BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Dejob L, Toury B, Tadier S, Grémillard L, Gaillard C, Salles V. Electrospinning of in situ synthesized silica-based and calcium phosphate bioceramics for applications in bone tissue engineering: A review. Acta Biomater 2021;123:123-53. [PMID: 33359868 DOI: 10.1016/j.actbio.2020.12.032] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 11.5] [Reference Citation Analysis]
Number Citing Articles
1 Tao J, Zhu S, Liao X, Wang Y, Zhou N, Li Z, Wan H, Tang Y, Sen Y, Du T, Yang Y, Song J, Liu R. DLP-based bioprinting of void-forming hydrogels for enhanced stem-cell-mediated bone regeneration. Materials Today Bio 2022. [DOI: 10.1016/j.mtbio.2022.100487] [Reference Citation Analysis]
2 Xu X, Zhou Y, Zheng K, Li X, Li L, Xu Y. 3D Polycaprolactone/Gelatin-Oriented Electrospun Scaffolds Promote Periodontal Regeneration. ACS Appl Mater Interfaces 2022. [PMID: 36197319 DOI: 10.1021/acsami.2c03705] [Reference Citation Analysis]
3 Wang B, Zeng Y, Liu S, Zhou M, Fang H, Wang Z, Sun J. ZIF-8 induced hydroxyapatite-like crystals enabled superior osteogenic ability of MEW printing PCL scaffolds.. [DOI: 10.21203/rs.3.rs-1990250/v1] [Reference Citation Analysis]
4 Budi HS, Davidyants A, Rudiansyah M, Ansari MJ, Suksatan W, Sultan MQ, Jalil AT, Kazemnejadi M. Alendronate reinforced polycaprolactone-gelatin-graphene oxide: A promising nanofibrous scaffolds with controlled drug release. Materials Today Communications 2022;32:104108. [DOI: 10.1016/j.mtcomm.2022.104108] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Wen C, Qian J, Xiao L, Luo L, Zheng J, Xie M, Tao J, Wu X, Sa B, Luo K. Enhanced biological behavior and antibacterial property of WS2 nanosheets modified mesoporous bioactive glass nanospheres for bone tissue engineering. Ceramics International 2022. [DOI: 10.1016/j.ceramint.2022.07.324] [Reference Citation Analysis]
6 Wang Y, Duan Y, Tian F, Zhou Z, Liu Y, Wang W, Gao B, Tang Y. Ultrathin and Handleable Nanofibrous Net as a Novel Biomimetic Basement Membrane Material for Endothelial Barrier Formation. Colloids and Surfaces B: Biointerfaces 2022. [DOI: 10.1016/j.colsurfb.2022.112775] [Reference Citation Analysis]
7 Müller V, Djurado E. Microstructural designed S58 bioactive glass/ hydroxyapatite composites for enhancing osteointegration of Ti6Al4V-based implants. Ceramics International 2022. [DOI: 10.1016/j.ceramint.2022.08.138] [Reference Citation Analysis]
8 Miguez M, Sabarots MG, Cid MP, Salvatierra NA, Comín R. Fabrication and Characterization of Gelatin/Calcium Phosphate Electrospun Composite Scaffold for Bone Tissue Engineering. Fibers Polym. [DOI: 10.1007/s12221-022-4166-4] [Reference Citation Analysis]
9 Deng K, Liu Z, Dou W, Cai Q, Ma W, Wang S. HA/β-TCP Biphasic Calcium Phosphate Ceramics Derived From Butterfish Bones Loaded With Bone Marrow Mesenchymal Stem Cells Promote Osteogenesis. Front Mater 2022;9:928075. [DOI: 10.3389/fmats.2022.928075] [Reference Citation Analysis]
10 Belabbes K, Pinese C, Leon-valdivieso CY, Bethry A, Garric X. Creation of a Stable Nanofibrillar Scaffold Composed of Star-Shaped PLA Network Using Sol-Gel Process during Electrospinning. Molecules 2022;27:4154. [DOI: 10.3390/molecules27134154] [Reference Citation Analysis]
11 Zhu Y, Zhang Y, Zhou Y. Application Progress of Modified Chitosan and Its Composite Biomaterials for Bone Tissue Engineering. Int J Mol Sci 2022;23:6574. [PMID: 35743019 DOI: 10.3390/ijms23126574] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
12 Ji Y, Song W, Xu L, Yu DG, Annie Bligh SW. A Review on Electrospun Poly(amino acid) Nanofibers and Their Applications of Hemostasis and Wound Healing. Biomolecules 2022;12:794. [PMID: 35740919 DOI: 10.3390/biom12060794] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 13.0] [Reference Citation Analysis]
