization in Two-Component Scaffolds. Chem Eng J 2021;422:130145. [PMID: 34054331 DOI: 10.1016/j.cej.2021.130145] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
|