13 Kadhim MM, Bokov DO, Ansari MJ, Suksatan W, Jawad MA, Chupradit S, Fenjan MN, Kazemnejadi M. Bone morphogenetic protein (BMP)-modified graphene oxide-reinforced polycaprolactone-gelatin nanofiber scaffolds for application in bone tissue engineering. Bioprocess Biosyst Eng 2022. [PMID: 35396960 DOI: 10.1007/s00449-022-02717-9] [Reference Citation Analysis]
14 Dejob L, Attik N, Tadier S, Gaillard C, Toury B, Salles V. Nitrate‐Free Synthesis and Electrospinning of Carbonated Hydroxyapatite Coatings on TA6V Implants. Adv Materials Inter 2022;9:2102342. [DOI: 10.1002/admi.202102342] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Ahmed MK, Awwad NS, Ibrahium HA, Mostafa MS, Alqahtani MS, El-morsy MA. Hydroxyapatite and Er2O3 are embedded within graphene oxide nanosheets for high improvement of their hardness and biological responses. J Inorg Organomet Polym. [DOI: 10.1007/s10904-022-02249-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
16 Setia Budi H, Javed Ansari M, Abdalkareem Jasim S, Kamal Abdelbasset W, Bokov D, Fakri Mustafa Y, Najm MA, Kazemnejadi M. Preparation of antibacterial Gel/PCL nanofibers reinforced by dicalcium phosphate-modified graphene oxide with control release of clindamycin for possible application in bone tissue engineering. Inorganic Chemistry Communications 2022. [DOI: 10.1016/j.inoche.2022.109336] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
17 Osorio-Arciniega R, García-Hipólito M, Alvarez-Fregoso O, Alvarez-Perez MA. Composite Fiber Spun Mat Synthesis and In Vitro Biocompatibility for Guide Tissue Engineering. Molecules 2021;26:7597. [PMID: 34946677 DOI: 10.3390/molecules26247597] [Reference Citation Analysis]
18 Müller V, Balvay S, Gaillard C, Tadier S, Gremillard L, Djurado E. One-step fabrication of single-phase hydroxyapatite coatings on Ti-alloy implants by electrostatic spray deposition: From microstructural investigation to in vitro studies. Surface and Coatings Technology 2021;427:127805. [DOI: 10.1016/j.surfcoat.2021.127805] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
19 Ortega F, Versino F, López OV, García MA. Biobased composites from agro-industrial wastes and by-products. Emergent Mater 2021;:1-49. [PMID: 34849454 DOI: 10.1007/s42247-021-00319-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
20 Wang J, Wang J, Qiu S, Chen W, Cheng L, Du W, Wang J, Han L, Song L, Hu Y. Biodegradable L-lysine-modified amino black phosphorus/poly(l-lactide-coε-caprolactone) nanofibers with enhancements in hydrophilicity, shape recovery and osteodifferentiation properties. Colloids Surf B Biointerfaces 2022;209:112209. [PMID: 34814101 DOI: 10.1016/j.colsurfb.2021.112209] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Huang C, Yu M, Li H, Wan X, Ding Z, Zeng W, Zhou Z. Research Progress of Bioactive Glass and Its Application in Orthopedics. Adv Mater Interfaces 2021;8:2100606. [DOI: 10.1002/admi.202100606] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Saveleva MS, Ivanov AN, Chibrikova JA, Abalymov AA, Surmeneva MA, Surmenev RA, Parakhonskiy BV, Lomova MV, Skirtach AG, Norkin IA. Osteogenic Capability of Vaterite-Coated Nonwoven Polycaprolactone Scaffolds for In Vivo Bone Tissue Regeneration. Macromol Biosci 2021;:e2100266. [PMID: 34608754 DOI: 10.1002/mabi.202100266] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
23 Zhong H, Huang J, Wu J, Du J. Electrospinning nanofibers to 1D, 2D, and 3D scaffolds and their biomedical applications. Nano Res 2022;15:787-804. [DOI: 10.1007/s12274-021-3593-7] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
24 Chen IH, Lee TM, Huang CL. Biopolymers Hybrid Particles Used in Dentistry. Gels 2021;7:31. [PMID: 33809903 DOI: 10.3390/gels7010031] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]